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Figure 9: Visualization of the latent ODE with ODE-RNN encoder. Due to the NODE layer in the decoder the
model is able to estimate the data point of the time-series at any desired time. Figure inspired by (Chen et al.,
2018; Rubanova et al., 2019).
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Figure 10: GRU-update for the ODE-RNN architecture, where ⊙ denotes the hadamard product (component-
wise multiplication) of two vectors and fz, fu, fr, fs are auxiliary NNs.

A LATENT ODES FOR TIME-SERIES FORCASTING

For time-series forecasting, we use an encoder-decoder architecture called latent ODE (Rubanova
et al., 2019) and illustrated in Fig. 9. The encoder eθ is an ODE-RNN, yielding an embedding sL′

of the data points observed until tL′ , where the series is processed in reversed time order. The core
idea is to describe the evolution of a hidden state with a NODE and update it using a GRU unit
(Cho et al., 2014) (described in App. A.1) to account for new observations. This embedding is then
passed through a one layer MLP to yield the posterior distribution p(z|xL′

ts ) = N (µ,σ) over the
initial state of the decoder z(0). The decoder dθ then estimates x̂L as a linear transform of the
solution z(tL) of the IVP with initial state z(0) at time tL. Note that in testing we use z(0) = µ
and omit the sampling.

The latent ODE is trained to maximize the evidence lower bound (ELBO) (Kingma & Welling,
2014) an minimize the absolute error of the final predictions weighted with γ:

Lf (x
L
ts, L

′) = γ · ∥x̂L − xL∥1 − ELBO(xL
ts, L

′) (9)

ELBO(xL
ts, L

′) = Ez′∼pN [log (dθ (z
′, tL))]−DKL [pN ||p] . (10)

A.1 GRU UPDATE

In Fig. 10 we show the update of the hidden state si−1 of the ODE-RNN (Rubanova et al., 2019)
architecture after feeding the i-th entry (xi, ti) as input. The update uses a NODE layer to represent
fz , where the integration domain of the NODE layer is [ti−1, ti].
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B PROVABLE NODE TRAINING

In this section, we describe our GAINS-based training procedure. We consider the setting with data
distribution (x, y) ∼ D and we compute the NODE input z0 (either z0 := x or via some encoder)
with the corresponding bounds Z . Standard provable training aims to optimize a loss based on the
over-approximation (Eq. (5)). However, in the case of NODE it is intractable to compute the full
over-approximation of the trajectory graph (discussed in §5) for each sample in training. Thus, we
only sample up to κ selected trajectories from G(Z).

Trajectory Exploration During the sampling we balance exploration of the full trajectory graph
and staying close to the reference trajectory, the trajectory Γ(z0) of the solver with unperturbed
input z0. A visualization of the selection process is depicted in Fig. 11.

We select trajectories as follows: We start the propagation ofZ through the NODE layer. Recall that,
for a concrete input at each step the CAS solver will either (i) increase, (d) decrease or (a) accept,
i.e., keep, the current step size h. For an abstract solver step we may need to keep track of multiple
decisions (trajectory splitting). Thus, for each abstract solver step we check whether or not trajectory
splitting occurs and as long as no trajectory split occurs, we are following the reference trajectory.
If, however, multiple updates are possible, i.e., we encounter trajectory splitting, we choose a single
path u via random sampling (details below), and add the corresponding state to the branching point
set C. Afterward, we check whether or not we have reached Tend, where if Tend is reached, we save
the resulting trajectory to a set S. Moreover, we repeat the process with a checkpoint C ∈ C, as long
as there is still a checkpoint in C, i.e. |C| > 0, and we have not already collected κ trajectories, i.e.
|S| < κ.

Sampling Updates For a state (t, h) we let V(t,h) denote the set of vertices which where traversed
from initial vertex (0, h0) to (t, h). Moreover, for any vertex v = (t̃, h̃) we define its reference
vertex v′ = (t̃′, h̃′) as the vertex with the smallest ℓ1-distance to the vertex v among the vertices in
the reference trajectory Γ(z0), i.e.

v′ = (t̃′, h̃′) = argmin
(t̂,ĥ)∈Γ(z0)

|t̃− t̂|+ |h̃− ĥ|. (11)

Furthermore, for any vertex v ∈ V(t,h) we let u(v) denote the update ((i) increase, (d) decrease or
(a) accept) taken to leave state v in the given trajectory. Analogously, we define for any v′ ∈ Γ(z0)
u′(v′) as the performed update in Γ(z0) after vertex v′.

Additionally, we define the auxiliary mapping gn : {d, a, i} → {0, 1, 2}, where gn(d) =
0, gn(a) = 1 and gn(i) = 2. Using the previous definitions we define the location index of V(t,h) as
n(V(t,h)) =

∑
v∈V(t,h)

gn(u(v)) − gn(u
′(v′)). If the location index is bigger than zero, we assume

to be traversing a trajectory that has performed steps with bigger step sizes than the reference trajec-
tory Γ(z0). On the other hand, for a location index smaller than zero the opposite is true, whereas if
the location index is zero we are close to the reference trajectory Γ(z0).

