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A APPENDIX

A.1 PABI IN THE PAC FRAMEWORK

Suppose ⇡⇤ is one-hot over C, ⇡0 is uniform over C and ⇡̃0 is uniform over C̃. We have
DKL(⇡⇤||⇡0) = ln | C | and DKL(⇡⇤||⇡̃0) = ln |C̃|. It follows that

S(⇡0, ⇡̃0) =

s

1� DKL(⇡⇤||⇡̃0)

DKL(⇡⇤||⇡0)
=

s

1� ln |C̃|
ln | C | = S(C, C̃).

A.2 INFORMATIVENESS MEASURES IN PARAMETRIC CONCEPT CLASS

In practice, algorithms are often based on parametric concept class. The two informativeness mea-
sures in the PAC-Bayesian framework, S(⇡0, ⇡̃0) and Ŝ(⇡0, ⇡̃0), can be easily adapted to handle the
cases in parametric concept class. Given parametric space Cw, we can easily change the probability
distribution ⇡(Cw) over the parametric concept class to the probability distribution ⇡(C) over the
finite concept class C = {c : Vn ! Ln} by clustering concepts in the parametric space according
to their outputs on all inputs. The concepts in each cluster have the same outputs on all inputs as
outputs of one concept in the finite concept class C. We then merge the probabilities of concepts in
the same cluster to get the probability distribution ⇡(C) over the finite concept class C. This merging
approach can be applied to any concept class which is not equal to the finite concept class C, includ-
ing non-parametric and semi-parametric concept class. In practice, we can use sampling algorithms,
such as Markov chain Monte Carlo (MCMC) methods, to simulate this clustering strategy.

A.3 LIMITATIONS OF INFORMATIVENESS MEASURES

Different informativeness measures are based on different assumptions, so we analyze their limita-
tions in detail to understand their limitations in applications.

For the informativeness measure S(C, C̃), it cannot handle probabilistic signals or infinite concept
classes. There are various probabilistic incidental signals, such as soft constraints and probabilis-
tic co-occurrences between an auxiliary task and the main task. An example of probabilistic co-
occurrences between part-of-speech (PoS) tagging and NER is that the adjectives have a 95% prob-
ability to have the label O in NER. As for the infinite concept class, most classifiers are based on
infinite parametric spaces. Thus, S(C, C̃) cannot be applied to these classifiers.

The informativeness measure S(⇡0, ⇡̃0) is hard to be computed for some complex cases. In practice,
we can use the estimated posterior distribution over the gold data, which is asymptotically unbiased,
to estimate it. Another approximation is to use the informativeness measure Ŝ =

q
1� H(⇡̃0)

H(⇡0)
.

However, it is not directly linked to the generalization bound, so more work is needed to guarantee its
reliability for some complex probabilistic cases. We postpone to provide the theoretical guarantees
for Ŝ =

q
1� H(⇡̃0)

H(⇡0)
on more complex cases as our future work.

A.4 LOWER BOUND IN THE PAC FRAMEWORK

In the following theorem, we show that the VC dimension (size of concept class) also plays an
important role in the lower bund for the generalization error, indicating that PABI based on the
reduction of the concept class is a reasonable measure.

Theorem A.1. Let C be a concept class with VC dimension d > 1. Then, for any m � 1 and any
learning algorithm A, there exists a distribution D over X and a target concept c 2 C such that

PS⇠Dm [RD(cS) >
d� 1

32m
] � 1/100

where cS is a consistent concept with S returned by A. This is the Theorem 3.20 in Chapter 3.4 of
Mohri et al. (2018).
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A.5 DISCUSSION OF SOME OTHER FACTORS IN PABI

In this subsection, we consider the impact of the following factors in PABI: base model perfor-
mance, the size of incidental signals, data distribution, algorithm and cost-sensitive loss.

Base model performance. In the generalization bound in both PAC and PAC-Bayesian, we can see
that the relative improvement in the generalization bound from reducing C is small if m is large.
In practice, the relative improvement is the real improvement with some noise. Therefore, we can
see that the real improvement is dominant if m is small and the noise is dominant if m is large.
Therefore, PABI may not work well when m is large and when the performance on the target task
is already good enough.

