
Stateful ODE-Nets using Basis Function Expansions
—Supplement Materials—

A Proofs

A.1 Proof of Theorem 1

In the sequel, we assert that f is smooth on an interval [0, T], and therefore possesses bounded
derivatives of all orders on [0, T], where T > 0. Recall that a p-stage explicit Runge-Kutta method
for an ordinary differential equation y′θ(t) = f(yθ(t), θ(t)) provides an approximation yh,θ(t) of
yθ(t) for a given step size h > 0 through linear interpolation between the recursively generated points:

yh,θ(t+ h) = yh,θ(t) + hΦh(t, yh,θ(t)),

where Φh(t, y) =
∑p
i=1 biki(t, y) and each

ki(t, y) = f

y + h

i−1∑
j=1

aijkj(t, y), θ(t+ cih)

 .

It is typical to assume that ci =
∑i−1
j=1 aij . For a fixed Runge-Kutta scheme (aij , bi, c), let IT denote

the collection of time points where the scheme evaluates θ(t) on the interval [0, T], that is,

IT := [0, T] ∩
⋃
k∈Z

p⋃
i=1

{kh+ cih}.

For now, we let θ̄(t) denote an arbitrary smooth function satisfying θ(tj) = θ̄(tj) for each tj ∈ IT .
This ensures that the Runge-Kutta approximations yh,θ and ȳh,θ to the ordinary differential equations

y′θ(t) = f(yθ(t), θ(t))

ȳ′θ(t) = f(ȳθ(t), θ̄(t)),

respectively, will coincide (that is, yh,θ = ȳh,θ). For example, one could take θ̄ to be the smoothing
spline satisfying

θ̄(t) = arg min
θ̄

∑
j

(θ(tj)− θ̄(tj))2 +

∫ T

0

‖θ̄(p+1)(t)‖dt

 .

Letting

Dpθ(t) =

{
∂m+lfj
∂ym∂tl

(ȳθ(t), θ̄(t))

}
j=1,...,d, k+l≤p+1

,

Theorem II.3.2 of [18] implies the existence of a polynomial P such that for any t ∈ [0, T − h],

ȳθ(t+ h) = ȳθ(t) + hΦh(t, ȳθ(t)) + hp+1P ◦ Dpθ(t) +O(hp+2).

From [18, Theorem II.3.4], we have also that yh,θ(t) = ȳθ(t) +O(hp). Furthermore, by [23, §67],
for any integer m ≥ 1,

h−m∆m
h f(y, t) =

∂m

∂tm
f(y, t) +O(h),

as h→ 0+. Therefore, letting

D̄ph,θ(t) =

{
h−l

∂m+l

∂ym
∆l
h(yh,θ(t), θ̄(t))

}
j=1,...,d, k+l≤p+1

,

we infer that D̄ph,θ(t)−D
p
θ(t) = O(hp) +O(h) = O(h). Consequently, for any t ∈ [0, T − h],

ȳθ(t+ h) = ȳθ(t) + hΦh(t, ȳθ(t)) + hp+1P ◦ D̄ph,θ(t) +O(hp+2).

13

Moving to a global estimate, [18, Theorem II.8.1] implies that for ēh,θ(t) satisfying

ē′h,θ(t) =
∂f

∂y
(ȳθ(t), θ̄(t))ēh,θ(t) + P ◦ D̄ph,θ(t),

there is, for any t ∈ [0, T],

yh,θ(t) = ȳθ(t) + hpēh,θ(t) +O(hp+1).

For any t ∈ [0, T], we let ιh(t) = bt/hc · h denote the nearest point on the grid {0, h, 2h, . . . } to t.
Since θ̄ is Lipschitz continuous on [0, T], θ(ιh(t)) = θ̄(ιh(t)) = θ̄(t) +O(h). Therefore, by letting

Dph,θ(t) =

{
h−l

∂m+l

∂ym
∆l
h(yh,θ(t), θ(ιh(t)))

}
j=1,...,d, k+l≤p+1

,

we note that Dph,θ(t) = D̄ph,θ(t) +O(h). Similarly, letting

e′h,θ(t) =
∂f

∂y
(ȳθ(t), θ(ιh(t)))eh,θ(t) + P ◦ Dph,θ(t),

an application of Gronwall’s inequality reveals that ēh,θ(t) = eh,θ(t) +O(h). Therefore,

yh,θ(t) = ȳθ(t) + hpeh,θ(t) +O(hp+1).

