
A Background and results on Skorokhod problems

In this section, we will show that when the domain is a polyhedron, rather tight bounds on solutions
to Skorokhod problems can be obtained.

A.1 Background on Skorokhod problems

Let K be a convex subset of Rn with non-empty interior. Let y : [0,∞) → Rn be a trajectory which
is right-continuous with left limits and has y0 ∈ K. For each x ∈ Rn, let NK(x) be the normal cone
at x. Then the functions xt and φt solve the Skorokhod problem for yt if the following conditions
hold:

• xt = yt + φt ∈ K for all t ∈ [0, T ).

• The function φ has the form φ(t) = −
� t

0
vsdµ(s), where �vs� ∈ {0, 1} and vs ∈ NK(xs)

for all s ∈ [0, T ), while the measure, µ, satisfies µ([0, T )) < ∞ for any T > 0.

It can be shown that if a solution exists, it is unique. See [40]. However, existence of solutions
typically relies on extra requirements beyond just convexity. For example, [40] showed the existence
of solutions in the case that y is continuous and K is compact. Below, we will utilize results from [2]
to prove existence in the case that K is a polyhedron. Whenever solutions are guaranteed to exist,
uniqueness implies that we may view the Skorokhod solution as a mapping: x = S(y).

A.2 Existence of solutions over polyhedra

The following is a consequence of Theorem 4 from [2].

Lemma 10. Let K be a polyhedron with non-empty interior. If yt is a trajectory in Rn which is
right-continuous with left-limits, then x = S(y) exists, is unique, and is right-continuous with
left-limits.

Proof To verify the conditions of Theorem 4 from [2], we just need to show that K satisfies
condition β of that paper, which states that there exist constants � > 0 and δ̄ > 0 such that for all
x ∈ ∂K, there exist x0 ∈ K such that �x− x0� ≤ δ̄ and {y|�y − x0� < �} ⊂ K. We will show how
to construct �, δ̄, and we will see that a suitable vector, x0, exists for any x ∈ K.

Note that since K is a polyhedron, there are vectors u1, . . . , up such that x ∈ K if and only if it can
be expressed as

x =

k�

i=1

λiui +

p�

i=k+1

λiui

with λi ≥ 0 for i = 1, . . . , p and
�k

i=1 λi = 1. See [38]. (If p = k, then K is a compact polytope,
while if k = 0, then K is a convex cone.)

Let x� be an arbitrary point in the interior of K and let � > 0 be such that {y|�y − x�� < �} ⊂ K.

Pick δ̄ such that �ui − x�� ≤ δ̄ for i = 1, . . . , k.

For any x =
�p

i=1 λiui ∈ K, let x0 = x� +
�p

i=k+1 λiui. It follows that

�x− x0� =

�����
k�

i=1

λiui − x�

�����

=

�����
k�

i=1

λi(ui − x�)

�����

≤
k�

i=1

λi�ui − x��

≤ δ̄.
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Also, if y ∈ {y|�y − x0� < �}, then there is a vector, v, with �v� < �, such that

y = x0 + v = (x� + v) +

p�

i=k+1

λiui.

Now note that x� + v ∈ K, so there must be numbers λ�
i ≥ 0 such that

�k
i=1 λ

�
i = 1 and

x� + v =
�p

i=1 λ
�
iui. It follows that

y =

p�

i=1

λ�
iui +

p�

i=k+1

λiui =

k�

i=1

λ�
iui +

p�

i=k+1

(λi + λ�
i)ui ∈ K.

�

A.3 Proof of Theorem 9

In this subsection, we provide a short proof of Theorem 9. A supporting Lemma is firstly presented
to complete the proof.

The technical work in this subsection relies on some notation about the vectors defining K from
(15). Let A = [a1 · · · am]

� be the matrix whose rows are the a�i vectors. For I ⊂ {1, . . . ,m}
let AI be the matrix whose rows are a�i for i ∈ I. Let [WI VI ] be an orthogonal matrix such
that N (AI) = R(WI). Here N (AI) denotes the null space of AI and R(WI) denotes the range
space of WI . Let PI = WIW�

I , which is the orthogonal projection onto N (AI). We will use the
convention that A∅ is a 1× n matrix of zeros, so that N (A∅) = Rn, and thus P∅ = I .

The following lemma is a quantitative and explicit version of Theorem 2.1 of [18]:
Lemma 11. If K is a polyhedron defined by (15), then there is a compact, convex set B with
0 ∈ int(B) such that if z ∈ ∂B, v ∈ NB(z), and aj is a unit vector from (15) with a�j v �= 0, then

1. |a�j z| ≥ 1

2. sign(a�j z) = sign(a�j v).

Furthermore, the diameter of B is at most c9, defined by

c9 = 6

�
1

α

�rank(A)/2

where

α =
1

2
min

�
�PIaj�2

��PIaj �= 0, I ⊂ {1, . . . ,m}, j ∈ {1, . . . ,m}
�
,

and α ∈ (0, 1/2].

A non-constructive proof of the existence of B was given in [18]. While that paper shows that B is
compact, it does not quantitatively bound its diameter. The diameter of B is precisely the quantity
that is used to bound the difference between Skorokhod solutions.

Proof of Theorem 9. Theorem 2.2 of [18] shows that if a compact convex set with 0 ∈ int(B)
satisfying conditions 1 and 2 exists, then

sup
0≤s≤t

�xs − x�
s� ≤ (diameter(B) + 1) sup

0≤s≤t
�ys − y�s�.

The result now follows since c9 is an upper bound on the diameter of the set B constructed in
Lemma 11. �

Proof of Lemma 11. We will focus on constructing a compact, convex B with 0 ∈ int(B) which
satisfies condition 1. Lemma 2.1 of [18] shows that condition 2 must also hold. (Note that the sign is
opposite of what appears in [18], because that paper examines inward normal vectors, while we are
examining outward normal vectors.)
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We will find numbers � ∈ (0, 1) and rI ∈ (0, 1) for I ⊂ {1, . . . ,m} such that

B = {x|�PIx� ≤ �−1rI for I ∈ {1, . . . ,m}}
has the desired properties. By construction, B is compact and convex, 0 ∈ int(B), and the diameter
is at most 2�−1r∅ < 2�−1, since every x ∈ B satisfies �P∅x� = �x� ≤ �−1r∅. Furthermore,
B = �−1B̂, where

B̂ = {x|�PIx� ≤ rI for I ⊂ {1, . . . ,m}}.
A similar construction for B was utilized in [18]. The main distinction is that this proof will give an
explicit procedure for determining the values of � and rI .

Note that z ∈ B̂ if and only if �−1z ∈ B, z ∈ ∂B̂ if and only if �−1z ∈ ∂B, and NB̂(z) = NB(�−1z).
Thus, Condition 1 holds for B if and only if

z ∈ ∂B̂, v ∈ NB̂(z), and a�j v �= 0 =⇒ |a�j z| ≥ � > 0. (16)

Note that if x ∈ ∂B̂, then

NB̂(x) = cone{PIx|�PIx� = rI}

=





�

{I|�PIx�=rI}
λIPIx

������
λI ≥ 0



 . (17)

See Corollary 23.8.1 of [38].

The representation in (17) implies that if x ∈ ∂B̂, v ∈ NB(x), and a�j v �= 0, then there must be a
set I such that, �PIx� = rI , λI > 0, and a�j PI �= 0. We will choose � such that for all I and j
with PIaj �= 0, � is a lower bound on the optimal value of the following (non-convex) optimization
problem:

min
x

|a�j x| (18a)

subject to �PIx� ≥ rI (18b)
�PI∪{j}x� ≤ rI∪{j} (18c)

�x� ≤ 1. (18d)

By construction, if x ∈ ∂B̂, v ∈ NB(x), and a�j v �= 0, there must be some I such that x is feasible
for (18). As a result, we must have that |a�j x| ≥ �. Thus, the implication from (16) will hold,
provided that the values of rI can be chosen so that all of the problems of the form (18) have strictly
positive optimal values.

The rest of the proof proceeds as follows. First we derive conditions on rI that ensure that the
problems from (18) always have positive optimal values. Next, we compute specific values of rI that
satisfy these conditions. Finally, we use those values of rI to compute �, the desired lower bound on
the optimal value of (18).

We now assume that rI , rI∪{j} ∈ (0, 1) and derive sufficient conditions to make the optimal value in
(18) strictly positive.

To derive the optimal value of (18), we need a few basic facts:

• If I ⊂ J , then PJPI = PJ and PIPJ = PJ .

• The matrix
�
WI∪{j}

PIaj

�PIaj� VI
�

is orthogonal.

First we show that I ⊂ J implies that PJPI = PJ . Symmetry of the projection matrices would
then imply that PIPJ = PJ . Note that PI = I − VIV �

I , where

R(VI) = R(PI)
⊥ = N (AI)

⊥ ⊂ N (AJ )⊥ = R(PJ )⊥.

It follows that PJ VI = 0 and thus PJPI = PJ .
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Now we will show that PIaj ∈ R(PI)\R(PI∪{j}). By construction, PIaj ∈ R(PI). Also, we have
that PI∪{j}PIaj = PI∪{j}aj = 0, where the second equality follows because aj ∈ N (AI∪{j})⊥ =

R(PI∪{j})⊥. Thus, we have that PIaj �= PI∪{j}PIaj . Now, if PIaj ∈ R(PI∪{j}), then PIaj =
PI∪{j}z for some vector z. But then P 2

I∪{j} = PI∪{j} would imply that PI∪{j}PIaj = PI∪{j}z =

PIaj , which gives a contradiction. Thus, PIaj /∈ R(PI∪{j}).

Now the rank nullity theorem implies that

rank(AI) = n− dim(N (AI))

rank(AI∪{j}) = n− dim(N (AI∪{j})).

Now since AI∪{j} has only one more row than AI , we must have that rank(AI) ≤ rank(AI∪{j}) ≤
rank(AI) + 1. Also, N (AI∪{j}) ⊂ N (AI) by construction, and we just saw that PIaj ∈ N (AI) \
N (AI∪{j}), so the inclusion is strict. It follows that

dim(N (AI)) = dim(R(PI))

= dim(N (AI∪{j})) + 1

= dim(R(PI∪{j})) + 1. (19)

Now, since R(WI∪{j}) = N (AI∪{j}), we must have that

R
��

WI∪{j}
PIaj

�PIaj�

��
= N (AI).

Furthermore, since R(WI∪{j}) = R(PI∪{j}) and PI∪{j}PIaj = 0, we must have that


W�

I∪{j}
(PIaj)

�

�PIaj�
V �
I



�
WI∪{j}

PIaj

�PIaj� VI
�
= I

Now we use this orthogonal matrix to perform a change of coordinates. In particular, let y1, y2, and
y3 be such that

x = WI∪{j}y1 +
PIaj
�PIaj�

y2 + VIy3.

In these new coordinates, (18) is equivalent to

min
y

|�PIaj�y2 + a�j VIy3| (20a)

subject to �y1�2 + y22 ≥ r2I (20b)
�y1� ≤ rI∪{j} (20c)

�y1�2 + y22 + �y3�2 ≤ 1. (20d)

The equivalence arises because

a�j x = �PIaj�y2 + a�j VIy3

PIx = WI∪{j}y1 +
PIaj

�PIaj�
y2

PI∪{j}x = WI∪{j}y1

along with orthogonality of the corresponding transformation from y to x.

If we choose rI > rI∪{j}, then we must have

y22 ≥ r2I − �y1�2 ≥ r2I − r2I∪{j} > 0.

Now, if y is feasible, −y is also feasible, and they have the same objective value in (20). So, without
loss of generality, we may assume that y2 > 0.
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The Cauchy-Schwartz inequality, combined with (20d), implies that

�PIaj�y2 + a�j VIy3 ≥ �PIaj�y2 − �V �
I aj�

�
1− �y1�2 − y22 . (21)

Note that this bound is achieved by setting y3 = − V �
I aj

�V �
I aj�

�
1− �y1�2 − y22 .

The right side of (21) is monotonically increasing in y2. So, (20b) implies that it is minimized over
y2 by setting y2 =

�
r2I − �y1�2. This leads to a lower bound of the form:

�PIaj�y2 − �V �
I aj�

�
1− �y1�2 − y22 ≥ �PIaj�

�
r2I − �y1�2 − �V �

I aj�
�

1− r2I .

The right side is now monotonically decreasing with respect to �y1�, and so it is minimized by setting
�y1� = rI∪{j}. This leads to the characterization:

Optimal Value of (20)

= �PIaj�
�
r2I − r2I∪{j} − �V �

I aj�
�

1− r2I

= �PIaj�
�
r2I − r2I∪{j} −

�
1− �P�

I aj�2
�
1− r2I . (22)

The second equality follows because

�V �
I aj�2 = a�j VIV

�
I aj = a�j (I − PI)aj = 1− �PIaj�2.

Now, we have that the right side of (22) is positive if and only if:

�PIaj�2
�
r2I − r2I∪{j}

�
>

�
1− �PIaj�2

� �
1− r2I

�
(23a)

⇐⇒ r2I > 1− �PIaj�2 + �PIaj�2r2I∪{j} (23b)

⇐⇒ r2I > 1− �PIaj�2(1− r2I∪{j}) (23c)

⇐⇒ r2I > r2I∪{j} + (1− �PIaj�2)(1− r2I∪{j}). (23d)

Note that (23d) implies that rI > rI∪{j} holds.

Also note that any collection of rI values in (0, 1) that satisfy (23) will ensure that the corresponding
set, B̂, satisfies the implication from (16). In that case, we have that B has the desired properties.

Now we seek a simpler, more explicit formula for the rI values which satisfy (23). Note that (23c)
implies that the right side is monotonically decreasing with respect to �PIaj�2. So, if α > 0 is a
number such that α ≤ 1

2�PIaj�2 for all I and j with PIaj �= 0 we obtain a sufficient condition for
(23):

r2I = 1− α(1− r2I∪{j}) (24a)

r2I = (1− α) + αr2I∪{j}. (24b)

Now we use (24) to derive the desired formula for rI . In particular, consider the recursion

xk+1 = (1− α) + αxk.