The size of incidental signals. Our previous analysis is based on a strong assumption that incidental
signals are large enough (ideally m̃ ! 1) A more realistic PABI is based on C̃ with m̃ examples as

S(C, C̃) =
q
1� ln |C̃m̃|

ln | C | =
q
1� ln |C̃m̃|

ln | Cm̃ | ⇥
ln | Cm̃ |
ln | C | , where Cm̃ denotes the restricted concept class

of C on the m̃ examples, and so does C̃m̃. (1) When m̃ is large enough, S(C, C̃) =
q
1� ln |C̃|

ln | C | .
(2) When the sizes of different incidental signals are all m̃, the relative improvement is independent

of m̃ ( ln |C̃m̃|
ln | Cm̃ | =

ln |C̃|
ln | C | ), and S(C, C̃) =

q
1� ln |C̃|

ln | C | ⇥
ln | Cm̃ |
ln | C | . Our experiments are based on this

case and does not really rely on the assumption that incidental signals are large enough. (3) The
incidental signals we are comparing are not large enough and have different sizes, we need to use

S(C, C̃) =
q
1� m̃ ⇤ ln |C̃|

ln | C | to incorporate that difference.

Data distribution. As for the distribution of examples, both PAC and PAC-Bayesian are
distribution-free (see more in Chapter 2.1 of Mohri et al. (2018)). However, if we consider the
joint distribution between examples and labels, such as imbalanced label distribution, the situation
will be different. Specific types of joint data distribution refer to a restricted concept class C0. There-
fore, PABI is expected to work well if the reduction from C is similar to the reduction from C0 with

incidental signals, i.e. S(C0, C̃0) =
q
1� ln |C̃0|

ln | C0 | ⇡
q

1� ln |C̃|
ln | C | .

Algorithm. Different algorithms make different assumptions on the concept class. For example,
SVM aims to find the maximum-margin hyperplane (see more in Chapter 5.4 of Mohri et al. (2018)).
Therefore, a specific algorithm actually is based on a restricted concept class C0 (e.g. concepts
with margin in SVM case). Similarly, PABI is expected to work well if the reduction from C is
similar to the reduction from C0 with incidental signals. We also cannot compare the benefits from
various incidental signals with different algorithms. If the algorithm is not expressive enough to take
advantage of incidental signals, we may also not be able to use PABI there.

Cost-sensitive Loss. For different loss functions other than 0-1 loss, there are still some similar
generalization bounds in PAC and PAC-Bayesian (using complexity of concept class and sample
size) (Bartlett et al., 2006; Ciliberto et al., 2016). Therefore, PABI can also be used (possibly with
some minor modifications) for cost-sensitive loss functions.

A.6 MORE EXAMPLES WITH INCIDENTAL SIGNALS

k-gram 1 2 3 4 5 6 7 8 9 10
word-pos 8.68 49.45 84.08 96.22 98.96 99.54 99.69 99.73 99.75 99.76
word-ner 27.65 76.23 92.98 98.04 99.37 99.74 99.84 99.88 99.89 99.90
pos-ner 0.20 6.65 13.78 25.36 41.50 60.14 77.04 88.61 95.01 97.92
ner-pos 0.00 0.01 0.03 0.07 0.17 0.39 0.80 1.47 2.45 3.71

Table 2: K-gram co-occurrence analysis for PoS and NER in the whole Ontonotes dataset. For
example, word-pos represents the percentage of k-gram words that have the unique k-gram PoS
labels.

In this subsection, we show more examples with incidental signals, including within-sentence con-
straints, cross-sentence constraints, auxiliary labels, cross-lingual signals, cross-modal signals, and
the mix of cross-domian signals and constraints.
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Figure 4: The correlations between the informativeness and the relative performance improvement
for NER with cross-sentence constraints.