A Taylor expansion in L finally reveals

L(yh,θ(t)) = L(ȳθ(t)) + hp∇L(ȳθ(t)) · eh,θ(t) +O(hp+1),

and hence the result.

A.2 Proof of Lemma 1

Following the notation used in the proof of Theorem 1, the order conditions for a p-stage Runge–Kutta
method ensure the existence of a function Eh,θ(t) uniformly bounded in h and depending smoothly
on θ, such that for any t ∈ [0, T]

yh,θ+εϕ(t) = yθ̄+εϕ(t) + hpEh,θ+εϕ(t).

For more details, see [18, Chapter II.3]. Therefore, as h→ 0+, for any t ∈ [0, T],

Dϕyh,θ(t) = Dϕȳθ(t) +O(hp).

The remainder of the proof follows by straightforward calculation. Since

d

dε
ẏθ̄+εϕ(t) =

∂f

∂y
(yθ̄+εϕ(t), θ̄(t) + εϕ(t))

d

dε
yθ̄+εϕ(t) +

∂f

∂θ
(yθ̄+εϕ(t), θ̄(t) + εϕ(t))ϕ(t),

it follows that

d

dt
Dφȳθ(t) =

∂f

∂y
(ȳθ(t), θ̄(t))Dϕȳθ(t) +

∂f

∂θ
(ȳθ(t), θ̄(t))ϕ(t).

Since Dϕȳθ(0) = 0, solving this ODE reveals

Dϕȳθ(t) =

∫ t

0

eFθ(s,t) ∂f

∂θ
(ȳθ(s), θ̄(s))ϕ(s)ds,

where Fθ(s, t) =
∫ t
s
∂f
∂y (ȳθ(u), θ̄(u))du. The result now follows since yh,θ(t) = ȳθ(t) + O(hp),

which in turn, implies Fh,θ = Fθ +O(hp).

14

B Relationships Between Basis Functions and Prior ODE-Nets

The basis function representation of weights provides a systematic way to increase the depth-wise
capacity within a single ODE-Net while using the same network unit. Using a single OdeBlock
for depth is required for model transformations, such as compression, multi-level refinement, and
graph shortening, to make significant changes to the model. In this section, we briefly describe how
previous attempts of adding more depth to ODE-Nets with ad hoc changes to the network can be
interpreted as basis functions.

For ODE-Nets, the module inside of the time integral is a neural network with time as an additional
input:

y =

∫ T

0

F (x, t; θ̂)dt. (18)

Some ODE-Net implementations use F (x, t; θ̂) = R(x; θ̂) with no explicit time dependence [13],
which is as if there is a single constant basis function, φ(t) = 1. Increasing the number of parameters
requires stacking OdeBlocks, which is similar to adding more piecewise constant basis functions [34].
However, and importantly for us, separate OdeBlocks does not allow for integration steps to cross
parameter boundaries, and does not enable compression or multi-level refinement.

In other works, e.g., [14], the time dependence is included by appending t as a feature to the initial
input and/or every internal layer ofR to every other layer as well. In one perspective, this changes the
structure of the recurrent unit. However, by algebraic manipulation of t, we can show that it is similar
to a basis function representation plugged into the original recurrent unit,R(x; θ(t, θ̂)). Suppose the
original R has two hidden features x1, x2, and six weights W11,W12,W21,W22, b1, b2. In matrix
notation, concatenation of t means that every linear transformation layer (in the 2× 2 example) has
two more weights and can be written as

y =

[
W11 W12 W13

W21 W22 W23

]{ x1

x2

t

}
+

{
b1
b2

}
=

[
W11 W12

W21 W22

]{
x1

x2

}
+

{
b1 +W13t
b2 +W23t

}
.

We can rename the third column of W to be an additional basis coefficient of b. In tensor notation,
we have effectively a representation where one of the weights is based on a simple linear function,

y = Wx+ b(t),

where W (t) = W is constant in time, but b(t) = b+ btt. (This requires mixing basis functions for
different components of θ; in the main text, we only used representations where every weight used
the same basis.) Thus, this unit is still similar to the original R, but only adds another set of bias
parameters as a standard ResNet unit.

