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Abstract
In this work, we investigate whether large lan-
guage models (LLMs) exhibit one of the earliest
Theory of Mind-like behaviors: selectively encod-
ing the goal object of an actor’s reach (Woodward,
1998). We prompt state-of-the-art LLMs with am-
biguous examples that can be explained both by
an object or a location being the goal of an actor’s
reach, and evaluate the models’ biases. We com-
pare the magnitude of the bias in three situations:
i) an agent is acting purposefully, ii) an inanimate
object is acted upon, and iii) an agent is acting
accidentally. We find that two models show a
selective bias for agents acting purposefully, but
are biased differently than humans in comparable
studies. Additionally, the encoding is not robust
to semantically equivalent prompt variations. We
discuss how this bias compares to the bias infants
show and provide a cautionary tale of evaluating
machine Theory of Mind (ToM). We release our
dataset and code.1

1. Introduction
Theory of Mind (ToM) is the socio-cognitive ability to rea-
son about unobserved mental states of other agents. It is
considered central to many aspects of human cognition, like
linguistic communication (Milligan et al., 2007). In light of
rapidly advancing linguistic capabilities of large language
models (LLMs), recent studies have explored the emergence
of ToM in these models. The results are as of yet inconclu-
sive; some works suggest it has emerged (Kosinski, 2023;
Moghaddam & Honey, 2023), and others suggest it has
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Figure 1. A visual depiction of our test inspired by Woodward
(1998). We prompt an LLM with k ambiguous linguistic habitua-
tions that can be explained either by the goal being the object or
the location (k = 2 in the image). We then test the bias the model
shows for assuming the goal was the object (left-bottom) or the
location (right-bottom). We say a model selectively encodes the
goal if it shows a distinct bias when an agent appears to be acting
purposefully.

not (Ullman, 2023) or at least not at a level comparable to
humans (Trott et al., 2022; Sap et al., 2022; Shapira et al.,
2023).

A reason for these conflicting results is that we cannot sim-
ply apply the tests we use to study ToM in humans to LLMs.
Many of these tests appear in the training data, meaning
that models can pass the tests without reasoning about other
agent’s mental states. For example, whilst Kosinski (2023)
shows certain LLMs can pass classic false-belief tests, Ull-
man (2023) demonstrates that those same models fail on
minimal alterations to these tasks that change the expected
answer.2 This evidence suggests models memorize training
patterns without actually mentalizing. Although Ullman
(2023) shows that the model fails on adversarial alterations
to the task, highlighting that their capabilities are far from
robust, we cannot conclude that the model cannot reason
about the mental states of others. Perhaps the reason models

2Ullman tests LLMs on unexpected contents tasks where the
contents are in see-through containers, altering the answer to the
false-belief tests.
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repeat training patterns for adversarial examples is precisely
because these examples follow patterns from training so
closely. LLMs are trained to mimic the training distribu-
tion and are known to repeat training patterns regardless
of truthfulness (Lin et al., 2022). In many cases they need
in-context examples of the task — not to in-context learn
(Brown et al., 2020), but simply to adhere to the right output
format (Min et al., 2022). To more fairly evaluate these mod-
els’ mentalizing capabilities, we need to properly set them
up for the task and provide examples (Lampinen, 2023).

How can we investigate machine theory of mind in models
that have seen all the classic tasks from developmental psy-
chology and regurgitate their patterns even when these tasks
are worded differently? In this work, we take a step back
and avoid pre-existing text-based tasks. Instead, we inves-
tigate whether LLMs encode situations differently when a
goal-directed agent is involved. Specifically, we look at one
of the earliest ToM-like human biases: selectively encoding
the goal object of an actor’s reach (Woodward, 1998). In
her seminal study, Woodward shows that infants as young
as six months old exhibit a bias for encoding an agent’s goal
object over a goal location. Similarly, we ask the question:
do large language models selectively encode the goal object
of an actor’s reach? We prompt a set of LLMs with habitu-
ations that can be explained both by the goal of an actor’s
reach being an object, as well as a location. We then look
at whether LLMs exhibit a bias for assuming the goal is the
object or the location (see Figure 1). We investigate the bias
the model shows in three situations: an agent is purpose-
fully reaching for an object, an inanimate object moves and
touches an object, and an agent is acting accidentally and
touches an object. We say a model selectively encodes the
goal of an agent’s reach if it shows a distinct bias between
the agent acting purposefully and otherwise. For a behavior
to be considered theory of mind, the same behavior should
not show up when the task does not involve a goal-directed
agent (Frith & Frith, 2012; Devaine et al., 2014).