This has an explicit solution given by

xk = αkx0 + 1− αk = 1− αk(1− x0).

In particular, if x0 ∈ (0, 1), we have that xk ∈ (0, 1) for all k ≥ 0.

We define rI by fixing a value x0 ∈ (0, 1), which will be defined explicitly later, and setting
r2I = xk = 1− αk(1− x0) if rank(A)− rank(AI) = k.

To see that this definition satisfies (24), first note that r2I = x0 for all I with rank(A) = rank(AI).
Now, recall that if PIaj �= 0, then (19) implies that rank(AI∪{j}) = rank(AI) + 1. The converse
is also true: If rank(AI∪{j}) = rank(AI) + 1, then we must have that aj /∈ R(A�

I ) = R(VI) =
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R(PI)⊥. It follows that PIaj �= 0. Thus, if rank(A) − rank(AI∪{j}) = k ≥ 0, we have that
PIaj �= 0 precisely when rank(A) − rank(AI) = k + 1. So we see that setting r2I = xk+1 =
1− α(1− xk) gives the same value as specified in (24).

The final step in the proof requires finding a lower bound, �, for the optimal value from (22). Let
r2I = xk and r2I∪{j} = xk−1. Then we have that

r2I − r2I∪{j} = (1− α)αk−1(1− x0)

1− r2I = ααk−1(1− x0).

Also note that the right side of (22) is monotonically increasing with respect to �PIaj�2 and that
�PIaj�2 ≥ 2α by our choice of α. So, plugging in this lower bound gives

�PIaj�
�
r2I − r2I∪{j} −

�
1− �P�

I aj�2
�
1− r2I

≥
�√

2α
√
1− α−

√
1− 2α

√
α
��

αk−1(1− x0)

=
�√

2− 2α−
√
1− 2α

��
αk(1− x0)

≥
�√

2− 1
��

αrank(A)(1− x0)

The final inequality follows because k ≤ rank(A) and the minimum value of
√
2− 2α−

√
1− 2α

over α ∈ [0, �PIaj�2/2] ⊂ [0, 1/2] occurs at α = 0.

To simplify the final formula for �, note that
√
2− 1 > 1/3, and thus we can choose x0 ∈ (0, 1) so

that
(
√
2− 1)

√
1− x0 =

1

3
⇐⇒ x0 = 1− 1

9
�√

2− 1
�2 ≈ 0.352.

Plugging in this value for x0 gives the bound:

Optimal Value of (20) ≥ 1

3
α

rank(A)
2 =: �

Now recalling that the diameter of B is at most 2/� completes the proof. �

B Invariance of the Gibbs measure

Lemma 12. The Gibbs measure, (6), is stationary under the dynamics of the reflected SDE from (8).

Proof Before showing invariance of the Gibbs measure, we first remark that it is well-defined. In
particular, we have that

�
K e−βf̄(x)dx < ∞.

To see this, let �x� ≥ R/θ, where θ ∈ (0, 1) is a number to be chosen later. Note that for t ∈ [θ, 1],
we have that �θx� ≥ R. So, we can use strong convexity outside a ball of radius R to show

f̄(x) ≥ f̄(0) +

� 1

0

∇f̄(tx)�xdt

= f̄(0) +∇f̄(0)�x+

� θ

0

�
∇f̄(tx)−∇f̄(0)

��
xdt+

� 1

θ

�
∇f̄(tx)−∇f̄(0)

��
xdt

≥ f̄(0)− �∇f̄(0)��x� − ��x�2
� θ

0

tdt+ µ�x�2
� 1

θ

tdt

≥ f̄(0)− �∇f̄(0)��x�+ 1

2
�x�2

�
−�θ2 + µ(1− θ2)

�

The coefficient −�2θ2 + µ(1 − θ2) is positive, as long as θ <
�

µ
µ+� . In particular, choosing

θ2 = 1
2

µ
µ+� gives

f̄(x) ≥ f̄(0)− �∇f̄(0)��x�+ 1

4
µ�x�2. (25)

17



It follows that Z =
�
K e−βf̄(x)dx < ∞.

In [27], it was shown in that the Gibbs measure is invariant under (8) when K is compact. We will
extend the result to non-compact K via a limiting argument.

Let Ki = K ∩ {x ∈ Rn|�x�∞ ≤ i}. Let Zi =
�
Ki

e−βf̄(x)dx. Note that limi→∞ Zi = Z, by
monotone convergence. We choose �x�∞ = max{|x1|, . . . , |xn|} ≤ i so that Ki becomes a compact
polyhedron for i ≥ 1.

Let xC
t be a solution to the original form of (8) and let xC,i

t be a solution to the RSDE from (8), with
Ki used in place of K. Since Ki is polyhedral, Lemma 10 in Appendix A shows that xC,i

t is uniquely
defined. Define the diffusion operators P and P i by

(Ptg)(x) = E[g(xC
t )|x0 = x]

(P i
t g)(x) = E[g(xC,i

t )|x0 = x]

Let L2(K,πβf̄ ) be the set of functions g : K → R which are square integrable with respect to the
measure πβf̄ . We will show that πβf̄ is invariant for (8) by showing that for all g ∈ L2(K,πβf̄ ) the
following equality holds for all t ≥ 0:

1

Z

�

K
g(x)e−βf̄(x)dx =

1

Z

�

K
(Ptg)(x)e

−βf̄(x)dx. (26)

The subset of bounded, compactly supported functions in L2(K,πβf̄ ) is a dense subset. Fix an
arbitary bounded, compactly supported g ∈ L2(K,πβf̄ ). It suffices to show that (26) holds for g.

Lemma 19 of [27] shows that for all i ≥ 1, the following holds:
1

Zi

�

Ki

g(x)e−βf̄(x)dx =
1

Zi

�

Ki

(P i
t g)(x)e

−βf̄(x)dx. (27)

We saw earlier that Zi → Z. Furthermore, since g is compactly supported, there is a number, m,
such that i ≥ m implies that�

Ki

g(x)e−βf̄(x)dx =

�

K
g(x)e−βf̄(x)dx.

It follows that the left of (27) converges to the left of (26).

The proof will be completed if we can show that for t > 0,

lim
i→∞

�

Ki

(P i
t g)(x)e

−βf̄(x)dx = lim
i→∞

�

Ki

E[g(xC,i
t )|x0 = x]e−βf̄(x)dx (28)

=

�

K
E[g(xC

t )|x0 = x]e−βf̄(x)dx (29)

=

�

K
(Ptg)(x)e

−βf̄(x)dx.

We assumed that g was bounded, and so there is a number, b, such that |g(x)| ≤ b for all x ∈ K. It
follows from the definition of Pt and P i

t that |Ptg(x)| ≤ b and |P i
t g(x)| ≤ b for all t.

Fix any t > 0. The Brownian motion, w, is continuous, and so for each t, ws is bounded for s ∈ [0, t].
Now the form of (9) shows that yC , and thus xC must also be continuous, and thus also bounded
for s ∈ [0, t]. Thus, for each realization, we see that there is a number m such that xC

s ∈ Ki for all
s ∈ [0, t] and all i ≥ m. Thus, we see that xC

s = xC,i
s for s ∈ [0, t]. This argument shows that the

integrand on the right of (28) converges pointwise to the integrand of (29). So, the desired equality
follows by the dominated convergence theorem. �

C Bounded variance of the processes

In this section, we derive variance bounds on all of the main processes, E[�xA
k �2] and E[�xC

t �2]. The
bound on E[�xC

t �2] is used to prove bounds on the discretization error from xM
t to xC

t . The bound
on E[�xA

k �2] is used to derive the time-uniform bounds on W1(L(xA
k ),L(xC

k )) from Lemma 3.
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C.1 Continuous-time bounds

In this section, we show that the assumption that f̄ is strongly convex outside a ball implies that
V(x) = 1

2�x�2 can be used as a Lyapunov function for xC
t . In turn, we use this Lyapunov function

to derive bounds on E[�xC
t �2].

Lemma 13. If f̄(x) is µ-strongly convex outside a ball with radius R, then V(x) = 1
2x

�x satisfies
the following the geometric drift condition:

AV(x) ≤ −2ηµV(x) + c10η.

Here c10 is defined by

c10 = (�+ µ)R2 +R�∇xf̄(0)�+
n

β
.

Proof By Ito’s formula, we have

dV(xC
t ) = ∇xV�dxC

t +
1

2
d(xC

t )
�(∇2

xV)dxC
t

= (xC
t )

�(−η∇xf̄(x
C
t )dt+

�
2η

β
dwt − vtdµt) +

1

2
d(xC

t )
�dxC

t

= −η(xC
t )

�∇xf̄(x
C
t )dt+

�
2η

β
(xC

t )
�dwt − (xC

t )
�vtdµt +

η

β
Tr(dwtdw

�
t )

= (−η(xC
t )

�∇xf̄(x
C
t ) +

nη

β
)dt+

�
2η

β
(xC

t )
�dwt − (xC

t )
�vtdµt.

The third equality holds because
� t

0
vsdµs has bounded variation. The last equality is based on the

fact that dwtdw
�
t = dt I .

Since vt ∈ NK(xC
t ), µt is a nonnegative measure, and 0 ∈ K, we have that −(xC

t )
�vtdµt ≤ 0.

Thus, the generator of the Lyapunov function satisfies

AV(x) ≤ −ηx�∇xf̄(x) +
nη

β
. (30)

If �x� ≥ R, strong convexity outside a ball of radius R, along with the Cauchy-Schwartz inequality
imply that

x�∇xf̄(x) = (x− 0)�(∇xf̄(x)−∇xf̄(0)) + x�∇xf̄(0)

≥ µ�x�2 −R�∇xf̄(0)� (31)

It follows that when �x� ≥ R, we have that

AV(x) ≤ −ηµ�x�2 + η

�
R�∇xf̄(0)�+

n

β

�

= −η2µV(x) + η

�
R�∇xf̄(0)�+

n

β

�
.

If �x� ≤ R, then the Cauchy-Schwartz inequality and the Lipschitz continuity imply that

−x�∇xf̄(x) = −x� �
∇xf̄(x)−∇xf̄(0) +∇xf̄(0)

�

≤ �x��∇xf̄(x)−∇xf̄(0)�+R�∇xf̄(0)�
≤ ��x�2 +R�∇xf̄(0)�
= −µ�x�2 + (�+ µ)�x�2 +R�∇xf̄(0)�
≤ −µ�x�2 + (�+ µ)R2 +R�∇xf̄(0)�. (32)
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Note that (31) implies that (32) also holds whenever �x� ≥ R. So, combining (32) with (30) shows
that for all x ∈ K,

AV(x) ≤ η
�
−µ�x�2 + (�+ µ)R2 +R�∇xf̄(0)�

�
+

nη

β

= −η2µV(x) + η

�
(�+ µ)R2 +R�∇xf̄(0)�+

n

β

�

�
Lemma 14. If E[�xC

0 �2] ≤ ς , then for all t ≥ 0, we have that

E[�xC
t �2] ≤ ς +

1

µ
c10,

where c10 is defined in Lemma 13.

Proof Recall that Lyapunov generator A is defined as below

AV(x) = lim
t↓0

E
�
1

t
(V(xC

t )− V(xC
0 ))|xC

0 = x

�
.

Using Dynkin’s formula and Lemma 13 gives

E
�
V(xC

t )− V(xC
0 )

�
=

� t

0

E
�
AV(xC

s )
�
ds

≤ −2ηµ

� t

0

E
�
V(xC

s )
�
ds+ c10ηt.

Let ut = E
�
V(xC

t )
�
, u0 = E

�
V(xC

0 )
�
. By Grönwall’s inequality, we get

ut ≤ e−2ηµtu0 + ηc10

� t

0

e−2ηµsds

= e−2ηµtu0 +
c10
2µ

�
1− e−2ηµt

�

≤ u0 +
c10
2µ

.

Recalling that ut =
1
2E[�xt�2] and E[�x0�2] ≤ ς completes the proof. �

C.2 Discrete-time bounds

Here we derive a uniform bound on E[�xA
k �2].

Lemma 15. Assume that E[�xA
0 �2] ≤ ς and that η ≤ min

�
1, µ

4�2

�
. There is a constant, c11 such

that for all k ≥ 0, we have that
E[�xA

k �2] ≤ ς + c11.

The constant is given by

c11 =
4

µ

�
n

β
+ (�+ µ)R2 + (2 +R)�∇xf̄(0)�+

�
8�2 +

1

µ

�
�2M2(z)

�

Proof Using non-expansiveness of the projection and then expanding the square of the norm gives:

E
�
�xA

t+1�2
�
= E

�����ΠK

�
xA
t − η∇xf(x

A
t , zt) +

�
2η

β
ŵt

�
−ΠK(0)

����
2
�

≤ E

�����xA
t − η∇xf(x

A
t , zt) +

�
2η

β
ŵt

����
2
�

= E
�
�xA

t �2 + η2�∇xf(x
A
t , zt)�2 − 2η(xA

t )
�∇xf(x

A
t , zt)

�
+

2nη

β
.
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Now we bound the term E
�
�∇xf(x

A
t , zt)�2

�
. For any x ∈ K, we have that

�∇xf(x, z)�2 = �∇xf(x, z)−∇xf(0, z) +∇xf(0, z)�2

≤ 2�∇xf(0, z)�2 + 2�2�x�2. (33)

This leads to:

E
�
�xA

t+1�2
�
≤

�
1 + 2�2η2

�
E
�
�xA

t �2
�

+

�
2ηn

β
+ 2η2E[�∇xf(0, zt)�2]

�
− 2ηE

�
(xA

t )
�∇xf(x

A
t , zt)

�
.

To bound the term E[�∇xf(0, zt)�2], note that ∇xf̄(0) = E[∇xf(0, ẑt)], where ẑt is identically
distributed to zt and independent of zt.