As an easy extension of the above model, it is also possible to make W into a linear function of t,

W (t) = W +Wtt.

Then, every component can be included in a parameter function θ(t) = θ̂0 + θ̂1, where every
component of the weight parameters is using the same basis set,

φ1(t) = 1,

φ2(t) = t.

These are the first two terms of a polynomial basis set which generalizes as φn(t) = tn. The Galerkin
ODE-Nets of [34] used general polynomial terms as one basis choice.

Note that the coefficients θ̂1 and θ̂2 have different “units”: “thetas” versus “thetas-per-second”. Thus,
the weight parameters for the time-coefficients need different initialization schemes, and potentially
learning rates, as the weight parameters that are constant-coefficients. To the contrary, the piecewise-
constant, piecewise-linear and discontinuous piecewise-linear functions we considered in the main
text have basis function coefficients with the same “units,” which can all use standard initialization
schemes with no special consideration.

15

C Algorithm Details

C.1 Projection

Numerical integration of the loss function equation is easy to implement, and can be exactly correct
for functions with finite polynomial order with sufficient quadrature terms. We break down the
domain into sub-cells and use Gaussian quadrature rules on each sub-cell. We use sub-cells because
our basis sets are not smooth across control point boundaries. Specifically, we choose Ncell as
max(K1,K2) to line up with the finer partition, where K denotes the number of basis functions.
Further, we use degree 7 quadrature rules.

Given a quadrature rule with Nquad weights wj at point ξj , we approximate the projection integral as∫ 1

0

f(t)dt ≈
Ncell∑
i=1

Nquad∑
j=1

wjf(tj)
ti+1 − ti

2
, (19)

where tj is the mapping of quadrature point ξj from the quadrature domain [−1, 1] to the cell domain
[ti, ti+1]. This step is not performance critical, and the summations can be simplified using constant
folding at compile time. The operator results in a K1 × K2 matrix that can be applied to every
parameter independently.

Now, we describe how to solve the following problem given in the main text:

min
θ̂2k

∫ T

0

(
θ1(t, θ̂1)− θ2(t, θ̂2)

)2

dt = min
θ̂2k

∫ T

0

(
K1∑
a=1

θ̂1
aφ

1
a(t)−

K2∑
k=1

θ̂2
kφ

2
k(t)

)2

dt. (20)

The projection algorithm is applied to each scalar weight of θ independently. Let Xa be one scalar
component of θ̂1

a (a = 1, . . . ,K1), and Yk be the matching scalar component of θ̂2
k (k = 1, . . . ,K2).

The loss function is defined on the basis coefficients of each scalar weight as

L(X,Y) =

Ncell∑
i=1

Nquad∑
j=1

wj(ti+1 − ti)
2

(
K1∑
a=1

Xaφ
1
a(t)−

K2∑
k=1

Ykφ
2
k(t)

)2

. (21)

This function is quadratic and can be solved with one linear solve, Y = −H−1G(x) with

Hjk =
∂2L

∂θ̂2
= Integrate

(
φ2
j (t)φ

2
k(t)

)
(22)

Gj(X) =
∂L

∂θ̂
= Integrate

(
φ2
j (t)

K1∑
a=1

φ1
a(t)Xa

)
, (23)

where H is a K2 ×K2 Hessian matrix, and G(X) is a K2 gradient vector. (In practice, we merely
implement L(X,Y) in Python, using NumPy to obtain the quadrature weights, and use JAX’s
automatic differentiation to evaluate the Hessian H and gradient G.) The set of basis function
coefficients θ̂1 has K1 × NR components, and θ̂2 has K2 × NR components. This linear solve
is applied to every tensor component of θ̂, in a loop needing NR iterations where X is a different
component of θ̂1. Note that H is independent of X , and G(X) is linear in X and can be written as
G(X) = RX , whereR is aK2×K1 matrix. The loop can be efficiently carried out by pre-factorizing
H once, then applying the back-substitution to each column of the the matrix R to obtain a matrix
A = H−1R. Then, A can be applied to every component column in θ̂1, obtaining a linear operation

[θ̂2]︸︷︷︸
K2×NR

= −[[H−1]︸ ︷︷ ︸
K2×K2

[G]︸︷︷︸
K2×K1

] [θ̂1]︸︷︷︸
K1×NR

. (24)

Projection of the updated state point cloud onto the basis in Equation (13) can be solved with the
same algorithm by letting L(X,Y) equal to the minimization objection. Gaussian quadrature is
not needed to calculate L, and automatic differentiation can be directly applied to the least-squares
summation over the point cloud.