Our protocol has several benefits over other approaches of
investigating machine ToM from literature. Firstly, the un-
derlying task logic is visually presented to pre-linguistic
human infants in literature, making it less likely that the
exact task appears in the training data of pre-trained lan-
guage models. Nonetheless, the reasoning pattern might be
numerously described. In similar spirit to Ullman (2023),
we extend Woodward (1998) by adding a control task where
the agent acts accidentally, nullifying the assumption that
the agent is acting in a goal-directed way. Like the inani-
mate case, the object bias should not show up in this control
task. Another benefit is the habituations that are reminiscent
of few-shot prompting in LLMs (Brown et al., 2020), but
unlike true few-shot examples these do not leak any informa-
tion about the expected output. These examples both serve
to habituate a model in order to probe for a bias, as well as

to guide the model to the task. Importantly however, even
though we can use our protocol to make empirically backed
claims about whether or not LLMs selectively encode the
goals of agents, we can make no statements about how the
model does it and whether there is reasoning involved. Sim-
ilarly, Woodward makes no assumptions about what kind
of knowledge infants use to encode the goal object of an
actor’s reach; she just shows that they do.

Our results show that both GPT-3.5-turbo and GPT-4 pass
the criterion for saying that they selectively encode the goal
of an actor’s reach. However, whilst infants show no bias
in the inanimate test case in the visual task by Woodward
(1998), both models show biases in the inanimate and con-
trol test cases. We hypothesise that this is due to the sensi-
tivity of models to irrelevant surface-level patterns in text,
which we elaborate upon below when discussing the results.
Additionally, the selective encoding of the goal does not
show up for two semantically equivalent prompt variations.
For those variations, although models show more object bias
in the animate case than the inanimate case, they also show
more object bias in the control case, which means we can-
not say that they selectively encode the goal of an agent’s
reach. From these results we conclude that although we
can say that GPT-3.5-turbo and GPT-4 selectively encode
the goal of an actor’s reach sometimes, they do not do so
robustly, and moreover are biased differently from humans.
Our results contribute to the picture from existing work on
ToM in LLMs, concluding that even the developmentally
earliest ToM-like human behavior does not robustly show
up in current SotA LLMs. Our findings further highlight the
importance of designing multiple prompt variations for each
task: depending on how the task is framed, conclusions can
be opposite.

2. Related Work
Recently, classic ToM tests from developmental psychology
have been extensively applied to LLMs. However, these
studies have conflicting results. Kosinski (2023) claims
theory of mind has emerged in a subset of OpenAI’s API
models, but the evaluation protocol has been pointed out
as flawed by Ullman (2023). Similarly, Sap et al. (2022)
show that GPT-3 achieves well below human performance
on a range of different ToM tasks. The methodology used
in that study is however critiqued by Moghaddam & Honey
(2023), who apply similar tests but use SotA prompting
techniques and show that OpenAI’s models that are fine-
tuned with RLHF achieve human-level performance on the
ToM tasks. By contrast, Shapira et al. (2023) show that
LLMs can robustly solve some ToM tasks, but not others,
and conclude that models have some ToM capabilities, but
that these are not robust.
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Woodward (1998) conducts her study with the aim of explor-
ing how infants perceive and comprehend others’ actions3.
The study focuses on investigating infants’ ability to selec-
tively encode the goal object of an actor’s reach. Drawing
inspiration from Woodward (1998)’s work, Gandhi et al.
(2021) apply a similar task to neural networks, aiming to
determine whether machines can represent an agent’s pre-
ferred goal object. However, to our knowledge, there is
currently no study that applies the task from Woodward
specifically to pre-trained LLMs.

3. Method
In this section we outline the method we use to answer the
research question: do language models selectively encode
the goal object of an actor’s reach?