E[�∇xf(0, zt)�2] = E
�
�∇xf̄(0) +∇xf(0, zt)− E[∇xf(0, ẑt)]�2

�

≤ 2�∇xf̄(0)�2 + 2E[�∇xf(0, zt)− E[∇xf(0, ẑt)]�2]
Jensen
≤ 2�∇xf̄(0)�2 + 2E[�∇xf(0, zt)−∇xf(0, ẑt)�2]

≤ 2�∇xf̄(0)�+ 2�2E[�zt − ẑt�2]
≤ 2�∇xf̄(0)�+ 4�2E[�zt�2 + �ẑt�2]
≤ 2�∇xf̄(0)�+ 8�2M2(z), (34)

where M2(z) is a bound on E[�zt�2] from (2).

So, we have a bound of the form

E
�
�xA

t+1�2
�
≤

�
1 + 2�2η2

�
E
�
�xA

t �2
�

+

�
2ηn

β
+ η2

�
4�∇xf̄(0)�+ 16�2M2(z)

��
− 2ηE

�
(xA

t )
�∇xf(x

A
t , zt)

�
. (35)

To bound the inner product term, note that

E
�
(xA

t )
�∇xf(x

A
t , zt)

�
= E

�
(xA

t )
� �

∇xf(x
A
t , zt)−∇xf(x

A
t , ẑt)

��
+ E

�
(xA

t )
�∇xf(x

A
t , ẑt)

�

= E
�
(xA

t )
� �

∇xf(x
A
t , zt)−∇xf(x

A
t , ẑt)

��
+ E

�
(xA

t )
�∇xf̄(x

A
t )
�
.

The second equality follows because ẑt is independent of xA
t and identically distributed to zt. So, we

can use the Cauchy-Schwartz inequality on the first term on the right and (32) on the second term to
give:

E
�
(xA

t )
�∇xf(x

A
t , zt)

�
≥ −�E[�xA

t ��zt − ẑt�] + µE[�xA
t �2]−

�
(�+ µ)R2 +R�∇xf̄(0)�

�
.

Using a completing-the-squares argument shows that for any numbers a and b

µ

2
a2 − �ab =

µ

2

�
a− �

µ
b

�2

− �2

2µ
b2

≥ − �2

2µ
b2.

Setting a = �xA
t � and b = �zt − ẑt� leads to a bound of the form

E
�
(xA

t )
�∇xf(x

A
t , zt)

�
≥ µ

2
E[�xA

t �2]−
�2

2µ
E[�zt − ẑt�2]−

�
(�+ µ)R2 +R�∇xf̄(0)�

�

≥ µ

2
E[�xA

t �2]−
�2

µ
M2(z)−

�
(�+ µ)R2 +R�∇xf̄(0)�

�
. (36)
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Plugging the new bounds into (35) gives

E
�
�xA

t+1�2
�
≤

�
1− µη + 2�2η2

�
E
�
�xA

t �2
�

+

�
2ηn

β
+ η2

�
4�∇xf̄(0)�+ 16�2M2(z)

��
+2η

�
�2

µ
M2(z) +

�
(�+ µ)R2 +R�∇xf̄(0)�

��

Note that if η ≤ µ
4�2 , then

1− µη + 2�2η2 ≤ 1− µη

2
.

Furthermore, if η ≤ 1, we get the simplified bound:

E
�
�xA

t+1�2
�
≤

�
1− µη

2

�
E
�
�xA

t �2
�

+ 2η

�
n

β
+ 2�∇xf̄(0)�+ 8�2M2(z) +

�2

µ
M2(z) + (�+ µ)R2 +R�∇xf̄(0)�

�
. (37)

Now for any a ∈ [0, 1) and any b ≥ 0, if ut ≥ 0 satisfies

ut+1 ≤ aut + b

then

ut ≤ atu0 + b
t−1�

k=0

ak

= atu0 + b
1− at

1− a

≤ u0 +
b

1− a

Applying this bound to E[�xA
t �2] and using that E[�xA

0 �2] ≤ ς gives

E[�xA
t �2] ≤ ς +

4

µ

�
n

β
+ (�+ µ)R2 + (2 +R)�∇xf̄(0)�+

�
8�2 +

1

µ

�
�2M2(z)

�
.

�

D Stochastic contraction analysis

In this Appendix, we prove Lemma 2.

D.1 Contraction for the reflected SDEs

We extend the analysis of standard SDEs from [20] to the case of reflected SDEs. The main idea
of [20] is to construct a specialized metric over Rn and corresponding Wasserstein distance under
which contraction rates can be computed. In the context of this paper, we only use Euclidean norm to
construct the metric, whereas in [20], both Euclidean and a second norm were used to construct the
specilized metric. Using just one norm leads to some simplifications. Our choice of reflection term in
the coupling process is also slightly different, leading to further simplifications.

In the following, we firstly examine the contractivity properties of the generalized reflected SDEs and
then associate the generalized process with the original process from (1).

Let K be a closed convex subset of Rn and consider a reflected stochastic differential equations of
the form:

dxt = H(xt)dt+Gdwt − vtdµ(t), (38)
where G is an invertible n × n matrix with minimum singular value σmin(G), wt is a standard
Brownian motion, and −

� t

0
vsdµ(s) is a reflection term that ensures that xt ∈ K for all t ≥ 0. (We

22



are slightly abusing notation, since here xt denotes the solution to a general RSDE, and is not the
iterates of the original algorithm from (1).)

Following [20], we construct a function δ : [0,+∞) → R such that δ(0) = 0, δ�(0) = 1, δ�(r) > 0,
and δ��(r) ≤ 0 for all r ≥ 0. With these properties, it can be shown that δ(�x− y�) forms a metric
over K. The particular metric is constructed so that the dynamics are contractive with respect to the
corresponding Wasserstein distance.

Assume there exists a continuous function κ(r) : [0,+∞) → R such that for any x, y ∈ Rn, x �= y,

(x− y)� (H(x)−H(y)) ≤ κ(�x− y�)�x− y�2. (39)

Also, assume that
lim supκ(r) < 0. (40)

This implies that there is a postive constant, R0, and a negative constant κ̄, such that κ(r) ≤ κ̄ < 0
for all r > R0.

We choose

R1 =
R0

2
+

1

2

�
R2

0 −
16σmin(G)2eh(R0)

κ̄
> R0,

and define δ via the following chain of definitions:

δ(r) =

� r

0

ϕ(s)g(s)ds (41a)

g(r) = 1− ξ

2

� r∧R1

0

Φ(s)ϕ(s)−1ds (41b)

ξ−1 =

� R1

0

Φ(s)ϕ(s)−1ds (41c)

Φ(r) =

� r

0

ϕ(s)ds (41d)

ϕ(r) = e−h(r) (41e)

h(r) =
1

2σmin(G)2

� r

0

s(κ(s) ∨ 0)ds. (41f)

In the above definition, we use the shorthand notation a ∧ b = min{a, b} and a ∨ b = max{a, b}.

The details on the choices of R0 and R1 will be presented during the proof of Theorem 16 for the
general reflection coupling related to (38) and Corollary 17 for the specific reflection coupling related
to (8).

As discussed above, δ(�x − y�) is a metric. See [20] for details. The corresponding Wasserstein
distance is defined by

Wδ(P,Q) = inf
Γ∈C(P,Q)

�

K×K
δ(�x− y�)dΓ(x, y)

Here, C is the couplings between P and Q.

To get an explicit form of the constant factor in Lemma 2, we use the following theorem, which is
analogous to Corollary 2 of [20].

Theorem 16. If x1
t and x2

t are two solutions to (38), then for all 0 ≤ s ≤ t, their laws satisfy

Wδ(L(x1
t ),L(x2

t )) ≤ e−ã(t−s)Wδ(L(x1
s),L(x2

s))

where ã = ξσmin(G)2.

Proof The proof closely follows the proof of Theorem 1 from [20] with constraints handled similar
to works in [27, 29]. The key is to create an explicit coupling between x1

t and x2
t , which is known as

a reflection coupling [31].
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To define the reflection coupling, let τ be coupling time: τ = inf
�
t|x1

t = x2
t

�
. Let rt = �x1

t − x2
t�,

ut = (x1
t − x2

t )/rt. Then the reflection coupling between x1
t and x2

t is defined by:

dx1
t = H(x1

t )dt+Gdwt − v1
t dµ

1(t) (42a)

dx2
t = H(x2

t )dt+ (I − 2utu
�
t 1(t < τ ))Gdwt − v2

t dµ
2(t) (42b)

where −
� t

0
v1
sdµ

1(s) and −
� t

0
v2
sdµ

2(s) are reflection terms that ensure that x1
t ∈ K and x2

t ∈ K
for all t ≥ 0.

The processes from (42) define a valid coupling since
� T

0
(I − 2utu

�
t 1(t < τ ))Gdwt is a Brownian

motion by Lévy’s characterization.

The main idea is to show that with the specially constructed metric (41), there will be a constant ã
such that eãtδ(rt) is a supermartingale. Then, the definition of Wδ and the supermartingale property
shows that

Wδ(L(x1
t ),L(x2

t )) ≤ E [δ(rt)] ≤ e−ã(t−s)E[δ(rs)]

Since this bound holds for all couplings of the laws L(x1
s) and L(x2

s), it must hold for the optimal
coupling, and so

Wδ(L(x1
t ),L(x2

t )) ≤ e−ã(t−s)Wδ(L(x1
s),L(x2

s)),

which is the desired conclusion.

Therefore, to complete the proof, we must show that eãtδ(rt) is a supermartingale, which is to ensure
that this process is non-increasing on average. Recall that τ is the coupling time, so that eãtδ(rt) = 0
for t ≥ τ . So we want to bound the behavior of the process for all t < τ . Specifically, it is required
to show that non-martingale terms of d

�
eãtδ(rt)

�
are non-positive. By Itô’s formula, we have that

d
�
eãtδ(rt)

�
= eãt

�
ãδ(r)dt+ δ�(r)drt +

1

2
δ��(r)(drt)

2

�
.

To achieve the desired differential, we have to derive the terms drt and (drt)
2.

drt = u�
t

�
dx1

t − dx2
t

�

= u�
t

��
H(x1

t )−H(x2
t )
�
dt+ 2utu

�
t Gdwt − v1

t dµ
1(t) + v2

t dµ
2(t)

�

The above equation is simplified because (dx1
t − dx2

t )
�(∇2rt)(dx

1
t − dx2

t ) = 0.

Also, by assumption we have

(x1
t − x2

t )
� �

H(x1
t )−H(x2

t )
�
≤ κ(�x1

t − x2
t�)�x1

t − x2
t�2. (43)

By the definition of ut and the facts that v1
t ∈ NK(x1

t ) and v2
t ∈ NK(x2

t ) imply that
−u�

t v
1
t dµ

1(t) ≤ 0 and u�
t v

2
t dµ

2(t) ≤ 0. It follows that and the assumption (39) gives

drt ≤ κ(r)rdt+ 2u�
t Gdwt.

Now, since the terms that were dropped in the inequality have bounded variation, we have that

(drt)
2 = 4utGG�utdt ≥ 4σmin(G)2dt.

By construction δ�(r) ≥ 0 and δ��(r) ≤ 0, and so Itô’s formula gives

d
�
eãtδ(rt)

�
≤ dteãt

�
ãδ(r) + δ�(r)κ(r)r + δ��(r)2σmin(G)2

�
+mt

= 2σmin(G)2eãtdt

�
ã

2σmin(G)2
δ(r) +

k(r)r

2σmin(G)2
δ�(r) + δ��(r)

�
+mt,

where mt denotes a local martingale.

So it suffices to pick certain ã and R1 to ensure that for all r ≥ 0, the following holds:

ã

2σmin(G)2
δ(r) +

κ(r)r

2σmin(G)2
δ�(r) + δ��(r) ≤ 0. (44)
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Recall that
δ��(r) = ϕ�(r)g(r) + g�(r)ϕ(r)

= − 1

2σmin(G)2
r(κ(r) ∨ 0)δ�(r)− ξ

2
Φ(r)1(r < R1).

So if we set ã = ξσmin(G)2, then δ(r) ≤ Φ(r) implies that (44) holds for all r < R1.

The remaining work is to find a sufficient condition under which (44) holds when r ≥ R1.

Recall that we assume that there exists 0 < R0, such that k(r) < 0 for all r ≥ R0. So, if we choose
R1 > R0, we have for all r ≥ R1 that ϕ(r) = ϕ(R0). By definition, g(r) = 1

2 for all r ≥ R1, and
so we must also have δ�(r) = 1

2ϕ(R0).

Therefore, for r ≥ R1, (44) becomes
ã

2σmin(G)2
δ(r) +

κ(r)r

2σmin(G)2
1

2
ϕ(R0) ≤ 0.

So, a sufficient condition for (44) to hold when r ≥ R1 is given by:
ãδ(r)

2σmin(G)2
+

κ(r)r

2σmin(G)2
1

2
ϕ(R0) ≤ 0 (46a)

⇐⇒ ãδ(r) + κ(r)r
1

2
ϕ(R0) ≤ 0 (46b)

⇐⇒ κ(r)r
1

2
ϕ(R0) ≤ −ãδ(r) (46c)

⇐⇒ κ(r)r
1

2
ϕ(R0) ≤ −ξσmin(G)2δ(r) (46d)

⇐⇒ κ(r)r
1

2
ϕ(R0) ≤ − σmin(G)2

� R1

0
Φ(s)ϕ(s)−1ds

δ(r) (46e)

⇐= κ(r)r
1

2
ϕ(R0) ≤ − σmin(G)2

(R1 −R0)Φ(R1)ϕ(R0)−1/2
δ(r) (46f)

⇐= κ(r)r
1

2
ϕ(R0) ≤ − σmin(G)2

(R1 −R0)Φ(R1)ϕ(R0)−1/2
r (46g)

⇐⇒ κ(r) ≤ − 4σmin(G)2

(R1 −R0)Φ(R1)
(46h)

⇐⇒ (R1 −R0)Φ(R1) ≥ −4σmin(G)2

κ(r)
(46i)

⇐= (R1 −R0)R1e
−h(R0) ≥ −4σmin(G)2

κ(r)
(46j)

⇐= (R1 −R0)R1e
−h(R0) ≥ −4σmin(G)2

κ̄
(46k)

Note (46e) is implied by (46f) because for r > R0, ϕ(r) = ϕ(R0), therefore, Φ(r) = Φ(R0) +
ϕ(R0)(r −R0) which gives

� R1

0

Φ(s)ϕ(s)−1ds ≥
� R1

R0

Φ(s)ϕ(s)−1ds

=

� R1

R0

(Φ(R0) + ϕ(R0)(s−R0))ϕ(R0)
−1ds

= Φ(R0)ϕ(R0)
−1(R1 −R0) +

(R1 −R0)
2

2

≥ Φ(R0)ϕ(R0)
−1(R1 −R0)

2
+

(R1 −R0)
2

2

= (R1 −R0) (Φ(R0) + (R1 −R0)ϕ(R0))ϕ(R0)
−1/2

= (R1 −R0)Φ(R1)ϕ(R0)
−1/2. (47)
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Also, (46f) is implied by (46g) because δ(r) < r.