16

A Note on Complexity. Basis transformations are data agnostic, i.e., they operate directly on
the parameter coefficients. The total number of parameters for the two basis function models
is NRK1 and NRK2, where NR is the number of coordinates of R. Projection requires one
matrix factorization and NR applications of the factorization; the general-case complexity is
O
(
(K2)3 + (K2)2K1 +NRK1K2

)
. Interpolation requires K2 evaluations of φ1 for each coor-

dinate; the general-case complexity of interpolation is O (NRK2K1). K1 and K2 are proportional
to the number of layers in a model and thus relatively small numbers, as compared to NR.

C.2 Stateful Normalization Layer

Algorithm 1 lists the forward pass during training. Tracking a list of updated module states (i.e.
BatchNorm statistics) at times ti is fused with integrating the ODE-Net forwards in time. By using a
fixed times integration scheme (with constant ∆t), this algorithm yields a static computational graph.
In practice, by using basis functions with compact support, the computational graph can further
optimized by interleaving the Project calculation with the integration loop. At inference time, the
state parameters are fixed, so it is not necessary to compute Rs, save the list States, or perform
projection to θ̂s∗.

Algorithm 1: StatefulOdeBlock accumulates and projects state updates from the Runge-Kutta
forward pass.

Data: Gradient and state parameters θ̂g , θ̂s, Input xin.
Initialize States = {};
Let x = xin;
for t = 0, t < T , t = t+ ∆t do

foreach Runge-Kutta Stage i do
Let ti = t+ ci∆t;
xi =

∑
j x+ ∆taijkj ;

ki = Rx(θg(ti, θ̂
g), θs(ti, θ̂

s), xi);
θ̄si = Rs(θg(ti, θ̂g), θs(ti, θ̂s), xi);
States.append({ti, θ̄is});

end
Let x = x+ ∆t

∑
i biki;

end
xout = x;
θ̂s∗ = Project(States, φ,K);
Forward pass outputs: xout, θ̂s∗;
Use xout to compute loss.;
Backward pass: Trace ∂xout/∂θ̂g;
Update gradient parameters: θg ← OptimizerStep(θ̂g, ∂loss/∂θ̂g);
Update state parameters: θ̂s ← θ̂s∗;

C.3 Refinement Training

Piecewise constant basis functions yield a simple scheme to make a neural network deeper and
increase the number of parameters: double the number of basis functions, and copy the weights to
new grid. This insight was used by [6] and [37] to accelerate training. In these prior works, network
refinement was implemented by copying and re-scaling discrete network objects, or expanding tensor
dimensions.

Instead, we view this problem through the lens of basis function interpolation and projection. The
procedure can be thought of as projecting or interpolating to a basis set with more functions:

θ̂refined = Interpolate

((
K∑
k=1

θ̂kφk(t)

)
, next(φ), next(K)

)
, (25)

17

where next(·) is an arbitrary schedule picking the new basis functions. Project can also be used
instead of Interpolate. The multi-level refinement training of [6, 37] is equivalent to interpolating
a piecewise constant basis set to twice as many basis functions by evaluating θ̂2

k = θ1(tk) at new cell
centers tk = T (k − 1)/(K2 − 1). For exactly doubling the number of parameters, the evaluation of∑
θ̂1φ1(tk) can be simplified as a vector of twice as many basis coefficients,

θ̂2 = {θ̂1
1, θ̂

1
1, θ̂

1
2, θ̂

1
2...θ̂

1
K1
, θ̂1
K1
}, K2 = 2K1. (26)

The “splitting” concept can be extended to piecewise linear basis functions by adding an additional
point into the midpoint of cells. The midpoint control point evaluates to the average of the parameters
at the endpoints. This results in the new list of coefficients