Defining object and location bias. We want to investigate
the question whether models store knowledge that leads
them to encode the goal-related properties of an agent’s
reaching event, and that this knowledge does not get en-
coded in similar events involving inanimate objects. To this
end, we design the following test cases: an animate test
case where the prompt contains k habituations in which an
agent reaches for the same object in the same location. A
test case is appended to this prompt where the goal object
is placed in a different location. We then obtain the likeli-
hoods the model assigns to continuing the full prompt as
if the same location with a novel object is reached for by
the agent (location bias), or the same object at a different
location (object bias, see Figure 1). Below is an example
for an agent, Wendy, who has a preference for kiwis, with
k = 2 habituations:

There is a kiwi on the first pillar, an orange on the
second pillar, and a fig on the third pillar. Wendy
grasps the item on the first pillar.
There is a kiwi on the first pillar, a fig on the
second pillar, and an orange on the third pillar.
Wendy grasps the item on the first pillar.
There is an orange on the first pillar, a kiwi on the
second pillar, and a fig on the third pillar. Wendy
grasps the item on the first/second

In this example, a model that assigns a higher probability to
first is said to exhibit a location bias, whereas a model that
assigns a higher probability to second exhibits object bias.
Independently, we test the model on the same example with
an inanimate object:

There is a kiwi on the first pillar, an orange on the
second pillar, and a fig on the third pillar. A pole

3More detailed background on this study can be found in Ap-
pendix B.

moves to and touches the item on the first pillar.
There is a kiwi on the first pillar, a fig on the
second pillar, and an orange on the third pillar. A
pole moves to and touches the item on the first
pillar.
There is an orange on the first pillar, a kiwi on the
second pillar, and a fig on the third pillar. A pole
moves to and touches the item on the first/second

We generate 100 examples with a roughly equal distribution
over object and location targets (in this example template,
the targets can be one of “first”, “second”, and “third”). We
define the object bias ob as the conditional probability that
the object bias target is chosen by a model given that the
model has to either choose the object or location bias target,
as in

ob =
p(object bias target)

p(object bias target) + p(location bias target)
, (1)

where each probability p(·) is conditioned on the prompt
like p(· | prompt).

In some cases we do not have access to the probabilities
assigned to each target by a model (i.e. GPT-3.5-turbo and
GPT-4 have restrictive APIs). Instead, we sample those
models ten times for each prompt with a temperature of 1,
recording how often they output the object bias target co
(second in the previous example) or the location bias target
cl (first in the previous example). Using these counts, we
estimate the object bias ob of a model for each example as
the fraction of times it chooses the object bias target:

ôb =
co

co + cl
(2)

We discard all samples where a model does not choose the
object or location bias target and record them separately as
unclassified in the cu count. We report summary statistics
for the obtained probabilities and the counts co, cl, and cu
for each model and prompt template in Appendix A.

The criterion for selective encoding. As mentioned in the
introduction, we add a control task where the agent acci-
dentally reaches for the item, meaning that the object is no
longer the agent’s goal. We do this by slightly changing the
animate prompts. For example in one template we change
Wendy grasps the item . . . to Wendy falls and accidentally
grasps the item . . . . Note that although this is similar in
spirit to Ullman (2023), the difference is that we show the
model multiple habituations with the same change.

The criterion for saying that a model selectively encodes
the goal of an actor’s reach is if it exhibits a distinct bias
in the animate case compared with the bias shown in the
inanimate and control case. In other words, the bias in
the animate case should be different from the bias in the
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Table 1. The prompt variations we use in our evaluations. For each template text, the target word is bolded.

Template variation Test case Example of differing template part

Fruit targets
Animate Wendy grasps the kiwi
Inanimate A rod moves to and touches the kiwi
Control Wendy accidentally touches the kiwi

Fruit targets (anim)
Animate A person named Wendy grasps the kiwi
Inanimate An inanimate rod moves to and touches the kiwi
Control A person named Wendy accidentally touches the kiwi

Pillar targets
Animate Wendy grasps the item on the first pillar
Inanimate A rod moves to and touches the item on the first pillar
Control Wendy accidentally grasps the item on the first pillar

Pillar targets (anim)
Animate A person named Wendy grasps the item on the first pillar
Inanimate An inanimate rod moves to and touches the item on the first pillar
Control A person named Wendy accidentally grasps the item on the first pillar

inanimate and control case, and the latter two should be
similar. If this criterion is passed, it means the model has a
different bias when there is a goal-directed agent involved
than when there is an inanimate or non-goal-directed agent
involved. Besides the selective encoding of the goal, we can
also contrast the specific bias the model demonstrates with
human infants, who show an object bias in the animate case,
and no bias in the inanimate case in Woodward’s visual test
(infants are not tested with a control task).