Within-Sentence Constraints. As for within-sentence constraints, we show three types of common
constraints in NLP, which are BIO constraints, assignment constraints, and ranking constraints.

• BIO constraints are widely used in sequence tagging tasks, such as NER. For BIO con-
straints, I-X must follow B-X or I-X, where “X” is finer types such as PER (person) and
LOC (location). We consider a simple case here: there are only B, I, O three labels. We have
ln |C̃| = | V |n(ln | L |n+ln[

Pb(n+1)/2c
m=0

�
m

n�m+1

�
( �1
| L |2 )

m]) for the BIO constraint. There-

fore, Ŝ(⇡0, ⇡̃0) = S(⇡0, ⇡̃0) = S(C, C̃) =

r
1�

ln | L |n+ln[
Pb(n+1)/2c

m=0 ( m
n�m+1)(

�1
| L |2 )m]

ln | L |n .
This value can be approximated by the dynamic programming as Ning et al. (2019).

• Assignment constraints can be used in various types of semantic parsing tasks, such as
semantic role labeling (SRL). Assume we need to assign d agents with d0 tasks such that the
agent nodes and the task nodes form a bipartite graph (without loss of generality, assume
d  d0). Each agent is represented by a feature vector in Vf . We have Ŝ(⇡0, ⇡̃0) =

S(⇡0, ⇡̃0) = S(C, C̃) =
q
1� ln |C̃|

ln | C | =

q
1� ln ( d

d0)
d ln d0 . This informativeness doesn’t rely

on the choice of Vf where that Vf denotes discrete feature space for arguments.

• Ranking constraints can be used in ranking problems, such as temporal relation extraction.
For a ranking problem with t items, there are d = t(t�1)/2 pairwise comparisons in total.
Its structure is a chain following the transitivity constraints, i.e., if A < B and B < C,

then A < C. In this way, we have Ŝ(⇡0, ⇡̃0) = S(⇡0, ⇡̃0) = S(C, C̃) =
q

1� ln |C̃|
ln | C | =

q
1� ln t!

ln 2d ⇡
q
1� 2 ln t�2

(t�1) ln 2 . This informativeness doesn’t rely on the choice of Vf

where Vf denotes discrete feature space for events.

Cross-sentence Constraints. For cross-sentence constraints, we consider a common example,
global statistics based on 2-tuple of tokens, i.e. pairs of tokens in different sentences must have
the same labels. We can group words into K groups with probability p. In this way, we have
Ŝ(⇡0, ⇡̃0) =

q
1� �p ln p�(1�p) ln(1�p)+p ln | L |K+(1�p) ln(| L |n| V |n�| L |K))

ln | C | ⇡ p
p. The approxi-

mation holds as long as | L |, V , and n are not all too small. For example, as shown in Table 2, the
percentage of 5-gram words with unique NER labels is 99.37, so ideally the corresponding PABI
will be

p
0.9937 = 0.9968. It is worthwhile to note that the k-gram words with unique labels can
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also be caused by the low frequency of the appearance of the k-grams. In our experiments, we
only consider the k-grams with unique labels that appear at least twice in the data. We experiment
on NER with three types of cross-sentence constraints: uni-gram words with unique NER labels,
bi-gram words with unique NER labels, and 5-gram part-of-speech (PoS) tags with unique NER
labels8. The results are shown in Fig. 4.

Auxiliary labels. For auxiliary labels, we show two examples as follows:

• For a multi-class sequence tagging task, we use the corresponding detection task as aux-
iliary signals. Given a multi-class sequence tagging task with C labels in the BIO format
(Ramshaw & Marcus, 1999), we will have 3 labels for the detection and 2C + 1 labels for
the classification. Thus, Ŝ(⇡0, ⇡̃0) = S(⇡0, ⇡̃0) = S(C, C̃) =

q
1� (1�po) lnC

ln(2C+1) , where po
is the percentage of the label O among all labels.