From (46i) to (46j), we use:

Φ(R1) =

� R1

0

ϕ(s)ds

=

� R1

0

e−h(s)ds

≥
� R1

0

e−h(R0)ds

= R1e
−h(R0). (48)

The implication (46k) =⇒ (46j) arises because of the assumption that κ(r) ≤ κ̄ < 0 for all r > R0.

Therefore, (44) will hold all r ≥ R1, as long as R1 satisfies (46k). The smallest such R1 is given by

R1 =
R0

2
+

1

2

�
R2

0 −
16σmin(G)2eh(R0)

κ̄
> R0. (49)

�
We choose our reflection term as (I − 2utu

�
t 1(t < τ ))Gdwt, while [20] uses G(I − 2ete

�
t 1(t <

τ ))dwt, with et =
G−1(x1

t−x2
t )

�G−1(x1
t−x2

t )�
. Our form of the reflection term leads to mild simplification of

some formulas.

Now we specialize the result from the previous theorem to the specific case of this paper:
Corollary 17. If x1

t and x2
t are two solutions to (8), then for all 0 ≤ s ≤ t, their laws satisfy

Wδ(L(x1
t ),L(x2

t )) ≤ e−ã(t−s)Wδ(L(x1
s),L(x2

s))

where ã = ξ 2η
β , R0 = R, and R1 = R

2 + 1
2

�
R2 + 32

µβ e
β�R2

8 in the construction of δ.

Proof We can see that (8) is a special case of (38) with

H(x) = −η∇xf̄(x)

G =

�
2η

β
I.

Since we assume that f̄ is �-Lipschitz and convex outside a ball with radius R, we have that (39)
holds with κ(s) = η� for 0 ≤ s < R and κ(s) = −ηµ for s ≥ R. Therefore, we can pick R0 = R
to construct the metric (41).

Now, σmin(G)2 = 2η
β implies that ã = ξ 2η

β . Furthermore, the choice of κ(r) implies that h(R0) =

h(R) = β�R2

8 .

The choice of κ(r) also implies that κ̄ = −ηµ. Thus, the form of R1 is given by plugging terms into
(49). �
Corollary 18. If x1

t and x2
t are two solutions to (8), then for all 0 ≤ s ≤ t, their laws satisfy

W1(L(x1
t ),L(x2

t )) ≤ 2ϕ(R)−1e−ã(t−s)W1(L(x1
s),L(x2

s)).

Proof From the special constructed of δ, we that δ�(r) is monotonically decreasing, and also
δ�(r) = δ(R1) for all r ≥ R1. Furthermore, δ(r) =

� r

0
δ�(s)ds ≥ δ�(r)

� r

0
ds = rδ�(r). Thus, for

all r ≥ 0, the following bounds hold:

δ�(R1)r ≤ δ�(r)r ≤ δ(r) ≤ r

These bounds are now used to relate the Wδ and W1 distances:

δ�(R1)W1(L(x1
t ),L(x2

t )) ≤ Wδ(L(x1
t ),L(x2

t )) ≤ W1(L(xt),L(yt)). (50)

26



In particular,

δ�(R1) = ϕ(R1)g(R1) =
1

2
ϕ(R). (51)

Plugging (51) into the first inequality of (50) gives

W1(L(x1
t ),L(x2

t )) ≤ 2ϕ(R)−1Wδ(L(x1
t ),L(x2

t )) (52)

And combining with Corollary 17 gives

W1(L(x1
t ),L(x2

t )) ≤ 2ϕ(R)−1e−ã(t−s)Wδ(L(x1
s),L(x2

s)) (53)

Finally, utilizing the second inequality of (50) gives the desired result. �

D.2 Proof of Lemma 2

In Lemma 12 of Appendix B, we showed that the Gibbs distribution, πβf̄ , defined in (6) is invariant
for the dynamics of xC

t . Thus, setting L(x1
t ) = L(xC

t ) and L(x2
t ) = πβf̄ in Corollary 18 gives

W1(L(xC
t ),πβf̄ ) ≤ 2ϕ(R)−1e−ãtW1(L(xC

0 ),πβf̄ ). (54)

Let y be distributed according to πβf̄ . For any joint distribution over (xC
0 ,y) whose marginals are

L(xC
0 ) and πβf̄ , we have that

W1(L(xC
0 ),πβf̄ ) ≤ E[�xC

0 − y�]

≤
�
E[�xC

0 − y�2]

≤
�
E[2�xC

0 �2 + 2�y�2]

=
�
2E[�xC

0 �2] + 2E[�y�2]

≤
�
2ς + 2

�
ς +

1

µ
c10

�

≤
�

2

µ
c10 + 2

√
ς. (55)

The second to last inequality uses Lemma 14.

Combining (54), (55) shows that

W1(L(xC
t ),πβf̄ ) ≤ 2ϕ(R)−1e−ãt

��
2

µ
c10 + 2

√
ς

�
.

Thus, the lemma is proved and the constants are given by:

a =
2ξ

β
(56a)

c1 = 2ϕ(R)−1

�
2

µ
c10 (56b)

c2 = 4ϕ(R)−1 (56c)

where ξ is given in (41c). �
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E Proofs of averaging lemmas

Proof of Lemma 4 Non-expansiveness of the projection and the definitions of xM,s
t and xB,s

t show
that:

�xM,s
t+1 − xB,s

t+1�2

≤
���xM,s

t − xB,s
t + η

�
E[∇xf(x

M,s
t , zt)|Ft−s−1 ∨ Gt]− E[∇xf(x

M,s
t , zt)|Ft−s ∨ Gt]

����
2

= �xM,s
t − xB,s

t �2 + 2η
�
xM,s
t − xB,s

t

��

�
E[∇xf(x

M,s
t , zt)|Ft−s−1 ∨ Gt]− E[∇xf(x

M,s
t , zt)|Ft−s ∨ Gt]

�

+ η2
���E[∇xf(x

M,s
t , zt)|Ft−s−1 ∨ Gt]− E[∇xf(x

M,s
t , zt)|Ft−s ∨ Gt]

���
2

. (57)

We will show that the second term on the right of (57) has mean zero, and then we will bound the
mean of the third term on the right of (57).

By construction, we have that xM,s
t is Ft−s−1∨Gt-measurable, while xB,s

t is Ft−s−2∨Gt-measurable.
Thus, the only part of the second term on the right of (57) which is not Ft−s−1 ∨ Gt-measurable is
E[∇xf(x

M,s
t , zt)|Ft−s ∨ Gt]. Therefore, the tower-property gives:

E
��

xM,s
t − xB,s

t

�� �
E[∇xf(x

M,s
t , zt)|Ft−s−1 ∨ Gt]− E[∇xf(x

M,s
t , zt)|Ft−s ∨ Gt]

��

= E
��

xM,s
t − xB,s

t

�� �
E[∇xf(x

M,s
t , zt)|Ft−s−1 ∨ Gt]

−E
�
E[∇xf(x

M,s
t , zt)|Ft−s ∨ Gt]

����Ft−s−1 ∨ Gt

��

= 0.

Now we focus on bounding the mean of the third term on the right of (57). Recall that xM,s
t is

Ft−s−1 ∨ Gt-measurable. Furthermore, since F+
t−s is independent of Ft−s ∨ Gt, it must also be

independent of Ft−s−1 ∨ Gt because Ft−s−1 ⊂ Ft−s. It follows that

E[∇xf(x
M,s
t ,E[zt|F+

t−s])|Ft−s ∨ Gt] = E[∇xf(x
M,s
t ,E[zt|F+

t−s])|Ft−s−1 ∨ Gt].

Thus, adding and subtracting E
�
∇xf(x

M,s
t ,E[zt|F+

t−s])
���Ft−s ∨ Gt

�
gives

���E[∇xf(x
M,s
t , zt)|Ft−s−1 ∨ Gt]− E[∇xf(x

M,s
t , zt)|Ft−s ∨ Gt]

���
2

≤ 2
���E

�
∇xf(x

M,s
t , zt)−∇xf(x

M,s
t ,E[zt|F+

t−s])
���Ft−s−1 ∨ Gt

����
2

+ 2
���E

�
∇xf(x

M,s
t , zt)−∇xf(x

M,s
t ,E[zt|F+

t−s])
���Ft−s ∨ Gt

����
2

. (58)

To bound the second term on the right of (58), we have

E
����E

�
∇xf(x

M,s
t , zt)−∇xf(x

M,s
t ,E[zt|F+

t−s])
���Ft−s ∨ Gt

����
2
�

Jensen
≤ E

����∇xf(x
M,s
t , zt)−∇xf(x

M,s
t ,E[zt|F+

t−s])
���
2
�

Lipschitz
≤ �2E

�
�zt − E[zt|F+

t−s�2
�

≤ �2ψ2(s, z)
2.

Here ψ2(s, z) was defined in (3b).
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The first term on the right of (58) is bounded by analogous calculations with Ft−s−1 used in place of
Ft−s, and gives rise to the same bound of �2ψ(s, z)2.

Plugging these bounds into (57) shows that

E
�
�xM,s

t+1 − xB,s
t+1�2

�
≤ E

�
�xM,s

t − xB,s
t �2

�
+ 4η2�2ψ2(s, z)

2

Iterating (E) t times and using the fact that xB,s
0 = xM,s

0 , shows that

E
�
�xM,s

t − xB,s
t �2

�
≤ 4η2t�2ψ2(s, z)

2.

Using the fact that

E[�xM,s
t − xB,s

t �] ≤
�

E
�
�xM,s

t − xB,s
t �2

�

gives the result. �

Proof of Lemma 5 Non-expansiveness of the projection and the definitions of xB,s
t and xM,s+1

t ,
shows that

�xB,s
t+1 − xM,s+1

t+1 �
≤

���xB,s
t − xM,s+1

t + η
�
E[∇xf(x

M,s+1
t , zt)|Ft−s−1 ∨ Gt]− E[∇xf(x

M,s
t , zt)|Ft−s−1 ∨ Gt]

���� .

Let �x�2 =
�

E[�x�2] denote the 2-norm over random vectors. The triangle inequality then implies
that���xB,s

t − xM,s+1
t + η

�
E[∇xf(x

M,s+1
t , zt)|Ft−s−1 ∨ Gt]− E[∇xf(x

M,s
t , zt)|Ft−s−1 ∨ Gt]

����
2

≤
���xB,s

t − xM,s+1
t

���
2
+ η

���E[∇xf(x
M,s+1
t , zt)−∇xf(x

M,s
t , zt)|Ft−s−1 ∨ Gt]

���
2
.

For any random vector, x, and any σ-algebra, F , Jensen’s inequality followed by the tower property
implies that E[�E[x|F ]�2] ≤ E[�x�2]. Applying this fact to the second term on the right of (59) and
then using the Lipschitz property shows that

���E[∇xf(x
M,s+1
t , zt)−∇xf(x

M,s
t , zt)|Ft−s−1 ∨ Gt]

���
2
≤ ��xM,s+1

t − xM,s
t �2.

Plugging this bound into (59) then adding and subtracting xB,s
t gives:

�xB,s
t+1 − xM,s+1

t+1 �2
≤ �xB,s

t − xM,s+1
t �2 + η��xM,s+1

t − xM,s
t �2

≤ �xB,s
t − xM,s+1

t �2 + η��xM,s+1
t − xB,s

t �2 + η��xB,s
t − xM,s

t �2
= (1 + η�)�xB,s

t − xM,s+1
t �2 + η��xB,s

t − xM,s
t �2. (59)

Using the fact that xB,s
0 = xM,s+1

0 and iterating this inequality shows that:

�xB,s
t − xM,s+1

t �2

≤ η�

t−1�

k=0

(1 + η�)k�xB,s
t−k − xM,s

t−k�2

Lemma 4
≤

�
2�ψ2(s, z)η

√
t
�
η�

t−1�

k=0

(1 + η�)k

=
�
2�ψ2(s, z)η

√
t
� �

(1 + η�)t − 1
�

≤
�
2�ψ2(s, z)η

√
t
� �

eηt� − 1
�
.

The final inequality follows by taking logarithms and using the fact that log(1 + η�) ≤ η�. �
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F Discretization bounds

Proof of Lemma 6 Recall that yD
t = yC

�t� and so for all k ∈ N, yD
k = yC

k . By the construction of
Skorokhod solutions to the process xC

t and xD
t , and using Theorem 9, we have for all k ∈ N

��xC
k − xD

k

�� ≤ (c9 + 1) sup
0≤s≤k

���yC
s − yC

�s�

��� .

Since

yC
t = xC

0 − η

� t

0

∇xf̄(x
C
s )ds+

�
2η

β
wt,

the triangle inequality implies that

��xC
k − xD

k

�� ≤ (c9 + 1)η sup
s∈[0,k]

�����

� s

�s�
∇xf̄(x

C
τ )dτ

�����+ (c9 + 1)

�
2η

β
sup

s∈[0,k]

��ws −w�s�
�� .

E
�
sups∈[0,k]

��ws −w�s�
��
�

is upper bounded by 2n
�
log(4k). See Lemma 9 in [27]. So, the

remaining work is to bound the first term on the right.