θ̂2 =

{
θ̂1

1,
θ̂1

1 + θ̂1
2

2
, θ̂1

2,
θ̂1

2 + θ̂1
3

2
, θ̂1

3...θ̂
1
K1−1,

θ̂1
K1−1 + θ̂1

K1

2
, θ̂1
K1

}
, K2 = 2K1 − 1. (27)

Both of these splitting-based interpolation schemes are exactly correct for piecewise constant and
piecewise linear basis functions. Multi-level refinement training can be applied to any basis functions
and any pattern for increasing K by using the general interpolation and projection methods.

To make sure that the ODE integration in the forward pass visits all of the new parameters, we also
increase the number of steps NT after refinement. A sketch of a training regiment using interpolation
is shown in Algorithm 2.

Algorithm 2: Sketch of a training algorithm using multi-level refinement training as an interpola-
tion step. The interpolation step is applied to all of the StatefulOdeBlocks inside of the model.
The same interpolation is applied to gradient parameters and state parameters. Interpolation can
be replaced by projection.
def next(K) = Pattern to increase basis functions; e.g. next(K) = 2K.;
def loss(model, θ̂g, θ̂s, batch) = logits(Y,model(θ̂g, θ̂s, X));
model = ContinuousModel(NT,initial, scheme,Kinitial, φ) ;
θ̂g, θ̂s = Initialize(model) ;
Optimizer = MakeOptimizer(loss, θ̂g);
for e ∈ [1, ...Nepochs] do

if e ∈ Refinement Epochs then
θ̂g = Interpolate(θ̂g, φ, next(model.K);
θ̂s = Interpolate(θ̂s, φ, next(model.K));
model.K = next(model.K) # Update the model hyperparmeters to track K.;
model.NT = next(model.Nt) # Also increase the number of integration steps.;
Optimizer = MakeOptimizer(loss, θ̂g);

for batch ∈ Training Data do
l, θ̂s = loss(model, θ̂g, θ̂s, batch);
θ̂g = Optimizer(θ̂g,∇l) ;

Save Checkpoint(θ̂g, θ̂s);

D Additional Results

D.1 Results for CIFAR-100.

Table 5 tabulates results for applying the same methodology to CIFAR-100. Again, we consider
two configurations: (c1) is a model trained with refinement training, which has piecewise linear
basis functions; (c2) is a model trained without refinement training, which has piecewise constant
basis functions. Similar to the results for CIFAR-10, we see that model (c2) achieves high predictive
accuracy, however, the compression performance is poor. Our model (c1) is less accurate, but we
are able to compress the number of parameters by about 41% with less than 1% loss of accuracy
on average.

18

Table 5: Compression performance and test accuracy of Deep ODE-Nets on CIFAR-100.
Model Best Average Min # Parameters Compression

Wide-ResNet [46] - 78.8% - 17.2M -
ResNet-122-i [6] - 73.2% - 7.7M -
Wide-ContinuousNet [37] 79.7% 78.8% 78.2% 13.6M -

Stateful ODE-Net (c1) 76.2% 76.9% 75.5% 15.2M -
↪→ (compressed) 75.9% 75.6% 75.2% 9.0M 41%

Stateful ODE-Net (c2) 79.9% 79.1% 78.5% 13.6M -
↪→ (compressed) 52.7% 48.9% 39.5% 9.0M 34%

0 10 20 30
Effective Compression %

0.86
0.88
0.90
0.92
0.94
0.96
0.98

Te
st

 A
cc

ur
ac

y

19.1M 17.6M 16.0M 15.2M

14.4M
13.6M

13.2M

13.1M
13.0M

12.9M

PC Piecewise Constant
PC Piecewise Linear
PC Discontinuous Linear
Source Model

(a) Compressing basis coefficients with fixed NT .

0 10 20 30
Effective Compression %

0.86

0.88

0.90

0.92

0.94

0.96

0.98

Te
st

 A
cc

ur
ac

y

K = 64 K = 48 K = 32 K = 24K = 16
K = 8

K = 4

K = 3

K = 2

K = 1

NT = 64
NT = 32
NT = 16
NT = 8
Source Model

(b) Decreasing NT using the red line in (a).