Prompt variations. We vary the agent names, pillar fruits,
and inanimate objects to get a larger set of test examples
(namely 100 per test case). Additionally, for each test case
we design a set of four different prompts, to test for things
like irrelevant alterations of the text. The first prompt has
already been presented in this section. This prompt is of the
type pillar target, because the target on which the model is
evaluated is a pillar choice (first, second, or third). In the
second prompt the target is not the pillar location, but the
fruit itself (e.g. replace Wendy grasps the item on the first
pillar with Wendy grasps the kiwi), and so the prompt is
of the type fruit target. For both of these prompts, we also
construct a variation in which we explicitly denote that the
agent is animate and the inanimate object is not (e.g. replace
A pole moves to . . . with An inanimate pole moves to . . .
and replace Wendy grasps . . . with A person named Wendy
grasps . . . ). This leaves us with four prompt variations
in total, which are fully presented in Table 1. Templates
only differ in the sentences describing the agent’s reach,
otherwise they share the pattern previously shown.

Note that for the pillar target prompt variations, a prompt
with multiple habituations repeats the action of reaching for
the same pillar multiple times (e.g. grasps the item on the
first pillar). Hence, a language model that is sensitive to
surface-level patterns in text might put a high probability

on the same pillar from the habituations to complete the
test case phrase grasps the item on the , which would re-
sult in a recorded location bias for this model. This is why
we construct the prompt variations where the target is the
fruit instead (Fruit targets in Table 1). In those variations,
a prompt with multiple habituations repeats the action of
grasping the fruit (e.g. grasps the kiwi). This might cause
a language model to put high probability on the same ob-
ject from the habituations to complete the test case phrase
grasps the , in which case an object bias would be encoded.
Therefore, if the model is not encoding the semantics of the
prompt and simply repeats surface-level patterns, we expect
an object bias for the fruit target variations, and a location
bias for the pillar target variations, regardless of whether the
test case is animate, inanimate, or control.

4. Experiments
We evaluate three different models on our test cases, all of
which are OpenAI API models (text-davinci-003, GPT-3.5-
turbo, and GPT-4). For the latter two, we do not have access
to their likelihoods — to obtain an estimate despite this we
apply a sampling strategy as described in Section 3. The re-
sults are presented in Figure 2, and the numbers underlying
this figure are presented in Appendix A. The left column in
Figure 2 shows the results for k = 0 habituations, which is
a sanity check that the model does not have a strong bias
for a target a priori. These numbers should ideally show no
bias (0.5 object bias and location bias), which is roughly the
case. Below, we discuss the results for k = 6 habituations,
which is the number of habituations Woodward (1998) uses
with infants.

Insight 1: All models show a stronger object bias in the
animate case than in the inanimate case, but only GPT-
3.5-turbo and GPT-4 selectively encode the goal of an
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Figure 2. The results for text-davinci-003, GPT-3.5-turbo, and GPT-4 for k = 0 (left) and k = 6 (right) habituations. For k = 0, we
expect the object bias to be roughly 0.5 (equal selection of object bias target and location bias target). For k = 6 in the right column of the
figure, recall that if the model is encoding irrelevant surface-level patterns of the prompt, we expect a strong object bias for the fruit target
prompt variations (top-right) and a strong location bias for the pillar target prompt variations (bottom-right), regardless of whether the test
case is animate, inanimate, or control. Indeed, we observe a general stronger object bias for the top row than the bottom row when k = 6.
We further see that all models have a higher object bias for the animate test cases than for the inanimate, but show a similar bias for the
control test case as the animate case for the fruit target variations (top-right plot). GPT-3.5-turbo and GPT-4 are the only models that also
show a similar bias for the control test case as the inanimate case, which means they selectively encode the goal of an agent’s reach (i.e.
the biases for inanimate and control are similar and distinct from animate). However, only when the target is the pillar (bottom-right plot),
and GPT-4 does so only very weakly. The error bars represent the standard deviation over the two prompt templates in each group (fruit
targets and pillar targets).

agent’s reach. In general for all three test cases, we see a
stronger object bias for the fruit target variations (top-right
in Figure 2), and a stronger location bias for the pillar target
variations (bottom-right in Figure 2). As mentioned at the
end of Section 3, this is unsurprising given the repeated
patterns in the habituations, and any deviation from this
pattern is notable and points to encoding of semantics over
surface-level properties. All models show a higher object
bias in the animate case than the inanimate case, which is
similar to the effect that Woodward finds for infants (object
bias in the animate case, no bias in the inanimate case).
The only models which pass the criterion for saying they
selectively encode the goal of an agent’s reach on our test set
are GPT-3.5-turbo and GPT-4 (recall that the criterion is a
strong difference in bias for the animate test case compared
to the inanimate and control cases). However, the criterion
is primarily passed for the two prompts where the targets
are the pillars instead of the fruits (bottom-right), and only
very weakly in GPT-4’s case.