Take the expectation of the first term, we have

E

�
sup

s∈[0,k]

�����

� s

�s�
∇xf̄(x

C
τ )dτ

�����

�

= E

�
max

i=0,··· ,k−1
sup

s∈[i,i+1]

����
� s

i

∇xf̄(x
C
τ )dτ

����

�

≤ E







k−1�

i=0

�
sup

s∈[i,i+1]

����
� s

i

∇xf̄(x
C
τ )dτ

����

�2



1/2



Jensen
≤


E



k−1�

i=0

�
sup

s∈[i,i+1]

����
� s

i

∇xf̄(x
C
τ )dτ

����

�2





1/2

=




k−1�

i=0

E



�

sup
s∈[i,i+1]

����
� s

i

∇xf̄(x
C
τ )dτ

����

�2





1/2

.

So we want to upper bound the supremum inside the expectation operation.

We can show for all s ∈ [0, k],
�����

� s

�s�
∇xf̄(x

C
τ )dτ

�����
triangle inequality

≤
� s

�s�

��∇xf̄(xτ )
�� dτ

≤
� �s�+1

�s�

��∇xf̄(x
C
τ )

�� dτ

Jensen
≤

�� �s�+1

�s�
�∇xf̄(x

C
τ )�2dτ

�1/2

.

Therefore,

E

�
sup

s∈[0,k]

�����

� s

�s�
∇xf̄(x

C
τ )dτ

�����

�
≤
�

k−1�

i=0

E
�� i+1

i

�∇xf̄(x
C
τ )�2dτ

��1/2

Fubini
=

�
k−1�

i=0

� i+1

i

E
�
�∇xf̄(x

C
τ 1)�2

�
dτ

�1/2

.
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Here, we can see it suffices to bound E
�
�∇xf̄(xt)�2

�
.

We have assumed that 0 ∈ K, and so we have
��∇xf̄(x

C
t )

��2 =
��∇xf̄(x

C
t )−∇xf̄(0) +∇xf̄(0)

��2

≤ 2
��∇xf̄(x

C
t )−∇xf̄(0)

��2 + 2
��∇xf̄(0)

��2

≤ 2�2
��xC

t

��2 + 2
��∇xf̄(0)

��2 .

Plugging in the bound from Lemma 14 shows that

E
�
�∇xf̄(x

C
t )�2

�
≤ E

�
2�2�xC

t �2 + 2�∇xf̄(0)�2
�

= 2�2E
�
�xC

t �2
�
+ 2�∇xf̄(0)�2

≤ 2�2
�
ς +

1

µ
c10

�
+ 2�∇xf̄(0)�2.

Therefore, we have

E

�
sup

s∈[0,k]

�����

� s

�s�
∇xf̄(x

C
τ )dτ

�����

�
≤
�

k−1�

i=0

� i+1

i

E
�
�∇xf̄(x

C
τ )�2

�
dτ

�1/2

≤
�

2�2
�
ς +

1

µ
c10

�
+ 2�∇xf̄(0)�2

√
k

≤
��

2

µ
�2c10 + 2�∇xf̄(0)�2 +

√
2�2

√
ς

�√
k.

Setting

c5 = (c9 + 1)

�
2

µ
�2c10 + 2�∇xf̄(0)�2

c6 = (c9 + 1)
√
2�2

c7 = (c9 + 1)n

�
8

β

where c10 is defined in Lemma 14 and c9 is defined in Theorem 9 and combining the bound on the
second supreme term gives the desired result. �

Proof of Lemma 7 The argument of bounding xM
t and xD

t closely follows the proof of Lemma 10
in [27]. Recall that xM

t is a discretized process and xM
t = xM

�t�. We also have xM
t = S(D(yM

t )),
where yM

t is defined by

yM
t = xM

0 − η

� t

0

∇f̄(xM
�s�)ds+

�
2η

β
wt.

The intermediate process xD
t satisfies xD

t = S(D(yC
t )), where

yC
t = xC

0 − η

� t

0

∇f̄(xC
s )ds+

�
2η

β
wt.

So in particular,

xM
k+1 = ΠK

�
xM
k + yM

k+1 − yM
k

�

= ΠK

�
xM
k − η∇f̄(xM

k ) +

�
2η

β
(wk+1 −wk)

�

xD
k+1 = ΠK

�
xD
k + yC

k+1 − yC
k

�

= ΠK

�
xD
k − η

� k+1

k

∇f̄(xC
s )ds+

�
2η

β
(wk+1 −wk)

�
.
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Define a difference process

ρt =
�
xM
t + yM

t − yM
�t�

�
−
�
xD
t + yC

t − yC
�t�

�
.

Note that at integers k ∈ N, ρk = xM
k − xD

k and for t ∈ [k, k + 1), we have

ρt =
�
xM
k − yM

k − xD
k + yD

k

�
+ yM

t − yC
t .

It follows that

dρt = d(yM
t − yC

t ) = η
�
∇f̄(xC

t )−∇f̄(xM
t )

�

By construction, ρt is a continuous bounded variation process on the interval [k, k + 1). Thus, when
ρt �= 0, we can calculate d�ρt� using the chain rule.

d �ρt�
chain rule

=

�
ρt

�ρt�

��
dρt

=

�
ρt

�ρt�

��
η
�
∇f̄(xC

t )−∇f̄(xM
t )

�
dt

Cauchy-Schwarz
≤ η

��∇f̄(xC
t )−∇f̄(xM

t )
�� dt

Lipschitz
≤ η�

��xC
t − xM

t

�� dt
= η�

��xC
t − xD

t + xD
t − xM

t

�� dt
triangle
≤ η�

���xC
t − xD

t

��+
��xD

t − xM
t

��� dt.

To include the case that ρt = 0, we use the Lemma 19 from [27]. The analysis is as below:

For t ∈ [k, k + 1),

�ρt� = �ρk�+
� t

k

d �ρt�

= �ρk�+ lim
�↓0

� t

k

1 (�ρs� ≥ �) d �ρs�

≤ �ρk�+ lim
�↓0

� t

k

1 (�ρs� ≥ �) η�
���xC

s − xD
s

��+
��xD

s − xM
s

��� dt

= (1 + η�) �ρk�+ η�

� t

k

���xC
s − xD

s

��� ds.

The second equality follows from Lemma 19 from [27]. The last equality holds because that
ρk = xM

s − xD
s , ∀s ∈ [k, k + 1).

Non-expansiveness of the convex projection implies that

�ρk� =
��xM

s − xD
s

�� ≤ lim
t↑k

�ρt� . (60)

Letting t = k + 1 gives

��ρk+1

�� ≤ (1 + η�) �ρk�+ η�

� k+1

k

��xC
s − xD

s

�� ds.

Iterating this inequality, and using the assumption that xM
0 = xD

0 gives

�ρk� ≤
k−1�

i=0

η�(1 + η�)k−i−1

� i+1

i

��xC
s − xD

s

�� ds.
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Taking expectation, and using Lemma 6 gives

E [�ρk�] ≤
k−1�

i=0

η�(1 + η�)k−i−1

� i+1

i

�
(c5 + c6

√
ς)η

√
s+ c7

�
η log(4s)

�
ds

≤ η�
�
(c5 + c6

√
ς)η

√
k + c7

�
η log(4k)

� k−1�

i=0

(1 + η�)k−i−1

≤
�
(c5 + c6

√
ς)η

√
k + c7

�
η log(4k)

� �
(1 + η�)k − 1

�

≤
�
(c5 + c6

√
ς)η

√
k + c7

�
η log(4k)

� �
eη�k − 1

�
.

The last inequality is based on the fact that (1 + η�)k ≤ eη�k for all η� > 0.

Recall that for all k ∈ N, ρk = xM
k − xD

k , which gives the desired result. �

G Conclusion of the proof of Lemma 3

This subsection uses a “switching” trick to derive a bound on W1(L(xA
k ),L(xC

k )) that is uniform in
time. The essential idea is to utilize a family of processes that switch from the dynamics of xA

k to the
dynamics of xC

k , and utilize contractivity of the law of xC
k to derive the uniform bounds. A similar

methodology was utilized in [10].

For s ≥ 0, let xA,C
s,t be the process such that xA,C

s,t = xA
t = xA

�t� for t ≤ s and for t ≥ s, xA,C
s,t

follows:

dxA,C
s,t = −η∇xf̄(x

A,C
s,t )dt+

�
2η

β
dwt − vA,C

s,t dµA,C
s (t).

In other words, xA,C
s,t follows the algorithm for t ≤ s, and then switches to the dynamics of the

continuous-time approximation from (8) at t = s.

Now let 0 ≤ s ≤ ŝ ≤ t where s, ŝ ∈ N, then Corollary 18 from Appendix D shows that

W1(L(xA,C
s,t ),L(xA,C

ŝ,t )) ≤ 2ϕ(R)−1e−ã(t−ŝ)W1(L(xA,C
s,ŝ ),L(xA,C

ŝ,ŝ )). (61)

By starting the analysis of the processes xA and xC at time s, rather than time 0, Lemma 8 implies
the following bound:

W1(L(xA,C
s,ŝ ),L(xA,C

ŝ,ŝ )) = W1(L(xA,C
s,ŝ ),L(xA

ŝ ))

≤
��

c8 + c6

�
E[�xA

s �2]
�
η
√
ŝ− s+ c7

�
η log(4(ŝ− s))

�
eη�(ŝ−s)

≤
��

c8 + c6
√
ς + c11

�
η
√
ŝ− s+ c7

�
η log(4(ŝ− s))

�
eη�(ŝ−s). (62)

The second inequality is based on Lemma 15.

Let H = �1/η� and t ∈ [k̂H, (k̂ + 1)H) where k̂ ∈ N, we have xA,C
0,t = xC

t and xA,C

(k̂+1)H,t
= xA

t =

xA
�t�. Then, the triangle inequality implies that

W1(L(xA
t ),L(xC

t )) ≤
k̂�

i=0

W1(L(xA,C
iH,t),L(xA,C

(i+1)H,t)).

For i < k̂, setting s = iH , ŝ = (i+ 1)H in (61) gives that

W1(L(xA,C
iH,t),L(xA,C

(i+1)H,t)) ≤ 2ϕ(R)−1e−ã(t−(i+1)H)W1(L(xA,C
iH,(i+1)H),L(xA,C

(i+1)H,(i+1)H))

≤ 2ϕ(R)−1e−ηa(t−(i+1)H)g(H)

≤ 2ϕ(R)−1e−a(k̂−i−1)/2)g(η−1)
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where

g(r) =
��

c8 + c6
√
ς + c11

�
η
√
r + c7

�
η log(4r)

�
eη�r. (63)

The last inequality uses the facts that 1/2 ≤ ηH ≤ 1 along with monotonicity of g. The lower bound
of ηH arises because H ≥ η−1 − 1 and so ηH ≥ 1 − η ≥ 1/2, since η ≤ 1/2. Thus, the first k̂
terms are bounded by:

k̂−1�

i=0

W1(L(xA,C
iH,t),L(xA,C

(i+1)H,t)) ≤
k̂−1�

i=0

2ϕ(R)−1e−a(k̂−i−1)/2)g(η−1)

≤ 2ϕ(R)−1 g(η−1)

1− e−a/2

For i = k̂,

W1(L(xA,C
iH,t),L(xA,C

(i+1)H,t)) = W1(L(xA,C

k̂H,t
),L(xA

t ))

≤ g(t− k̂H) ≤ g(η−1)

By triangle inequality, adding all the k̂ + 1 terms gives

W1(L(xA
t ),L(xC

t ))

≤ g(η−1)

�
1 +

2ϕ(R)−1

1− e−a/2

�

≤
��

c8 + c6
√
ς + c11

�
η
�
η−1 + c7

�
η log(4η−1)

�
e�
�
1 +

2ϕ(R)−1

1− e−a/2

�
. (64)

For η−1 ≥ 4, we have log(4η−1) ≤ 2 log(η−1), and also log η−1 > 1. Thus, if η ≤ 1/4, then (64)
can be further upper bounded by

W1(L(xA
t ),L(xC

t ))

≤
��

c8 + c6
√
ς + c11

�
η
�
η−1 log(η−1) + c7

�
2η log(η−1)

�
e�
�
1 +

2ϕ(R)−1

1− e−a/2

�

=
�
c8 + c6

√
ς + c11 +

√
2c7

�
e�
�
1 +

2ϕ(R)−1

1− e−a/2

��
η log(η−1)

≤
�
c8 + c6

√
c11 +

√
2c7 + c6

√
ς
�
e�
�
1 +

2ϕ(R)−1

1− e−a/2

��
η log(η−1).

So setting

c3 =
�
c8 + c6

√
c11 +

√
2c7

�
e�
�
1 +

2ϕ(R)−1

1− e−a/2

�

c4 = c6e
�

�
1 +

2ϕ(R)−1

1− e−a/2

�

completes the proof. �

H Bounding the constants

In this section, we summarize all the constants in Table 1. The second column of the table points to
the place where these values are defined or computed. Then we show the simplified bounds of the
main constants c1, c2, c3, c4, a in Theorem 1 explicitly and also discuss their dependencies on state
dimension n and parameter β.
Proposition 19. The constants c2 and c4 grow linearly with n. The constants c1 and c3 have O(

√
n)

and O(n) dependencies respectively. So overall, the dimension dependency of convergence guarantee
is O(n). Constants c1, c2, c3, c4 all grow exponentially with respect to β�R2

2 . And for all β > 0,

a ≥ 2
βR2

2 + 16
µ

e−
β�R2

4 .
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Table 1: List of constants

Constant Definition

a = 2ξ
β

c1 = 2ϕ(R)−1
�

2
µc10

c2 = 4ϕ(R)−1 Appendix D.2 (Proof of Lemma 2)

c3 =
�
c8 + c6

√
c11 +

√
2c7

�
e�
�
1 + 2ϕ(R)−1

1−e−a/2

�

c4 = c6e
�
�
1 + 2ϕ(R)−1

1−e−a/2

�
Appendix G (Proof of Lemma 3)

c5 = (c9 + 1)
�

2
µ�

2c10 + 2�∇xf̄(0)�2
c6 = (c9 + 1)

√
2�2

c7 = (c9 + 1)n
�

8
β Appendix F (Proof of Lemma 6)

c8 = c5 + 2�Ψ2(z) Section 3.3 (Proof of Lemma 8)

c9 = 6
�
1
α

�rank(A)/2
Appendix A.3 (Proof of Lemma 11)

c10 = (�+ µ)R2 +R�∇xf̄(0)�+ n
β Appendix C.1 (Proof of Lemma 13)

c11 = 4
µ

�
n
β + (�+ µ)R2 + (2 +R)�∇xf̄(0)�+

�
8�2 + 1

µ

�
�2M2(z)

�
Appendix C.2 (Proof of Lemma 15)

Proof of Proposition 19 Recall that a = 2ξ/β, and from (41c) we have that from

ξ−1 =

� R1

0

Φ(s)ϕ(s)−1ds.