Figure 6: In (a), we show the compression of a continuous-in-depth transformer for part-of-speech
tagging. Discounting the 12.8M parameters in the embedding table and only considering the parame-
ters in the transformer layers and classifier, the smallest model (K = 1) achieves 98.3% compression
compared to the source model (K = 64). In (b) it is observed that the model graph can be shortened.

D.2 Continuous Transformers Applied to German-HDT

We applied the same architecture as Section 6.3 to the German-HDT dataset as well [2]. This dataset
has a vocabulary size of 100k (vs. 19.5k) and 57 labels (vs. 53). All other hyperparameters and
learning rate schedule are the same as the original transformer. The final trained source model also
has K = 64 basis functions. The compression and graph shortening experiments are repeated for this
cohort of models, again sampled from 8 seeds, and the results are shownin Figure 6. We also perform
the procedure of projecting the source model with K = 64 down to the smallest possible model,
K = 1. Because of the increased vocabulary size, the embedding table is much larger, and thus the
effective compression at K = 1 is only 32%. We observe the same behavior as in the English-GUM
dataset. The resulting models are more accurate for this dataset, but the relative performance trade-off
with respect to compression is similar.

E Model Configurations

Here, we present details about the model architectures that we used for our experiments. (The
provided software implementation provides further details.)

E.1 Image Classification Networks

At a high-level, our models are composed of two types of blocks that allow us to construct computa-
tional graphs that are similar to those of ResNets.

• The StatefulOdeBlock can be regarded as a drop-in replacement for standard ResNet blocks. The
ODE rate,R takes the form of the residual units. For instance, for image classification tasks, this
block consists of two convolutional layers in combination with pre-activations and BatchNorms.
Specifically, we use the following structure:

R = x→ BN → ReLU → Conv → BN → ReLU → Conv.

19

However, the user can define any other structure that is suitable for a particular task at hand.
• The StichBlock has a similar form as compared to the OdeBlock (two convolutional layers in

combination with pre-activations), but in addition this block allows us to perform operations such
as down-sampling by replacing the skip connection with a stride of 2.

The number of channels and strides can be chosen the same way as for discrete ResNet configurations.
In the following we explains the detailed structure of the different models used in our experiments.
For simplicity, we omit batch normalization layers and non-liner activations.

Shallow ODE-Net for MNIST. Table 6 describes the initial configuration for our MNIST experi-
ments. Here the initial architecture consists of a convolutional layer followed by a StichBlock and a
StatefulOdeBlock with 12 channels. During training we increase the number of basis functions in the
StatefulOdeBlock from 1 to 8, using the multi-level refinement training scheme.

Training details. We train this model for 90 epochs with initial learning rate 0.1 and RK4. We refine
the model at epochs 20, 50, and 80. We use batch size 128 and stochastic gradient descent with
momentum 0.9 and weight decay of 0.0005 for training.

Table 6: Summary of architecture used for MNIST.

Name output size Channel In / Out Kernel Size Stride Residual

conv1 28×28 1 / 12 3×3 1 No

StichBlock_1 28×28 12 / 12
[3×3]

1 Yes3×3

StatefulOdeBlock_1 28×28 12 / 12
[3×3]

- Yes3×3

Name Kernel Size Stride

average pool 8×8 8

Name input size output size

FC - 10

Shallow ODE-Net for CIFAR-10. Table 7 describes the initial configuration for our CIFAR-10
experiments. Here the initial architecture consists of a convolutional layer followed by a StichBlock
and a StatefulOdeBlock with 16 channels, followed by another StichBlock and StatefulOdeBlock with
32 channels. The second StichBlock has stride 2 and performs a down-sampling operation. During
training we increase the number of basis functions in both StatefulOdeBlocks from 1 to 8, using the
multi-level refinement training scheme. That is, each StatefulOdeBlock has a separate basis function
set, but both have the same K.

Training details. We train this model for 200 epochs with initial learning rate 0.1 and RK4. We refine
the model at epochs 50, 110, and 150. We use a batch size of 128 and stochastic gradient descent
with momentum 0.9 and weight decay of 0.0005 for training.