• Coarse-grained NER for Fine-grained NER. We have four types, PER, ORG, LOC and
MISC for CoNLL NER and 18 types for Ontonotes NER. The mapping between CoNLL
NER and Ontonotes NER is as follows: PER (PERSON), ORG (ORG), LOC(LOC, FAC,
GPE), MISC(NORP, PRODUCT, EVENT, LANGUAGE), O(WORF OF ART, LAW,
DATE, TIME, PERCENT, MONEY, QUANTITY, ORDINAL, CARDINAL, O) (Augen-
stein et al., 2017). In the BIO setting, we have Ŝ(⇡0, ⇡̃0) = S(⇡0, ⇡̃0) = S(C, C̃) =q
1� Pl ln 3+Pm ln 4+Po ln 19

ln 37 , where pl, pm, po are the percentage of LOC(including B-
LOC and I-LOC), MISC (including B-MISC and I-MISC), and O among all possible la-
bels.

Note that PABI is consistent with the entropy normalized mutual information (see more in footnote

5) because Ŝ(⇡0, ⇡̃0) =
q

I(Y ;Ỹ )
H(Y ) for auxiliary labels.

Cross-lingual signals. For cross-lingual signals, we can use multilingual BERT to get ĉ in the
extended input space (V [V 0)n. After that, ⌘1 and ⌘2 can be computed accordingly.

Cross-modal signals. For cross-modal signals, we only consider the case where labels of gold and
incidental signals are same and inputs of gold and incidental are aligned. A common situation is
that a video has visual, acoustic, and textual information. In this case, the images and speech related
to the texts can be used as cross-modal information. We can use cross-modal mapping between
speech/images and texts (e.g. Chung et al. (2018)) to estimate the ⌘1 and ⌘2 for cross-modal signals.

The mix of cross-domain signals and constraints. Let c̃ denote the perfect system on cross-domain
signals and satisfying constrains on inputs of gold signals, and ĉ denote the model trained on cross-
domain signals and satisfying constraints on inputs of gold signals. In this way, we can estimate ⌘1
and ⌘2 by forcing constraints in their inference stage.

A.7 DERIVATION OF EQUATION (4)

For simplicity, we use Y to denote c(x), Ỹ to denote c̃(x), and Ŷ to denote Ŷ (x). We then re-
write the definitions of ⌘, ⌘01 and ⌘2 as ⌘ = Ex⇠PD(x)1(c(x) 6= c̃(x)) = P (Y 6= Ỹ ), ⌘01 =

Ex⇠PD(x)1(ĉ(x) 6= c̃(x)) = P (Ŷ 6= Ỹ ) and ⌘2 = Ex⇠PD(x)1(ĉ(x) 6= c(x)) = P (Ŷ 6= Y ). Note
that L is the label set for the task. Considering all three systems in the target domain, we have

1� ⌘2 = P (Ŷ = Y )

= P (Ŷ = Y, Ỹ = Y ) + P (Ŷ = Y, Ỹ 6= Y )

= P (Ỹ = Y )P (Ŷ = Y |Ỹ = Y ) + P (Ỹ 6= Y )P (Ŷ = Y |Ỹ 6= Y )

= P (Ỹ = Y )P (Ŷ = Ỹ ) + P (Ỹ 6= Y )
P (Ŷ 6= Ỹ )

| L |� 1

= (1� ⌘)(1� ⌘01) +
⌘⌘01

| L |� 1

8Here we use PoS tags as a special type of cross-sentence constraints by specifying the labels of tokens
whose PoS tags have unique NER labels, although PoS tags can also be viewed as auxilary signals for NER.

16



Under review as a conference paper at ICLR 2021

Therefore, we have ⌘ = (| L |�1)(⌘0
1�⌘2)

1�| L |(1�⌘
0
1)

.

A.8 PABI FOR TRANSDUCTIVE SIGNALS

Assumption I: c̃(x) is a noisy version of c(x) with a noise ratio ⌘ in both target and source domain:
⌘ = Ex⇠PD(x)1(c(x) 6= c̃(x)) = Ex⇠PD̃(x)1(c(x) 6= c̃(x)).