So, to get a lower bound on ξ, we need an upper bound on the right side. Recalling the definitions of
the various functions for our scenario gives:

h(s) =
�βmin{s2, R2}

8

ϕ(s) = e−h(s)

Φ(s) =

� s

0

ϕ(r)dr.

It follows that Φ(s) ≤ s and ϕ(s)−1 = eh(s) ≤ e
�βR2

8 . Thus, we have that

ξ−1 ≤ 1

2
R2

1e
�βR2

8 .

Now, note that in Corollary 17 that we have set

R1 =
R

2
+

1

2

�
R2 +

32

µβ
e

β�R2

8 .
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So, a bit of crude upper bounding gives:

ξ−1 ≤ 1

2
R2

1e
�βR2

8

≤ 1

2

�
R2 +

32

µβ
e

β�R2

8

�
e

β�R2

8

≤
�
R2

2
+

16

µβ

�
e

β�R2

4

The final bound on a becomes:

a = 2ξ/β ≥ 2
βR2

2 + 16
µ

e−
β�R2

4

The rest of focuses on bounding the other constants as β grows large. For all sufficiently large β, we
have that

βR2

2 + 16
µ

2
≤ e

β�R2

4

so that
a ≥ e−

β�R2

2 . (65)

We have the following inequality for all sufficiently large β:
1

1− e−a/2
≤ max

�
4

a
,

1

1− e−1

�

≤ max

�
4e

β�R2

2 ,
1

1− e−1

�

= 4e
β�R2

2 .

The first inequality uses the fact that for all y > 0, 1
1−e−y ≤ max

�
2
y ,

1
1−e−1

�
, which is shown in

[27].

So

1 +
2ϕ(R)−1

1− e−a/2
≤ 1 + 4e

β�R2

2 . (66)

Now we bound the growth of the other constants for large β. So, without loss of generality, assume
β ≥ 1. Then, plugging the definition of ξ and ϕ and (66) gives

c1 = 2e
β�R2

8

�
2

µ

�
(�+ µ)R2 +R�∇xf̄(0)�+

n

β

�

≤ 2e
β�R2

8

�
2

µ

�
(�+ µ)R2 +R�∇xf̄(0)�+ n

�

c2 = 4e
β�R2

8

c3 =
�
c8 + c6

√
c11 +

√
2c7

�
e�
�
1 +

2ϕ(R)−1

1− e−a/2

�

≤
�
c8 + c6

√
c11 +

√
2c7

�
e�
�
1 + 4e

β�R2

2

�

≤ r(
√
n)e�

�
1 + 4e

β�R2

2

�

c4 =

�
6(

1

α
)rank(A)/2 + 1

�√
2�2e�

�
1 +

2ϕ(R)−1

1− e−a/2

�

≤
�
6(

1

α
)rank(A)/2 + 1

�√
2�2e�

�
1 + 4e

β�R2

2 1

�
.
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For constant c3, r(
√
n) is a monotonically increasing function of order

√
n, (independent of η and

β). The upper bound of c3 is derived by direct observation of the corresponding constants.

We can see neither c2 nor c4 depends on the state dimension, so the two constants grow linearly with
n. The constant c1 are O(

√
n) and c3 are O(n). As for the dependencies on β, we can see that all

four constants are O(e
β�R2

2 ).

�

I Near-optimality of Gibbs distributions

In this appendix, we prove Proposition 22 which shows that xk can be near-optimal. The proof closely
follows [27] and [35]. The main difference is that in our case we have to deal with the unbounded
polyhedral constraint, while in [35] there is no constraint and in [27] the constraint is compact.

Firstly, we need a preliminary result shown as below.
Lemma 20. Assume x is drawn according to πβf̄ . There exists a positive constant c12 such that the
following bounds hold:

E[f̄(x)] ≤ min
x∈K

f̄(x) +
n

β
(2max{0, log ς}+ c12)

where c12 = log n+2 log(1+ 1
µc10)+

1
6 log 3+ log 2

√
π− log rmin and rmin is a positive constant.

Proof of Lemma 20 Recall that the probability measure πβf̄ (A) is defined by πβf̄(A)(A) =
�
A∩K e−βf̄(x)dx�

K e−βf̄(y)dy
.

Let Λ =
�
K e−βf̄(y)dy and p(x) = e−βf̄(x)

Λ . So log p(x) = −βf̄(x) − logΛ, which implies that
f̄(x) = − 1

β log p(x)− 1
β logΛ. Then we have

Eπβf̄
[f̄(x)] =

�

K
f̄(x)p(x)dx

= − 1

β

�

K
p(x) log p(x)dx− 1

β
logΛ. (67)

We can bound the first term by maximizing the differential entropy.

Let h(x) = −
�
K p(x) log p(x)dx. Using the fact that the differential entropy of a distribution with

finite moments is upper-bounded by that of a Gaussian density with the same second moment (see
Theorem 8.6.5 in [15]), we have

h(x) ≤ n

2
log(2πeσ2) ≤ n

2
log(2πe(ς +

1

µ
c10)), (68)

where σ2 = Eπβf̄
[�x�2] and the second inequality uses Lemma 14.

We aim to derive the upper bound of the second term of (67).

First we show that there is a vector x� ∈ K which minimizes f̄ over K. In other words, an optimal
solution exists. The bound (25) from the proof of Lemma 12 implies that f̄(x) ≥ f̄(0) + 1 for all
sufficiently large x. This implies that there is a compact ball, B such that if xn ∈ K is a sequence
such that limn→∞ f̄(xn) = infx∈K f̄(x), then xn must be in B ∩K for all sufficiently large n. Then
since f̄ is continuous and B∩K is compact, there must be a limit point x� ∈ B∩K which minimizes
f̄ .

Let x∗ ∈ K be a minimizer. The normalizing constant can be expressed as:

logΛ = log

�

K
e−βf̄(x)dx

= log e−βf̄(x∗)
�

K
eβ(f̄(x

∗)−f̄(x))dx

= −βf̄(x∗) + log

�

K
eβ(f̄(x

∗)−f̄(x))dx
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So, to derive our desired upper bound on − logΛ, it suffices to derive a lower bound on
�

K
eβ(f̄(x

∗)−f̄(x))dx. (69)

We have

f̄(x)− f̄(x∗) =
� 1

0

∇f̄(x∗ + t(x− x∗))�(x− x∗)dt.

Let y = x∗ + t(x− x∗), t ∈ [0, 1], then

�∇f̄(y)� = �∇f̄(y)−∇f̄(x∗) +∇f̄(x∗)−∇f̄(0) +∇f̄(0)�
≤ ��y − x∗�+ ��x∗�+ �∇f̄(0)�
≤ ��x− x∗�t+ ��x∗�+ �∇f̄(0)�.

We can show �x∗� is upper bounded by max{R, �∇f̄(0)�
µ }.

We have to find the bound for the case �x∗� > R.

The convexity outside a ball assumption gives
�
∇f̄(x∗)−∇f̄(0)

��
x∗ ≥ µ�x∗�2. (70)

The optimality of x∗ gives −∇f̄(x∗) ∈ NK(x∗), which is to say for all y ∈ K, −∇f̄(x∗)�(y−x∗) ≤
0. Since 0 ∈ K, ∇f̄(x∗)�x∗ ≤ 0 holds. Applying the Cauchy-Schwartz inequality to the left side of
(70) gives

�∇f̄(0)��x∗� ≥ µ�x∗�2.

This implies that �x∗� ≤ �∇f̄(0)�
µ . So we can conclude that �x∗� ≤ max{R, �∇f̄(0)�

µ } = c13.

Therefore,

f̄(x)− f̄(x∗) ≤
� 1

0

�∇f̄(x∗ + t(x− x∗))��x− x∗�dt

≤ �

2
�x− x∗�2 +

�
��x∗�+ �∇f̄(0)�

�
�x− x∗�

≤ �

2
�x− x∗�2 +

�
�c13 + �∇f̄(0)�

�
�x− x∗�.

To lower-bound the integral from (69), we restrict our attention to the points x such that the integrand
is at least 1/2. For these values, we have the following implications:

eβ(f̄(x
∗)−f̄(x)) ≥ 1/2

⇐⇒ β
�
f̄(x∗)− f̄(x)

�
≥ − log 2

⇐= − �

2
�x− x∗�2 −

�
�c13 + �∇f̄(0)�

�
�x− x∗� ≥ − 1

β
log 2.

So solving the corresponding quadratic equation and taking the positive root gives an upper bound of
�x− x∗�:

�x− x∗� ≤ −1

�

�
�c13 + �∇f̄(0)�

�
+

1

�

��
�c13 + �∇f̄(0)�

�2
+ 2�

1

β
log 2.

So let � = − 1
�

�
�c13 + �∇f̄(0)�

�
+ 1

�

��
�c13 + �∇f̄(0)�

�2
+ 2� 1

β log 2 and let Bx∗(�) be the ball
of radius � centered at x∗. Then we want to find a ball S such that�

K
eβ(f̄(x

∗)−f̄(x))dx ≥ 1

2
vol(K ∩ Bx∗(�)) ≥ 1

2
vol(S).
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To find the desired ball S, we consider the problem of finding the largest ball inscribed within
K ∩ Bx�(�). This is a Chebyshev centering problem, and can be formulated as the following convex
optimization problem.

max
r,y

r (71a)

subject to Ay ≤ b− r1 (71b)
�x∗ − y�+ r ≤ � (71c)

where r and y denotes the radius and the center of the Chebyshev ball respectively. The particular
form arises because the rows of A are unit vectors, and so the ball of radius r around y is inscribed in
K if and only if (71b) holds, while this ball is contained in Bx�(�) if and only if (71c) holds.

We rewrite this optimization problem as:

min
r,y

− r + IS (x∗, [ ry ]) (72a)

subject to Ay ≤ b− r1 (72b)

where S = {(x∗, [ ry ])|�x∗ − y�+ r < �}.

Here, IS is defined by

IS(x, [
r
y ]) =

�
+∞ if (x, [ ry ]) /∈ S
0 otherwise. (73)

Let g(x�) denote the optimal value of (72). We will show that there is a positive constant rmin > 0
such that −g(x) ≥ rmin for all x ∈ K. As a result, for any x� the corresponding Chebyshev centering
solutions has radius at least rmin.

Let F (x∗, [ ry ]) = −r + Is(x
∗, [ ry ]). We can see that F is convex in (x∗, [ ry ]) and dom F = S.

Let C = {[ ry ]|[1 A][ ry ] ≤ b}. Then the optimal value of (72) can be expressed as g(x) =
inf [ ry ]∈C F (x, [ ry ]) and dom g = {x|∃[ ry ] ∈ C s.t. (x, [ ry ]) ∈ S}.

The results of Section 3.2.5 of [6] imply that if F is convex, S is convex, and g(x) > −∞ for all x,
then g is also convex.

If (x, [ ry ]) ∈ dom F , then

�x− y�+ r ≤ � =⇒ r ≤ �− �x− y�
=⇒ −r ≥ −�+ �x− y� > −∞.

In particular, if there exist y, r such that (x, [ ry ]) ∈ dom F , then inf [ ry ]∈C F (x, [ ry ]) ≥ −�.

There are two cases:

• If there exists [ ry ] ∈ C such that (x, [ ry ]) ∈ dom F , then inf [ ry ]∈C F (x, [ ry ]) is finite and
bounded below.

• If there does not exist [ ry ] ∈ C such that (x, [ ry ]) ∈ domF , then for all [ ry ] ∈ C, F (x, [ ry ]) =
+∞. So g(x) = inf [ ry ]∈C F (x, [ ry ]) = +∞ > −∞.

Hereby, we can conclude that for all x , g(x) > −∞, so g(x) is convex.

So, to found a lower bound on the inscribed radius, we want to maximize g(x) over K. Specifically,
we analyze the following optimization problem

max
x∈K

g(x) (74a)

which corresponds to maximizing a convex function over a convex set.

Note that K ⊂ dom(g). In particular, if x ∈ K, then (x, [ 0x ]) ∈ S, which implies that g(x) ≤ 0.
Thus, g(x) ≤ 0 for all x ∈ K. Therefore, using Theorem 32.2 [38], given K is closed convex by our
assumption and g(x) is bounded above gives

sup {g(x)|x ∈ K} = sup {g(x)|x ∈ E}
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where E is a subset of K consisting of the extreme points of K ∩ L⊥, where L is the linearity space
of C and L = {x|Ax = 0} = N (A).

Now, we will show that E is a finite set.

Let

A = [U1 U2]

�
Σ 0
0 0

� �
V �
1

V �
2

�
.

Then N (A) = L = R(V2) and L⊥ = R(V1), and

K ∩ L⊥ = {V1Z1|AV1Z1 ≤ b}.

This is a polyhedral with no lines so has a finite set of extreme points, i.e. E is finite. In particular,
they are contained in a compact subset of K. Then it is shown in the proof of Proposition 16 of [27]
that the Chebyshev centering problem has a positive global lower bound, when restricted to a compact
convex set with 0 in its interior. Denote this value by rmin.