Insight 2: text-davinci-003 does not appear to selectively
encode the goal of an agent’s reach. Although text-davinci-
003 shows a stronger object bias in the animate case than the
inanimate case, it shows the same bias as the animate case
in the control test case (overlapping error bars for the pillar
targets in the bottom-right plot). This means we cannot
say the model selectively encodes the goal of an agent’s
reach, because it encodes text similarly when an agent is
acting purposefully as when the agent is not acting in a goal-
directed fashion. Looking at the magnitude of the biases
again, we see that text-davinci-003 shows a strong object
bias for the fruit target templates, whereas it shows a full
location bias for the pillar target templates. For the latter, it
might simply be using the heuristic of repeating the pillar
from habituations.

Insight 3: All three models are heavily influenced by
semantically irrelevant alterations of the prompt, but
are clearly not only encoding surface-level statistics of
the text. Comparing the top-right and bottom-right plots
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in Figure 2, we find that all three models show much more
location bias when the target is the pillar instead of the fruit.
However, it is not the case that the models simply have an
object bias when the target is the fruit and a location bias
when the target is the pillar. Although this shows that the
models’ internal reasoning can be heavily influenced by
superficial differences in output requirements, the strong bi-
ases that go against the surface-level repetitions do indicate
encoding of the semantics of the text.

5. Discussion
Our results show that the tested LLMs do not robustly en-
code the goal-related properties of an agent’s reaching ac-
tion. GPT-3.5-turbo and GPT-4 do treat text differently
when there is a goal-directed agent involved, but do not do
this equally for semantically equivalent prompt variations.
Additionally, the biases they show are very different from
the bias human infants show in Woodward (1998). The
specific bias we investigate is very basic, appearing in in-
fants as young as six months old. Our results indicate that
ToM-like human biases might not emerge from large-scale
pre-training on text or instruction fine-tuning, at least not in
the way we might expect them to. This suggests that studies
investigating the emergence of ToM in LLMs should not ex-
pect a machine ToM that is comparable to human ToM, but
should instead focus on identifying in what way machines
reason about the mental states of others, if they do so at all.
Additionally, our results show that studies need to take into
account the sensitivity of models to semantically irrelevant
surface-level patterns in text, which might be very different
from humans’ responses to such patterns. In our study we
deal with this by designing prompt variations that would
result in an opposite effect if only surface-level patterns are
encoded. Any deviation from this pattern indicates encoding
of semantics over irrelevant patterns. Our results serve as
a first step towards comparing human theory of mind and
machine theory of mind without preconceived notions of
the kind of mentalizing the machine should do.

We take the approach of linguistically presenting a ToM
test to LLMs that is traditionally only tested visually in pre-
linguistic infants. Although we view this as a strength of the
protocol because it makes it less likely that the test appears
in the training data, it also means that a lack of human-
like bias in LLMs may simply indicate that this bias does
not show up linguistically. To say LLMs show a different
bias than humans in this task, we need to administer the
same tests to human adults. In future work, we want to
conduct human evaluations on our linguistic test to identify
the biases humans show.

One hypothesis for why selectively encoding the goal object
of an actor’s reach has not yet emerged is that learning such
a bias might simply not be consistently useful for next-token

prediction in pre-training on text. Another hypothesis is that
pre-training on large-scale internet data representing too
many agents with noisy beliefs hindered the ToM-like ability
(Andreas, 2022). In a future version of this study, we want
to test if fine-tuning a pre-trained Pythia model (Biderman
et al., 2023) on data reflecting agent preferences for objects,
and random reaching events for inanimate objects can lead
to the emergence of ToM-like ability. Successful next-token
prediction on this dataset requires inferring the underlying
agent preferences of the agents that occur in the data, as
well as learning that inanimate objects have no preferences.
Using this protocol, we can control how consistently useful
the object bias is for next-token prediction by adding noise
to the data, and seeing how this affects the resulting biases
in the model for novel agents and objects.