Table 7: Summary of shallow architecture used for CIFAR-10.

Name output size Channel In / Out Kernel Size Stride Residual

conv1 28×28 3 / 16 3×3 1 No

StichBlock_1 32×32 16 / 16
[3×3]

1 Yes3×3

StatefulOdeBlock_1 32×32 16 / 16
[3×3]

- Yes3×3

StichBlock_2 16×16 16 / 32
[3×3]

2 Yes3×3

StatefulOdeBlock_2 16×16 32 / 32
[3×3]

- Yes3×3

Name Kernel Size Stride

average pool 8×8 8

Name input size output size

FC - 10

Deep ODE-Net for CIFAR-10. Table 7 describes the initial configuration for our CIFAR-10 ex-
periments using deep ODE-Nets. Here the initial architecture consists of a convolutional layer

20

followed by a StichBlock and a StatefulOdeBlock with 16 channels, followed by another StichBlock
and StatefulOdeBlock with 32 channels, followed by another StichBlock and StatefulOdeBlock with
64 channels. The second and third StichBlock have stride 2 and perform down-sampling operations.
During training we increase the number of basis functions in each of the three StatefulOdeBlocks
from 1 to 16, using the multi-level refinement training scheme. The three StatefulOdeBlock uniformly
have the same number of basis functions.

Training details. We train this model for 200 epochs with initial learning rate 0.1 and RK4. We refine
the model at epochs 20, 40, 70, and 90. We use batch size 128 and stochastic gradient descent with
momentum 0.9 and weight decay of 0.0005 for training.

Deep ODE-Net for CIFAR-100. For our CIFAR-100 experiments we use the same initial config-
uration as for CIFAR-10 in Table 7, with the difference that we increase the number of channels
by a factor of 4. Then, during training we increase the number of basis functions in each of the
StatefulOdeBlocks from 1 to 8, using the multi-level refinement training scheme.

Training details. We train this model for 200 epochs with initial learning rate 0.1 and RK4. We refine
the model at epochs 40, 70, and 90. We use batch size 128 and stochastic gradient descent with
momentum 0.9 for training.

Table 8: Summary of deep shallow architecture used for CIFAR-10.

Name output size Channel In / Out Kernel Size Stride Residual

conv1 28×28 3 / 16 3×3 1 No

StichBlock_1 32×32 16 / 16
[3×3]

1 Yes3×3

StatefulOdeBlock_1 32×32 16 / 16
[3×3]

- Yes3×3

StichBlock_2 16×16 16 / 32
[3×3]

2 Yes3×3

StatefulOdeBlock_2 16×16 32 / 32
[3×3]

- Yes3×3

StichBlock_3 8×8 32 / 64
[3×3]

2 Yes3×3

StatefulOdeBlock_3 8×8 64 / 64
[3×3]

- Yes3×3

Name Kernel Size Stride

average pool 8×8 8

Name input size output size

FC - 10

E.2 Part-of-Speech Tagging Networks

For our part-of-speech tagging experiments, we use the continuous transformer illustrated in Figure 1
of the main text. This network only has four major components: the input sequence is fed into
an embedding table loop up, then concatenated with a position embedding, and then fed into a
single StatefulOdeBlock. The output embeddings are used by a fully connected layer to classify
each individual token in the sequence. The network structure of the module R for the encoder is
diagrammed on the right side of Figure 1. Note that the dx/dt encoder has slightly rearranged skip
connections from the discrete encoder. The Self Attention and MLP blocks apply layer normalization
to their inputs. In our implementation, we did not use additional dropout layers.

Every vector in the embedding table is of size 128. The kernel dimensions of the query, key, and
value kernels of the self attention are 128. The MLP is a shallow network with 128 dimensions.

Training details. We train this model for 35000 iterations, with a batch size of 64. We use Adam for
training. The learning rate follows an inverse square-root schedule, with an initial value of 0.1 and
a linear ramp up over the first 8000 steps. The optimizer parameters are β1 = 0.9, β2 = 0.98, and
ε = 10−9, with weight decay of 0.1. The refinement method is applied at steps 1000, 2000, 3000,
4000, 5000, and 6000 to grow the basis set from K = 1 to K = 64.

21