Thus, we have that vol(S) ≥ πn/2

Γ(n/2+1)r
n
min, using the fact that a ball of radius ρ has volumn given by

πn/2

Γ(n/2+1)ρ
n

Then, utilizing an upper bound of Gamma function recorded in [36] shown as below:

Γ(x+ 1) <
√
π
�x
e

�x
�
8x3 + 4x2 + x+

1

30

�1/6

, x ≥ 0. (75)

Setting x = n
2 in (75) gives:

Γ(
n

2
+ 1) <

√
π
� n

2e

�n
2

�
n3 + n2 +

n

2
+

1

30

�1/6

. (76)

Therefore, we can find the lower bound of log 1
2vol(S):

log
1

2
vol(S) = log

πn/2

Γ(n/2 + 1)
rnmin − log 2

>
n

2
log π + n log rmin − log

�
√
π
� n

2e

�n
2

�
n3 + n2 +

n

2
+

1

30

�1/6
�

− log 2

= −1

2
log π + n log rmin +

n

2
log(2πe)− n

2
log n− 1

6
log

�
n3 + n2 +

n

2
+

1

30

�
− log 2

> n log rmin +
n

2
log(2πe)− n

2
log n− 1

6
log

�
3n3

�
− log(2

√
π) (77)

The last inequality holds because n ≥ 1.

Plugging (77) and (68) in (67) gives

Eπβf̄
[f̄(x)] < min f(x) +

n

2β
log(2πe(ς +

1

µ
c10))

− 1

β

�
n log rmin +

n

2
log(2πe)− n

2
log n− 1

2
log n− 1

6
log 3− log 2

√
π

�

= min f(x) +
n

2β
log(ς +

1

µ
c10)−

1

β

�
n log rmin − n

2
log n− 1

2
log n

�

+
1

β
(
1

6
log 3 + log 2

√
π)

≤ min f(x) +
n

β

�
2 log(ς +

1

µ
c10) +

1

6
log 3 + log 2

√
π − log rmin + log n

�
.
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where last inequality holds because n ≥ 1.

The final form of the bound holds because for any c > 0

log (ς + c) ≤ log (max{ς, 1}+ c)

= logmax{ς, 1}+ log

�
1 +

c

max{ς, 1}

�

≤ max{log ς, 0}+ log (1 + c) .

�
Now we cover the case of compact sets for comparison with [27].
Proposition 21. Assume that K has diameter D and 0 ∈ K and let c14 = �D + �∇f̄(0)�. Then for
all k ≥ 0, the iterates of the algorithm satisfy

E[f̄(xA
k )] ≤ min

x∈K
f(x) + c14W (L(xA

k ),πβf̄ ) +
n

β
(max{log ς, 0}+ c12) (78)

In particular, there are constants c15 and c16 such that, for all sufficiently small �, if

β =
2n(max{log ς, 0}+ c15)

�
(79a)

T = ec16/� (79b)

then
E[f̄(xA

T )] ≤ min
x∈K

f̄(x) + �. (80)

Proof of Proposition 21 First, we show that f̄(x) is Lipschitz with Lipschitz constant c14. Indeed,

�∇f̄(x)� ≤ �∇f̄(x)−∇f̄(0)�+ �∇f̄(0)� ≤ �D + �∇f̄(0)�.
So, if x and y are in K, we have

|f̄(x)− f̄(y)| =
����
� 1

0

∇f̄(y + t(x− y))�(x− y)dt

����
≤ c1�x− y�.

Then (78) follows by Kantorovich duality combined with Lemma 20.

Now, using our bound from Theorem 1 gives that for T ≥ 4:

E[f̄(xA
T )] ≤ min

x∈K
f̄(x) +

n

β
(max{log ς, 0}+ c12) + c14

�
c1 + c2

√
ς +

c3 + c4
√
ς

(2a)1/2

�
T−1/2 log T

Now, note that c12 is monotonically decreasing in β. In particular, for β ≥ 1

c10 = (�+ µ)R2 +R�∇xf̄(0)�+
n

β
≤ (�+ µ)R2 +R�∇xf̄(0)�+ n,

so that

c12 = log n+ 2 log(1 +
1

µ
c10) +

1

6
log 3 + log 2

√
π − log rmin

≤ log n+ 2 log

�
1 +

(�+ µ)R2 +R�∇xf̄(0)�+ n

µ

�
+

1

6
log 3 + log 2

√
π − log rmin

=: c15

It follows that for β ≥ 1 we have the bound

E[f̄(xA
T )] ≤ min

x∈K
f̄(x) +

n

β
(max{log ς, 0}+ c15) + c14

�
c1 + c2

√
ς +

c3 + c4
√
ς

(2a)1/2

�
T−1/2 log T

Now, picking β as in (79) gives
n

β
(max{log ς, 0}+ c15) = �/2.
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Proposition 19 implies that there is some constant, c (independent of η and β) such that c1, c2, c3, c4 ≤
ce

β�R2

2 . Furthermore, for all β sufficiently large, we have from (65) that
1√
a
≤ e

β�R2

4 . (81)

Thus, for all β sufficiently large we have that

c14

�
c1 + c2

√
ς +

c3 + c4
√
ς

(2a)1/2

�
≤ eβ�R

2

.

Thus, for our choice of β (which is large for sufficiently small �), we have that

E[f̄(xA
T )] ≤ min

x∈K
f̄(x) +

�

2
+ eβ�R

2

T−1/2 log T

For simple notation, let α be such that
β�R2 =

α

�
.

In this case, α = 2n (max{log ς, 0}+ c15) �R
2.

We will choose T = eγ/� and choose γ to ensure that

eβ�R
2

T−1/2 log T = exp

�
1

�

�
α− γ

2

�� γ

�
≤ �

2
.

The desired inequality holds if and only if:

exp

�
1

�

�
α− γ

2

�� 2γ

�2
≤ 1

Note that if γ/2 > α, then the left side is maximized over (0,∞) at � =
γ
2 −α

2 . Thus, a sufficient
condition for this inequality to hold is:

8γe−2

�
γ
2 − α

�2 ≤ 1.

A clean sufficient condition is T = ec16/� , where

c16 := γ = 4α+ 32e−2 = 8n (max{log ς, 0}+ c15) �R
2 + 32e−2.

�
Now we extend the analysis to the non-compact case.
Proposition 22. Let xk be the iterates of the algorithms and assume η ≤ µ

3�2 and E[�x0�2q] < ∞
for all q > 1. For all q > 1, there exist positive constants c18, c19 such that for all integers k ≥ 0,
the following bound holds:

E[f̄(xk)] ≤ min
x∈K

f̄(x) + c18W1(L(xk),πβf̄ ) + c19W1(L(xk),πβf̄ )
2−2q
1−2q +

n

β
(max{log ς, 0}+ c12)

(82)

where

c18 = �∇f̄(0)�+ �
2
�
�∇f̄(0)�+

�
�∇f̄(0)�+

�
µf̄(0)

�

µ

c19 =

�
2�√
µ
+
�
E[�x0�2q] + c22

� �q2q−1

(q − 1)

��
�

√
µ(q − 1) (E[�x0�2q] + c22)

�q2q−1

(q−1)

� 2−2q
−2q+1

and c22 depends on q, the statistics of z, the parameters µ, � and ∇f̄(0) and decreases monotonically
with respect to β.

Furthermore, there is a constant c20 such if � is sufficiently small, β is chosen as in (79), and
T = ec20/�, then

E[f̄(xT )] ≤ min
x∈K

f̄(x) + �.
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Proof of Proposition 22 Let x be drawn according to πβf̄ . Then Lemma 20 implies:

E[f̄(xk)] = E[f̄(x)] + E[f̄(xk)− f̄(x)]

≤ min
x∈K

f̄(x) + E[f̄(xk)− f̄(x)] +
n

β
(max{log ς, 0}+ c12) (83)

So, it now suffices to bound E[f̄(xk)− f̄(x)]. Ideally, we would bound this term via Kantorovich
duality. The problem is that f̄ may not be globally Lipschitz. So, we must approximate it with a
Lipschitz function, and then bound the gap induced by this approximation.

Namely, fix a constant m > f̄(0) with m to be chosen later. Set g(x) = min{f̄(x),m}. The

inequality from (25) implies that if �x� ≥ R̂ :=
2
�
�∇f̄(0)�+

√
�∇f̄(0)�+µ(m−f̄(0))

�

µ , then f̄(x) ≥ m.
We claim that g is globally Lipschitz.

For �x� ≤ R̂, we have that
�∇f̄(x)� ≤ �∇f̄(0)�+ �R̂ =: u.

We will show that g is u-Lipschitz.

In the case that f(y) ≥ m and f(x) ≥ m, we have |g(x)− g(y)| = 0, so the property holds.

Now say that f̄(x) < m and f̄(y) < m. Then we must have �x� ≤ R̂ and �y� ≤ R̂. Then for all
t ∈ [0, 1], we have �(1− t)x+ ty� ≤ R̂. It follows that

g(x)− g(y) = f̄(x)− f̄(y)

=

� 1

0

∇f̄(x+ t(y − x))�(y − x)dt

≤ u�x− y�.
Finally, consider the case that f̄(x) ≥ m and f̄(y) < m. Then there is some θ ∈ [0, 1] such that
f̄(y + θ(x− y)) = m. Furthermore

|g(x)− g(y)| = m− f̄(y)

= f̄(y + θ(x− y))− f̄(y)

=

� θ

0

∇f̄(y + t(x− y))�(x− y)dt

≤ u�x− y�.
It follows that g is u-Lipschitz.

Now noting that g(x) ≤ f̄(x) for all x gives
E[f̄(xk)− f̄(x)] ≤ E[f̄(xk)− g(x)]

= E[g(xk)− g(x)] + E[1(f̄(xk) > m)(f̄(xk)−m)]

≤ uW1(L(xk),πβf̄ ) + E[1(f̄(xk) > m)(f̄(xk)−m)]. (84)

The final inequality uses Kantorovich duality. Now, it remains to bound E[1(f̄(xk) > m)(f̄(xk)−
m)].

Note that if y is a non-negative random variable, a standard identity gives that E[y] =
�∞
0

P(y > �)d�.
Thus, we have

E[1(f̄(xk) > m)(f̄(xk)−m)] =

� ∞

0

P(f̄(xk)−m > �)d�.

For all x ∈ K, we have

f̄(x) = f̄(0)−∇f̄(0)�x+

� 1

0

(∇f̄(tx)−∇f̄(0))�xdt

≤ f̄(0) + �∇f̄(0)��x�+ 1

2
��x�2

≤ f̄(0) +
�∇f̄(0)�2

2�
+ ��x�2.
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So,

f̄(x)−m > � =⇒ f̄(0) +
�∇f̄(0)�2

2�
+ ��x�2 > m+ �

⇐⇒ �x�2 >
m+ �−

�
f̄(0) + �∇f̄(0)�2

2�

�

�
.

Now assume that m/2 > f̄(0) + �∇f̄(0)�2

2� . Then the right side implies �x�2 ≥
m
2 +�

� . It follows that
for any q > 1, we have, via Markov’s inequality and direct computation:

E[1(f̄(xk) > m)(f̄(xk)−m)] ≤
� ∞

0

P
�
�xk�2 >

m
2 + �

�

�
d�

=

� ∞

0

P
�
�xk�2q >

� m
2 + �

�

�q�
d�

≤ E[�xk�2q]
� ∞

0

� m
2 + �

�

�−q

d�

= E[�xk�2q]
�q2q−1

(q − 1)mq−1
.

Plugging this expression into (84) and using the definition of u gives

E[f̄(xk)− f̄(x)]

≤


�∇f̄(0)�+ �

2
�
�∇f̄(0)�+

�
�∇f̄(0)�+ µ(m− f̄(0))

�

µ


W1(L(xk),πβf̄ )

+ E[�xk�2q]
�q2q−1

(q − 1)mq−1
. (85)

We want to derive the bound of E[�xk�2q].
We have

�xk+1�2q ≤ �xk − η∇f(xk, zk) +

�
2η

β
ŵk�2.

For notational simplicity, let y = xk−η∇f(xk,zk)√
2η/β

and w = ŵk, then the above inequality can be

expressed as

�xk+1�2q ≤
�
2η

β

�q

�y +w�2q

=

�
2η

β

�q �
�y�2 + �w�2 + 2y�w

�q

=

�
2η

β

�q q�

k=0

�
q

k

��
2y�w

�q−k ��y�2 + �w�2
�k

=

�
2η

β

�q q�

k=0

�
q

k

��
2y�w

�q−k
k�

i=0

�
k

i

��
�y�2i�w�2(k−i)

�
. (86)

The last two equalities use the binomial theorem. Here, we construct an orthogonal matrix U =�
1

�y�y
�w

s

�
such that we can linearly transform the Gaussian noise w into v = Uw =

�
v1

v2

�
, where

v1 = 1
�y�y

�w and v2 = sw. And the orthogonality of the matrix U gives v1 ⊥ v2 and thus
v2
1 + v�

2 v2 follows a chi-squared distribution with n degrees of freedom. Furthermore, we have
�w�2 = v2

1 + v�
2 v2 and y�w = �y�v1.
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Therefore, with the change of variables, (86) can be expressed as

�xk+1�2q ≤
�
2η

β

�q q�

k=0

�
q

k

�
(2�y�v1)

q−k
k�

i=0

�
k

i

��
�y�2i(v2

1 + v�
2 v2)

(k−i)
�
.

Taking the expectation of the above inequality gives

E[�xk+1�2q] ≤
�
2η

β

�q

E

�
q�

k=0

�
q

k

�
(2�y�v1)

q−k
k�

i=0

�
k

i

��
�y�2i(v2

1 + v�
2 v2)

(k−i)
��

(87)

≤ E
�
�xk − η∇f(xk, zk)�2q

�
+ ηE

�
p(�xk − η∇f(xk, zk)�2)

�
(88)

where p(�xk − η∇f(xk, zk)�2) is a polynomial in �xk − η∇f(xk, zk)�2 with order strictly lower
than q and the coefficients of E[p(�xk − η∇f(xk, zk)�2)] depend on the moments of the chi-squared
distributions and q. (Additionally, note that the coefficients of p can be taken to be monotonically
decreasing with respect to β.) And the reason the polynomial only have even order terms in
�xk − η∇f(xk, zk)� is that in (87), when q − k is odd, the expectation is zero since v1 ∼ N (0, 1)
whose odd order moments are all zero.