Finally, when sampling an update u we choose from the categorical distribution Pu(pd, pa, pi) de-
pending on n(V(t,h)), u

′(v′) for the current state (t, h) and hyperparameters q1 and q2. The definition
of the probabilities pd, pa and pi can be seen in Table 4.

In the definition of the sample probabilities the update that pushes the location index the most to-
wards zero occurs always with probability 1− q1− q2, whereas the event occurring with probability
q1 pushes the location index away from zero. Hence, depending on which probability is higher, we
either prefer to select trajectories close to the reference trajectory or trajectories that are distributed
over the entire trajectory graph. In order to have a combination of both, we use an annealing process
for the hyperparameters q1 and q2. In the early stages of training, we choose selection hyperparam-
eters such that 1− q1− q2 ≥ q2 ≥ q1, i.e. stay close to the reference trajectory, and towards the end
of the training the chain of inequalities should be reversed, i.e. cover the entire trajectory graph and
not just a region.

Checkpoint Selection Criterion We use the following decision criterion to select C∗ from C

C∗ = argmax
C={VC}∈C

|n(VC)− nS |
2

− |VC | − σout[VC ], (12)
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Figure 11: Selection process of S, which contains at most κ trajectories starting with initial step size h0 and
final integration time Tend and the branching point set C.

where the vertex set VC contains all traversed vertices until the creation of the checkpoint C and
we denote by nS the average location index of the already stored trajectories in S. Observe, that
the decision criterion is designed such that checkpoints in under-explored regions of the trajectory
graph and checkpoints arising early in the trajectory graph are favored, where the former statement is
captured by the first term in Eq. (12), whereas the remaining two terms capture the latter statement.

Table 4: The definition of the probabilities pd, pa and pi depending on the location index n(V ),
reference update u′ and hyperparameters q1, q2.

n(V ) u′ pd pa pi

n = 0 a q1+q2
2 1− q1 − q2

q1+q2
2

n = 0 d
1− q1 − q2 q2 q1n > 0 {d, a, i}

n = 0 i
q1 q2 1− q1 − q2n < 0 {d, a, i}

Loss Computation Finally, we compute the BOX output of the NODE layer as the over-
approximation of the final states form all saved trajectories S . Then, for provable training we use a
loss term of the following form:

L(z0,Z, y) = (1− ω1ϵ
′/ϵt)Lstd(z0, y) + ω1ϵ

′/ϵtLrob(Z, y) + ω2∥uout − lout∥1, (13)

where Lstd is the standard loss (depending on the task) evaluated on the unperturbed sample, and
Lrob is an over-approximation of Lstd based on the abstraction obtained from S. The term uout −
lout regularizes the bound width of the corresponding output region. During training, we anneal ϵ,
gradually increasing ϵ′ from 0 to ϵ, thereby shifting focus from the standard to the robust loss term.
In the classification setting, we use the cross entropy loss and in time series forecasting we use a
latent ODE specific loss, combining a MAE error and ELBO term, defined in Eq. (9).
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Figure 12: ϵ-annealing (top) and ρ-annealing (bot-
tom) for time-series input. Dots indicate concrete in-
puts and error bars abstract regions.

Stabilizing Training In the time-series fore-
casting setting, the long integration times involv-
ing many solver calls lead to very large effective
model depths. There, ϵ-annealing alone is insuf-
ficient to stabilize the training in the face of an
exponential accumulation of approximation er-
rors. To combat this, we additionally anneal the
abstract ratio ρ from 0 to 1 and only use non-
zero perturbation magnitudes for the first ρL data
points in every time series, i.e., for an input with
time index j, we set ϵ′ ← ϵ′1j≤ρL. We visualize
this annealing process in Fig. 12 and highlight,
that it is independent of ϵ-annealing.

Complexity Derivation The time complexity is derived via the maximum number of vertices in
the trajectory graph G(Z). Note that the graph is constructed using a CAS with update factor α that
enforces a minimum step size hmin (described in App. C.1). The complexity does depend on hmin

and α, but we consider both to be constant and have thus dropped the dependence. We organize
the graph into rows corresponding to the step sizes and observe that for integer α each step size
contains at most Tend/hmin vertices. Further, the largest possible step size is Tend and the smallest
step size hmin. Due to the exponentially spaced grid of possible step sizes with growth rate α, it
follows that the graph has at most (log(Tend) − log(hmin))/log(α) different step sizes and hence
rows. Consequently there are at most Tend/hmin(log(Tend)− log(hmin))/log(α) or after dropping
the constants O(Tend log(Tend)) vertices in G(Z).
For the final result, note that a simple graph with v vertices has at most v(v − 1)/2 edges. There-
fore, since all edges in the trajectory graph G(Z) represent a solver step, it follows that at most
O(T 2

endlog
2(Tend)) solver steps need to be considered by GAINS.