Our evaluation protocol opens up further interesting av-
enues for future work. Although prior work in machine
ToM mostly views it as a static ability that you can either
have or not, current approaches to ToM in humans and other
animals recognize that mentalizing inferences are dynamic
(Baker et al., 2017) and graded in performance (Devaine
et al., 2014). These insights have recently been applied to
make progress on the Baby Intuitions Benchmark (Gandhi
et al., 2021) by applying a Bayesian hierarchical framework
(Langley, 2000). Since our evaluation protocol allows vary-
ing the number of habituations, future work might take a
similar approach, and investigate how varying degree of
observations change the model’s predictions of an agent’s
behavior, as the studies investigating human ToM did (De-
vaine et al., 2014; Baker et al., 2009; 2017; Shafto et al.,
2014; Yoshida et al., 2008). For example, repeated trials
of hide and seek (Devaine et al., 2014) can differentiate
ToM abilities in different clinical populations (d’Arc et al.,
2020) and even across primate species (Devaine et al., 2017).
Models taking this approach successfully generate precise
quantitative predictions of how people infer preferences
and beliefs of other agents over a range of parametrically
controlled stimuli (Baker et al., 2017).

6. Conclusion
In this paper, we introduce a new evaluation protocol to test
large language models’ (LLMs) capabilities in the context
of Theory of Mind (ToM). Inspired by Woodward (1998),
we prompt LLMs with ambiguous examples of agents inter-
acting with objects. We let the models predict the agent’s
next interaction, which can be either explained as an explicit
agent goal in terms of location or object choice, or by ran-
dom chance—allowing us to assess if a model selectively
encodes the goal of an agent’s reach. Extending the original
study, we do not only test against inanimate interactions
but also use a control task with accidental interactions. We
apply our evaluation to a number of recent LLMs, namely
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text-davinci-003, GPT-3.5-turbo, and GPT-4. Our results
indicate that all tested models appear to make some form of
distinction between animate and inanimate actors, but only
GPT-3.5-turbo and GPT-4 demonstrate the ability to selec-
tively encode an agent’s goal in such a way that it does not
fail on our control task. We show that all models are highly
susceptible to be influenced by minor prompt variations that
do not semantically change the task.
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A. Detailed results
Table 2 and 3 show the results for GPT-4 on the pillar target templates and fruit target templates respectively. Table 4 and 5
show the results for GPT-3.5-turbo on the pillar target templates and fruit target templates respectively. Table 6 and 7 show
the results for text-davinci-003 on the pillar target templates and fruit target templates respectively.

Table 2. Animate, inanimate, and control object and location bias for gpt-4 on prompts from the group Pillar targets. H stands for
habituations, and Anim for whether (Y) or not (N) the prompt template has animate denotation.

Animate Inanimate Control
Model H Anim N obj bias N loc bias N unclassified N obj bias N loc bias N unclassified N obj bias N loc bias N unclassified

gpt-4 0 N 3.8 +/- 4.5 3.0 +/- 4.3 3.2 +/- 4.4 3.6 +/- 4.5 3.4 +/- 4.4 3.1 +/- 4.3 3.6 +/- 3.9 3.2 +/- 3.5 3.2 +/- 3.6
gpt-4 6 N 0.4 +/- 1.4 9.6 +/- 1.4 0.0 +/- 0.1 0.1 +/- 0.7 9.9 +/- 0.7 0.0 +/- 0.0 0.1 +/- 0.3 9.9 +/- 0.3 0.0 +/- 0.0
gpt-4 0 Y 3.7 +/- 4.3 3.2 +/- 4.0 3.0 +/- 3.9 3.6 +/- 4.6 3.2 +/- 4.5 3.3 +/- 4.5 3.7 +/- 3.5 3.3 +/- 3.4 3.0 +/- 3.4
gpt-4 6 Y 0.5 +/- 1.6 9.5 +/- 1.6 0.0 +/- 0.0 0.0 +/- 0.1 10.0 +/- 0.1 0.0 +/- 0.1 0.0 +/- 0.0 10.0 +/- 0.0 0.0 +/- 0.0

Table 3. Animate, inanimate, and control object and location bias for gpt-4 on prompts from the group Fruit targets. H stands for
habituations, and Anim for whether (Y) or not (N) the prompt template has animate denotation.