Theorem A.2. Let C be a concept class of VC dimension d for binary classification. Let S+

be a labeled sample of size m generated by drawing �m points (S) from D according to c
and (1 � �)m points (S̃) from D̃ (the distribution of incidental signals) according to c̃. If
ĉ0 = argmin

c2C RS+,
1
2
(c) = argmin

c2C
1
2RS(c) +

1
2RS̃

(c) is the empirical joint error minimizer,
and c⇤

T
= argmin

c2C RD(c) is the target error minimizer, c⇤ = argmin
c2C RD̃(c) + RD(c) is the

joint error minimizer, under assumption I, and assume that C is expressive enough so that both the
target error minimizer and the joint error minimizer can achieve zero errors, then for any � 2 (0, 1),
with probability at least 1� �,

RD(ĉ
0)  ⌘ + 4

r
1

�
+

1

1� �

s
2d ln 2em

d
+ 2 ln 8

�

m

A concept is a function c: X ! {0, 1}. The probability according to the distribution D that a
concept c disagrees with a labeling function f (which can also be a concept) is defined as

RD(c, f) = Ex2D[|c(x)� f(x)|] (5)

Note that here `(y, c(x)) = |y � c(x)| is the loss function and RD(c) = Ex⇠D[`(y, c(x))] where y
is the gold label for x. We denote R↵(c) (↵ 2 [0, 1]) the corresponding weighted combination of
true source and target errors, measured with respect to D̃ and D as follows:

R↵(c) = ↵RD(c) + (1� ↵)RD̃(c)

Lemma A.3. Let c be a concept in concept class C. Then

|R↵(c)�RD(c)|  (1� ↵)(⇤+ ⌧(c))

where ⇤ = R
D̃
(c⇤) + RD(c⇤), c⇤ = argmin

c2C RD̃(c) + RD(c), and ⌧(c) = |RD̃(c, c
⇤) �

RD(c, c⇤)|.

Proof.

|R↵(c)�RD(c)| = (1� ↵)|RD̃(c)�RD(c)|
 (1� ↵)[|RD̃(c)�RD̃(c, c

⇤)|+ |RD̃(c, c
⇤)�RD(c, c

⇤)|+ |RD(c, c
⇤)�RD(c)|]

 (1� ↵)[RD̃(c
⇤) + |RD̃(c, c

⇤)�RD(c, c
⇤)|+RD(c

⇤)]

= (1� ↵)(⇤+ ⌧(c))

Lemma A.4. For a fixed concept c from C with VC dimension d, if a random labeled sample (S+)
of size m is generated by drawing �m points (S) from D and (1 � �)m points (S̃) from D̃, and
labeling them according to fD and fD̃ respectively, then for any � 2 (0, 1) with probability at least
1� � (over the choice of the samples),

|R↵(c)�RS+,↵(c)|  2

s
↵2

�
+

(1� ↵)2

1� �

s
2d ln 2em

d
+ 2 ln 4

�

m

where RS+,↵ = ↵RS(c) + (1� ↵)R
S̃
(c) and e is the natural number.

Proof. Given Lemma 5 in Ben-David et al. (2010), which says for any � 2 (0, 1), with probability
1� � (over the choice of the samples),

P [|RS+,↵(c)�R↵(c)| � ✏]  2 exp (
�2m✏2

↵2

�
+ (1�↵)2

1��

)
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According to the Vapnik-Chervonenkis theory (Vapnik & Chervonenkis, 2015), we have with prob-
ability 1� �,

|R↵(c)�RS+,↵(c)|  2

s
↵2

�
+

(1� ↵)2

1� �

s
2d ln 2em

d
+ 2 ln 4

�

m

This is the standard generalization bound with an adjust term
q

↵2

�
+ (1�↵)2

1��
(see more in Chapter

3.3 of Mohri et al. (2018)).