Then we firstly aim to bound E[�xk − η∇f̄(xk)�2q].
We have

�xk − η∇f(xk, zk)�2q =
�
�xk�2 − 2ηx�

k ∇f(xk, zk) + η2�∇f(xk, zk)�2
�q

. (89)
We examine the second term:

x�
k ∇f(xk, zk) = x�

k (∇f̄(xk)−∇f̄(0)) + x�
k (∇f̄(0)−∇f̄(xk) +∇f(xk, zk))

≥ µ�xk�2 − (�+ µ)R2 + x�
k (∇f̄(0) + Eẑ[∇f(xk, zk)−∇f(xk, ẑk)])

where the first term is bounded by the assumption of the strong convexity outside a ball and the
detailed statement is shown below:

If �x� ≥ R, then x�(∇f̄(x)−∇f̄(0)) ≥ µ�x�2.

If �x� ≤ R, then x�(∇f̄(x)−∇f̄(0)) ≥ −��x�2 ≥ −�R2.

Therefore, we have for all x ∈ K, x�(∇f̄(x)−∇f̄(0)) ≥ µ�x�2 − (�+ µ)R2.

Note here and below ẑ and z are IID.

Taking expectation of (89) gives
E
�
�xk − η∇f(xk, zk)�2q

�

= E
��
�xk�2 − 2ηx�

k ∇f(xk, zk) + η2�∇f(xk, zk)�2
�q�

≤ E
��
(1− 2µη)�xk�2 + 2η(�+ µ)R2

−2ηx�
k (∇f̄(0) + Eẑ[∇f(xk, zk)−∇f(xk, ẑk)]) + η2�∇f(xk, zk)�2

�q�

≤ E
��
(1− 2µη)�xk�2 + 2η(�+ µ)R2

−2ηx�
k (∇f̄(0) +∇f(xk, zk)−∇f(xk, ẑk)) + η2�∇f(xk, zk)�2

�q�

≤ E
��
(1− 2µη)�xk�2 + 2η(�+ µ)R2

+2η�xk�(�∇f̄(0)�+ ��zk − ẑk�) + η2�∇f(xk, zk)�2
�q�

. (90)

The second inequality uses Jensen’s inequality, and the last inequality uses Cauchy-Schwartz inequal-
ity together with �-Lipschitzness of ∇f(x, z) in z.

Now we examine the last term of (90).

Firstly, we have
�∇f(x, z)� = �∇f(x, z)− Eẑ[∇f(x, ẑ)] + Eẑ[∇f(x, ẑ)]�

≤ �Eẑ[∇f(x, z)−∇f(x, ẑ)]�+ �f̄(x)�
≤ �Eẑ[�z − ẑ�] + �∇f̄(0)�+ ��x�.
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So

�∇f(x, z)�2 ≤ 3
�
�2 (Eẑ[�z − ẑ�])2 + �∇f̄(0)�2 + �2�x�2

�
. (91)

Then, we can group the square terms in (90) together and simplify it:

(1− 2µη)�x�2 + η23�2�x�2 ≤ (1− ηµ)�x�2

⇐⇒ 1− 2µη + η23�2 ≤ 1− ηµ

⇐⇒ η ≤ µ

3�2
.

So, if η ≤ µ
3�2 , plugging (91) into (90) gives

E
�
�xk − η∇f(xk, zk)�2q

�
≤ E

��
(1− µη)�xk�2 + 2η(�+ µ)R2

+2η�xk�(�∇f̄(0)�+ ��zk − ẑk�) + η23
�
�2 (Eẑ[�zk − ẑk�])2 + �∇f̄(0)�2

��q�
. (92)

We want to further group the first and third terms above together.

For all � ≥ 0, 2ab = 2(�a)( 1� b) ≤ (�a)2 + ( 1� b)
2 . Let a = �xk�, b = �∇f̄(0)�+ ��zk − ẑk�, then

we can see the third term of the right side of (92) can be upper bounded by a summation of two parts.
The first part can be grouped with the first term of the right side of (92):

(1− µη)�xk�2 + η�2�xk�2 ≤ (1− µη

2
)�xk�2

⇐⇒ 1− µη + η�2 ≤ 1− µη

2

⇐⇒ � ≤
�

µ

2
.

So let � =
�

µ
2 , we have

E
�
�xk − η∇f(xk, zk)�2q

�
≤ E

��
(1− µη

2
)�xk�2 + 2η(�+ µ)R2

+
2η

µ
(�∇f̄(0)�+ ��zk − ẑk�)2 + η23

�
�2 (Eẑ[�zk − ẑk�])2 + �∇f̄(0)�2

��q�

≤ E
��

(1− µη

2
)�xk�2 + 2η(�+ µ)R2

+
2η

µ
(�∇f̄(0)�+ ��zk − ẑk�)2 + η23

�
�2 (�zk − ẑk�)2 + �∇f̄(0)�2

��q�

(93)

= (1− µη

2
)qE[�xk�2q] + ηE[p2(�xk�2, �zk − ẑk�)]

≤ (1− µη

2
)E[�xk�2q] + ηE[p2(�xk�2, �zk − ẑk�)]. (94)

The inequality (93) uses Jensen’s inequality twice. The polynomial p2(�xk�2, �zk − ẑk�) is with
order strictly lower than q in �xk�2 and with the highest order of 2q in �zk − ẑk�.

Similarly, we can obtain for all i < q,

E
�
�xk − η∇f(xk, zk)�2i

�
≤ E

��
(1− µη

2
)�xk�2 + 2η(�+ µ)R2

+
2η

µ
(�∇f̄(0)�+ ��zk − ẑk�)2 + η23

�
�2 (�zk − ẑk�)2 + �∇f̄(0)�2

��i
�
.

This implies that E[p(�xk − η∇f(xk, zk)�2)] can be upper bounded by E[p1(�xk�2, �zk − ẑk�)]
where p1(�xk�2, �zk − ẑk�) is a polynomial with the order strictly lower than q in �xk�2 and the
highest order of 2q − 2 in �zk − ẑk�.
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So (88) can be further upper bounded as below:

E[�xk+1�2q] ≤ (1− µη

2
)E[�xk�2q] + ηE[p2(�xk�2, �zk − ẑk�)] + ηE[p1(�xk�2, �zk − ẑk�)]

= (1− µη

2
)E[�xk�2q] + ηE[p3(�xk�2, �zk − ẑk�)]

≤ (1− µη

4
)E[�xk�2q] + ηE[−µ

4
�xk�2q + p3(�xk�2, �zk − ẑk�)]

≤ (1− µη

4
)E[�xk�2q] + ηE[

µ

4

�
−�xk�2q + p̃(�xk�2, �zk − ẑk�)]

�
(95)

To get the upper bound of the second term of (95), we examine the following polynomial with x ≥ 0

−xq +

q−1�

i=0

aq,ix
i,

where the aq,i’s depend on the value of q, the statistics of the external random variables z and some
other parameters including �, µ and �∇f̄(0)� and aq,i’s decrease monotonically with respect to β.

To find the upper bound of such a polynomial, we consider two cases

• Assume 0 ≤ x ≤ 1, then −xq +
�q−1

i=0 aq,ix
i ≤ �q−1

i=0 |aq,i|;

• Assume x > 1, then −xq +
�q−1

i=0 aq,ix
i ≤

��q−1
i=0 |aq,i|

���q−1
i=0 |aq,i|+ 1

�q−1

.

Combining the two cases gives that for all x ≥ 0,

−xq +

q−1�

i=0

aq,ix
i ≤

�
q−1�

i=0

|aq,i|
��

q−1�

i=0

|aq,i|+ 1

�q−1

.

The first case is a direct result of dropping the negative term and using Cauchy-Schwartz inequality.
The second case is obtained by firstly showing the sufficient condition of the polynomial being
non-positive. The detail is shown below:

−xq +

q−1�

i=0

aq,ix
i ≤ 0 ⇐⇒ −1 +

q−1�

i=0

aq,i
xq−i

≤ 0

⇐= −1 +

q−1�

i=0

|aq,i|
x

≤ 0 (96)

⇐⇒ −1 +
1

x

q−1�

i=0

|aq,i| ≤ 0

⇐⇒ x ≥ max{
q−1�

i=0

|aq,i|, 1} (97)

⇐= x ≥
q−1�

i=0

|aq,i|+ 1

Both (96) and (97) use the assumption that x > 1.

Besides, for 1 < x ≤ �q−1
i=0 |aq,i|+ 1,

−xq +

q−1�

i=0

aq,ix
i ≤

q−1�

i=0

|aq,i|xi

≤
q−1�

i=0

|aq,i|xq−1
max

=

q−1�

i=0

|aq,i|
�

q−1�

i=0

|aq,i|+ 1

�q−1

.
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Therefore, we can conclude that

E[−µ

4
�xk�2q + p̃(�xk�2, �zk − ẑk�)] ≤ E


µ

4

q−1�

i=0

|aq,i|
�

q−1�

i=0

|aq,i|+ 1

�q−1

 .

The L-mixing property ensures that the right side of the inequality is bounded. Then, we achieve the
upper bound of equation (95).

E[�xk+1�2q] ≤ (1− µη

4
)E[�xk�2q] + ηE


µ

4

q−1�

i=0

|aq,i|
�

q−1�

i=0

|aq,i|+ 1

�q−1



Iterating the inequality above and letting ãq = E
�
µ
4

�q−1
i=0 |aq,i|

��q−1
i=0 |aq,i|+ 1

�q−1
�

give

E[�xk�q] ≤
�
1− µη

4

�k

E[�x0�2q] + ηãq

k−1�

i=0

(1− µη

4
)i

≤ E[�x0�2q] + ηãq
1−

�
1− µη

4

�k

1−
�
1− µη

4

�

≤ E[�x0�2q] +
4

µ
ãq

�
1−

�
1− µη

4

�k
�

≤ E[�x0�2q] +
4

µ
ãq.

Now as long as E[�x0�2q] < ∞ and η < 1, we have

E[�xk�2q] ≤ E[�x0�2q] + c22,

where c22 = 4
µ ãq. More specifically, c22 depends on q, the statistics of z, the parameters µ, � and

∇f̄(0).

Plugging the above result into (85) gives

E[f̄(xk)− f̄(x)]

≤


�∇f̄(0)�+ �

2
�
�∇f̄(0)�+

�
�∇f̄(0)�+ µ(m− f̄(0))

�

µ


W1(L(xk),πβf̄ )

+
�
E[�x0�2q] + c22

� �q2q−1

(q − 1)mq−1
.

The remaining work is to optimize the right side of the above inequality with respect to m so that we
can make a choice of the value of m mentioned earlier in the proof.

Let

g(m) =


�∇f̄(0)�+ �

2
�
�∇f̄(0)�+

�
�∇f̄(0)�+√

µm+
�
µf̄(0)

�

µ


W1(L(xk),πβf̄ )

+
�
E[�x0�2q] + c22

� �q2q−1

(q − 1)mq−1
.

We can see that g(m) is an upper bound of the right side of (85).
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Setting g�(m) = 0 leads to m∗ =
�

�W1√
µ(q−1)C

� 2
−2q+1

, where C =
�
E[�x0�2q] + c22

�
�q2q−1

(q−1) for
notation simplicity. So

max
m≥0

g(m) = g(m∗)

≤


�∇f̄(0)�+ �

2
�
�∇f̄(0)�+

�
�∇f̄(0)�+

�
µf̄(0)

�

µ


W1(L(xk),πβf̄ )

+
2�√
µ

�
�W1(L(xk),πβf̄ )√

µ(q − 1)C

� 2−2q
−2q+1

+ C

�
�W1(L(xk),πβf̄ )√

µ(q − 1)C

� 2−2q
−2q+1

=


�∇f̄(0)�+ �

2
�
�∇f̄(0)�+

�
�∇f̄(0)�+

�
µf̄(0)

�

µ


W1(L(xk),πβf̄ )

+

�
2�√
µ
+ C

��
�√

µ(q − 1)C

� 2−2q
−2q+1

W1(L(xk),πβf̄ )
2−2q

−2q+1

Setting

c18 = �∇f̄(0)�+ �
2
�
�∇f̄(0)�+

�
�∇f̄(0)�+

�
µf̄(0)

�

µ

c19 =

�
2�√
µ
+
�
E[�x0�2q] + c22

� �q2q−1

(q − 1)

��
�

√
µ(q − 1) (E[�x0�2q] + c22)

�q2q−1

(q−1)

� 2−2q
−2q+1

.

and plugging this bound into (83) give the suboptimality bound from (82).

In particular, if q = 4, β ≥ 1 and W1(L(xk),πβf̄ ) ≤ 1 we get a bound of the form:

E[f̄(xk)] ≤ min
x∈K

f̄(x) + cW1(L(xk),πβf̄ )
2
3 +

n

β
(max{log ς, 0}+ c12)

for some constant c independent of β.

Indeed, c22 decreases monotonically with respect to β, and thus so does c19. So, assuming β ≥ 1, we
can take c ≥ c18 + c19 to be a fixed value independent of β.

Setting β as in (79) gives

E[f̄(xk)] ≤ min
x∈K

f̄(x) + cW1(L(xk),πβf̄ )
2
3 +

�

2

Then, arguing as in the proof of Proposition 21, for sufficiently large β and T ≥ 4, we have that

cW1(L(xk),πβf̄ )
2
3 ≤ c

�
c1 + c2

√
ς +

c3 + c4
√
ς

(2a)1/2

�2/3

T−1/3 log T

≤ e
2β�R2

3 T−1/3 log T

Then setting, α = 2n (max{log ς, 0}+ c15) �R
2, β from (79), and T = eγ/� gives

cW1(L(xk),πβf̄ )
2
3 ≤ exp

�
1

�

�
2α

3
− γ

3

��
γ

�

So, we seek a sufficient condition for

exp

�
1

�

�
2α

3
− γ

3

��
γ

�
≤ �

2
⇐⇒ exp

�
1

�

�
2α

3
− γ

3

��
2γ

�2
≤ 1.

Then, similar to the compact case, we have that when γ > 2α, the left side is maximized over (0,∞)
at � = γ−2α

6 . Plugging in the maximizer gives the sufficient condition:

72e−2γ

(γ − 2α)2
≤ 1
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This is satisfied in particular at
c20 = γ = 8α+ 72e−2.

�
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