Animate Inanimate Control
Model H Anim N obj bias N loc bias N unclassified N obj bias N loc bias N unclassified N obj bias N loc bias N unclassified

gpt-4 0 N 0.0 +/- 0.0 0.0 +/- 0.1 10.0 +/- 0.1 0.0 +/- 0.0 0.0 +/- 0.0 10.0 +/- 0.0 0.0 +/- 0.2 0.0 +/- 0.2 9.9 +/- 0.3
gpt-4 6 N 6.1 +/- 3.7 2.0 +/- 3.2 1.8 +/- 3.0 3.0 +/- 3.5 5.7 +/- 4.1 1.3 +/- 2.5 5.5 +/- 3.5 1.6 +/- 2.9 2.9 +/- 3.1
gpt-4 0 Y 0.0 +/- 0.0 0.0 +/- 0.0 10.0 +/- 0.0 0.0 +/- 0.1 0.0 +/- 0.1 10.0 +/- 0.2 0.0 +/- 0.0 0.0 +/- 0.0 10.0 +/- 0.0
gpt-4 6 Y 5.4 +/- 3.8 1.0 +/- 2.4 3.6 +/- 3.7 2.3 +/- 3.1 5.8 +/- 4.0 1.9 +/- 3.1 5.0 +/- 3.6 2.6 +/- 3.7 2.4 +/- 3.0

Table 4. Animate, inanimate, and control object and location bias for gpt-3.5-turbo on prompts from the group Pillar targets. H stands for
habituations, and Anim for whether (Y) or not (N) the prompt template has animate denotation.

Animate Inanimate Control
Model H Anim N obj bias N loc bias N unclassified N obj bias N loc bias N unclassified N obj bias N loc bias N unclassified

gpt-3.5-turbo 0 N 3.7 +/- 4.4 2.7 +/- 4.0 3.6 +/- 4.4 3.2 +/- 3.7 3.0 +/- 3.6 3.9 +/- 3.8 3.1 +/- 4.4 2.9 +/- 4.4 4.0 +/- 4.7
gpt-3.5-turbo 6 N 4.5 +/- 4.3 5.3 +/- 4.2 0.2 +/- 0.6 3.3 +/- 3.7 6.0 +/- 3.8 0.7 +/- 1.5 3.7 +/- 4.4 5.3 +/- 4.3 0.9 +/- 2.2
gpt-3.5-turbo 0 Y 3.2 +/- 4.4 2.7 +/- 4.2 4.1 +/- 4.6 3.1 +/- 4.2 2.9 +/- 4.0 4.0 +/- 4.3 3.2 +/- 4.4 2.8 +/- 4.1 4.1 +/- 4.6
gpt-3.5-turbo 6 Y 5.2 +/- 4.5 4.7 +/- 4.5 0.1 +/- 0.5 3.3 +/- 3.9 6.2 +/- 3.9 0.5 +/- 1.2 3.8 +/- 4.4 6.0 +/- 4.4 0.2 +/- 0.7
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Table 5. Animate, inanimate, and control object and location bias for gpt-3.5-turbo on prompts from the group Fruit targets. H stands for
habituations, and Anim for whether (Y) or not (N) the prompt template has animate denotation.

Animate Inanimate Control
Model H Anim N obj bias N loc bias N unclassified N obj bias N loc bias N unclassified N obj bias N loc bias N unclassified

gpt-3.5-turbo 0 N 0.1 +/- 0.3 0.1 +/- 0.4 9.8 +/- 0.4 0.3 +/- 0.6 0.2 +/- 0.7 9.5 +/- 0.9 0.0 +/- 0.2 0.0 +/- 0.2 9.9 +/- 0.2
gpt-3.5-turbo 6 N 6.0 +/- 3.4 1.8 +/- 3.2 2.2 +/- 2.3 6.3 +/- 3.8 2.8 +/- 3.6 0.8 +/- 1.5 7.8 +/- 3.1 1.6 +/- 3.2 0.6 +/- 1.0
gpt-3.5-turbo 0 Y 0.1 +/- 0.3 0.1 +/- 0.3 9.9 +/- 0.4 0.9 +/- 1.4 0.7 +/- 1.1 8.4 +/- 1.6 0.0 +/- 0.2 0.1 +/- 0.2 9.9 +/- 0.3
gpt-3.5-turbo 6 Y 7.4 +/- 2.6 0.8 +/- 2.2 1.8 +/- 2.0 5.3 +/- 4.2 4.0 +/- 4.3 0.7 +/- 1.4 8.2 +/- 2.8 1.3 +/- 2.8 0.5 +/- 0.8

Table 6. Animate, inanimate, and control object and location bias for text-davinci-003 on prompts from the group Pillar targets. H stands
for habituations, and Anim for whether (Y) or not (N) the prompt template has animate denotation.