Proof of Theorem A.2. Let ↵ = 1
2 , then ĉ0 = argminRS+,↵(c) =

1
2 (RS̃

(c) +RS(c))

RD(ĉ
0)  R↵(ĉ

0) + (1� ↵)(⇤+ ⌧(ĉ0)) (Lemma A.3)
 R↵(ĉ

0) + (1� ↵)(⇤+ |RD̃(ĉ
0, c⇤)�RD(ĉ

0, c⇤)|) (Definition of ⌧(ĉ0))
 R↵(ĉ

0) + (1� ↵)(⇤+RD̃(ĉ
0) +RD̃(c

⇤) +RD(ĉ
0) +RD(c

⇤))

 R↵(ĉ
0) + (1� ↵)(2⇤+ 2R↵(ĉ

0))

= (3� 2↵)R↵(ĉ
0) + 2(1� ↵)⇤

 (3� 2↵)(RS+,↵(ĉ
0) + 2

s
↵2

�
+

(1� ↵)2

1� �

s
2d ln 2em

d
+ 2 ln 8

�

m
)

+ 2(1� ↵)⇤ (Lemma A.4 with �/2 )

 (3� 2↵)(RS+,↵(c
⇤
T
) + 2

s
↵2

�
+

(1� ↵)2

1� �

s
2d ln 2em

d
+ 2 ln 8

�

m
)

+ 2(1� ↵)⇤ (ĉ0 = argminRS+,↵(c))

 (3� 2↵)(R↵(c
⇤
T
) + 4

s
↵2

�
+

(1� ↵)2

1� �

s
2d ln 2em

d
+ 2 ln 8

�

m
)

+ 2(1� ↵)⇤ (Lemma A.4 with �/2)

 (3� 2↵)(RD(c
⇤
T
) + 4

s
↵2

�
+

(1� ↵)2

1� �

s
2d ln 2em

d
+ 2 ln 8

�

m
+ (1� ↵)(⇤+ ⌧(c⇤

T
)))

+ 2(1� ↵)⇤ (Lemma A.3)

 (3� 2↵)(RD(c
⇤
T
) + 4

s
↵2

�
+

(1� ↵)2

1� �

s
2d ln 2em

d
+ 2 ln 8

�

m
)

+ (2↵2 � 7↵+ 5)⇤+ (2↵2 � 5↵+ 3)⌧(c⇤
T
)

Note that

⌧(c⇤
T
) = |RD̃(c

⇤
T
, c⇤)�RD(c

⇤
T
, c⇤)|  RD̃(c

⇤
T
)+RD̃(c

⇤)+RD(c
⇤
T
)+RD(c

⇤) = ⇤+RD(c
⇤
T
)+RD̃(c

⇤
T
)

Therefore,

RD(ĉ
0)  RD̃(c

⇤
T
) + 4

r
1

�
+

1

1� �

s
2d ln 2em

d
+ 2 ln 8

�

m
+ 3RD(c

⇤
T
) + 3⇤ (↵ =

1

2
)

Also note that L1 loss is equivalent to 0-1 loss in the binary classification, so that RD̃(c
⇤
T
) = ⌘

under assumption I. In addition, assuming that C is expressive enough so that both the target error
minimizer and the joint error minimizer can achieve zero errors (RD(c⇤T ) = 0 and ⇤ = 0), the
generalization bound can be simplified as follows:

RD(ĉ
0)  ⌘ + 4

r
1

�
+

1

1� �

s
2d ln 2em

d
+ 2 ln 8

�

m

Note that the proof of Theorem A.2 is similar to Theorem 3 in Ben-David et al. (2010). Our theorem
is based on binary classification mainly because the error item in Eq. (5) based on the L1 loss
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will be equivalent to zero-one loss for binary classification. Although for multi-class classification,
the L1 loss is different from commonly used zero-one loss, Theorem A.2 also indicates the relation
between the generalization bound of joint training and the cross-domain performance RD(c⇤S) (equal
to RD̃(c

⇤
T
) under assumption I). Furthermore, a multi-class classification task can be represented by

a series of binary classification tasks. Therefore, we postpone more accurate analysis for multi-class
classification as our future work.

A.9 DETAILS OF EXPERIMENTAL SETTINGS

In this subsection, we briefly highlight some important settings in our experiments and more details
can be found in our submitted code.

NER with individual inductive signals. For partial labels, we experiment on NER with four differ-
ent partial rates: 0.2, 0.4, 0.6, and 0.8. For noisy labels, we experiment on NER with seven different
noisy rates: 0.1 � 0.7. For auxiliary labels, we experiment on two auxiliary tasks: named entity
detection and coarse NER (CoNLL annotations with 4 types of named entities (Sang & De Meulder,
2003)).

NER with mixed inductive signals. A more complex case is the comparison between the mixed
inductive signals. For the first type of mixed signals, we experiment on the combination between
three unknown partial rates (0.2, 0.4, and 0.6) and four noisy rates (0.1, 0.2, 0.3, and 0.4). As for
the second type of mixed signals, we experiment on the combination between the BIO constraint
and five unknown partial rates (0.2, 0.4, 0.6, 0.8, and 1.0).

NER with various inductive signals. After we put the three types of individual inductive signals
and the two types of mixed inductive signals together, we still see a correlation between PABI and
the relative performance improvement in experiments in Fig. 2(f).

NER with cross-domain signals Because we only focus on the person names, a lot of sentences
in the original dataset will not include any entities. We random sample sentences to keep that 50%
sentences without entities and 50% sentences with at least one entity. ⌘1 and ⌘2 is computed by
using sentence-level accuracy.

QA with cross-domain signals. For consistency, we only keep one answer for each question in all
datasets. Another thing worthwhile to notice is that the most informative QA dataset is not always
the same for different main QA datasets. For example, for NewsQA, the most informative QA
dataset is SQuAD, while the most informative QA dataset for SQuAD is QAMR.

Experimental settings for learning with various inductive signals. The 2-layer NNs we use in
CWBPP (algorithm 1) has a hidden size of 4096, ReLU non-linear activation and cross-entropy loss.
As for the embeddings, we use 300 dimensional Glove embeddings (Pennington et al., 2014). The
size of the training batch is 10000 and the optimizer is Adam (Kingma & Ba, 2015) with learning
rate 3e�4. When we initialize the classifier with gold signals (line 1), the number of training epochs
is 20. After that, we conduct the bootstrapping 5 iterations (line 3-7). The confidence for predicted
labels is exactly the predicted probability of the classifier (line 5). In each iteration of bootstrapping,
we further train the classifier on the joint data 1 epoch (line 7).

Experimental settings for learning with cross-domain signals. As for BERT, we use the pre-
trained case-insensitive BERT-base pytorch implementation (Wolf et al., 2019). We use the common
parameter settings for our experiments. Specifically, for NER, the max length is 256, batch size is
8, the epoch number is 4 and the learning rate is 5e�5. As for QA, the max length is 384, bath size
is 16, the epoch number is 4, and the learning rate is 5e�5.

A.10 THE CWBPP ALGORITHM

The CWBPP algorithm is shown in Algorithm 1.
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Algorithm 1: Confidence-Weighted Bootstrapping with Prior Probability. The algorithm utilizes
incidental signals to improve the inference stage in semi-supervised learning.
Input: A small dataset with gold signals D = (X1, Y1), and a large dataset with inductive signals

D̃ = (X2, Ỹ2) where X1 \X2 = �
1 Initialize claissifier ĉ = LEARN(D) (initialize the classifier with gold signals)
2 P (Y2|X2, Ỹ2) = PRIOR(D, D̃) (estimate the probability of gold labels for inputs in D̃)
3 while convergence criteria not satisfied do

4 Ŷ = INFERENCE(X2; ĉ;P (Y2|X2, Ỹ2)) (get predicted labels of inputs in D̃)
5 ⇢̂ = CONFIDENCE(X2; ĉ, P (Y2|X2, Ỹ2)) (get confidence for predicted labels)
6 D̃ = (X2, Ŷ , ⇢̂) (get confidence-weighted incidental dataset with predicted labels)
7 ĉ = LEARN(D + D̃) (learn a classifier with both gold dataset and incidental dataset)
8 return ĉ
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