Animate Inanimate Control
Model H Anim Obj p Loc p Obj bias Obj p Loc p Obj bias Obj p Loc p Obj bias

text-davinci-003 0 N 0.3 +/- 0.2 0.3 +/- 0.2 0.5 +/- 0.2 0.1 +/- 0.1 0.1 +/- 0.1 0.5 +/- 0.2 0.3 +/- 0.2 0.3 +/- 0.2 0.5 +/- 0.2
text-davinci-003 6 N 0.0 +/- 0.1 1.0 +/- 0.1 0.0 +/- 0.1 0.0 +/- 0.0 1.0 +/- 0.0 0.0 +/- 0.0 0.0 +/- 0.0 1.0 +/- 0.0 0.0 +/- 0.0
text-davinci-003 0 Y 0.3 +/- 0.2 0.3 +/- 0.2 0.5 +/- 0.2 0.2 +/- 0.1 0.2 +/- 0.1 0.5 +/- 0.2 0.3 +/- 0.2 0.3 +/- 0.2 0.5 +/- 0.2
text-davinci-003 6 Y 0.0 +/- 0.1 1.0 +/- 0.1 0.0 +/- 0.1 0.0 +/- 0.0 1.0 +/- 0.0 0.0 +/- 0.0 0.0 +/- 0.0 1.0 +/- 0.0 0.0 +/- 0.0

Table 7. Animate, inanimate, and control object and location bias for text-davinci-003 on prompts from the group Fruit targets. H stands
for habituations, and Anim for whether (Y) or not (N) the prompt template has animate denotation.

Animate Inanimate Control
Model H Anim Obj p Loc p Obj bias Obj p Loc p Obj bias Obj p Loc p Obj bias

text-davinci-003 0 N 0.1 +/- 0.1 0.1 +/- 0.1 0.5 +/- 0.2 0.1 +/- 0.0 0.1 +/- 0.0 0.5 +/- 0.2 0.0 +/- 0.0 0.0 +/- 0.0 0.5 +/- 0.3
text-davinci-003 6 N 0.9 +/- 0.2 0.1 +/- 0.2 0.9 +/- 0.2 0.7 +/- 0.4 0.3 +/- 0.4 0.7 +/- 0.4 1.0 +/- 0.0 0.0 +/- 0.0 1.0 +/- 0.0
text-davinci-003 0 Y 0.1 +/- 0.1 0.1 +/- 0.1 0.5 +/- 0.2 0.0 +/- 0.0 0.0 +/- 0.0 0.5 +/- 0.2 0.1 +/- 0.0 0.1 +/- 0.0 0.5 +/- 0.2
text-davinci-003 6 Y 1.0 +/- 0.2 0.0 +/- 0.2 1.0 +/- 0.2 0.8 +/- 0.3 0.2 +/- 0.3 0.8 +/- 0.3 1.0 +/- 0.0 0.0 +/- 0.1 1.0 +/- 0.0
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B. Background
Woodward (1998) shows that infants of 6- and 9-months old selectively encode the aspects of a human action that are
relevant to the actor’s goals over other salient aspects of the event. She does this by habituating infants to reaching actions of
a demonstrator that always reaches to the same object on the same location over another object in another location. The
objects then switch positions, and infant looking times are then measured in two different test cases: the actor reaches to the
same object from habituation that is now in a different location (object bias) or the actor reaches to another object in the
same location from habituation (location bias). Infants look longer for the location bias case, suggesting that they selectively
encode the goal object of the actor’s reach and not the location. Moreover, they do not show this behavior when the actor is
replaced by an inanimate rod that is moved to the object (the infants only see the rod and not whatever moves it). When they
are habituated with a rod, the looking times in the object and location bias test cases are comparable.