C EXPERIMENTAL DETAILS

We have used the ODE solvers from the torchdiffeq package3 (Chen et al., 2018), where we have
extended the package to contain controlled adaptive ODE solvers. Moreover, we have used the
PGD adversarial attack from the torchattacks package4 (Kim, 2020). The annealing processes of
the perturbation ϵ use the implementation of the smooth scheduler from5 Xu et al. (2020), which we
denote as Smooth(ϵt, estart, eend,mid). The first three arguments of the Smooth scheduler represent
the target perturbation, the starting epoch of the scheduler, and the epoch in which the process
reaches the target perturbation. The additional mid parameter of the schedule is fixed to mid = 0.6
and anything else is used unaltered.

Moreover, we use the annealing process Sin(qstart, qend, e1, e2), for the hyperparameters q1, q2
occurring in the sampling process of the construction of the selection set S in App. B. The value q
of the annealing process Sin(qstart, qend, e1, e2) in epoch e is given by

q ←


qstart, if e ≤ e1,

sin
(
π e−emid

e2−e1

)
· qend−qstart

2 + qend+qstart

2 , else if e1 < e ≤ e2,

qend, otherwise,

(14)

where we use emid = e2+e1
2 .

C.1 CAS DETAILS

When using a CAS, we have used in all experiments update factor α = 2, momentum factor β =
0.1, absolute error tolerance τ = 0.005 and the individual ODE solver steps where performed using

3https://github.com/rtqichen/torchdiffeq
4https://github.com/Harry24k/adversarial-attacks-pytorch
5https://github.com/KaidiXu/auto_LiRPA/blob/master/auto_LiRPA/eps_scheduler.py
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the dopri5 (Dormand & Prince, 1980) solver. Additionally, we have introduced a minimal allowed
step size constraint and a maximal number of allowed rejections after clipping for the CAS, where
the minimum step size is fixed to hmin = 0.02 and the maximal number of allowed rejections
after clipping is 2. In our experiments on the MNIST, FMNIST, and PHYSIO-NET datasets the
constraints only became active in early stages of training. Note that only after rejecting a step with
step size h the aforementioned events can occur, in which case the solver indicates that the desired
error tolerance will not be satisfied and terminates the integration by fixing the step size to h and
accepting each following step without performing any step size updates anymore.

Initial Step-Size The initial step size h0 is obtained differently in the training and testing setting.
In training, a proposal initial step size h̃0 is calculated using

h̃0 =

{
∥z0∥1

100∗∥gθ(0,z0)∥1
, if ∥g0∥1 ≥ 10−5 ∗ γ and ∥gθ (0, z0)∥1 ≥ 10−5 ∗ γ,

10−5, otherwise,
(15)

where γ = b ∗ τ is determined by the batch size b and the absolute error tolerance τ . Afterward,
a solver step is performed using the proposal step size h̃0, and the step size update rule of standard
adaptive step size solvers is used in order to produce the initial step size h0. Note that by apply-
ing the standard update rule, the solver starts the integration process with a step size for which a
step acceptance is expected. Moreover, during training the solver keeps track of an exponentially
weighted average η of the initial step sizes, where it is updated using momentum factor β, i.e.
η ← (1− β)η + β ∗ h0.

During testing, the current η is set as the initial step size, i.e. h0 = η. Observe, that in NN verifi-
cation the division in Eq. (15) is avoided, for which there exists only loose abstract transformations
in the DEEPPOLY abstract domain. Therefore, the proposed initial step size scheme decreases the
approximation error in the DEEPPOLY abstract domain at the cost of storing and keeping track of η.

C.2 CAS COMPARISON

In Fig. 3 we compare the reachable states, e.g. (t, h)-pairs, of the unmodifiied dopri5 (Dormand
& Prince, 1980) adaptive solver (AS) and the dopri5-based CAS (as described in the previous para-
graph) after at most two steps. In order to simplfy the computation of the reachable states, we have
assumed that δ(t, h) ∈

[
2−6, 22

]
∀t, h.

In Fig. 4 we compare the dopri5 AS and dopri5-based CAS with eleven different absolute error
tolerances τ ∈ {10−6, 4.7·10−6, 2.2·10−5, 10−4, 5·10−4, 2.3·10−3, 0.01, 0.05, 0.24, 1, 2.42} on the
one-dimensional nonlinear ODE∇tz = z ·cos

(
0.8 · cos(t)2 + t

)
. For each absolute error tolerance

value, we sample 2000 initial states z(0) ∼ U(−2.5, 2.5) (continuous uniform distribution) and
solve the resulting IVP until T = 5, where we report the average number of performed solver steps
and the absolute error of the solver. The absolute error is calculated via |z(5) − zd8(5)|, where
z(5) is the solution of either the considered AS or CAS and zd8(5) is the solution of the high-order
adaptive solver dopri8 with absolute error tolerance τd8 = 10−7.

In Fig. 13 we compare CAS and AS solvers with respect to their absolute errors depending on
the number of performed solver steps for higher-dimensional, NODEs trained on the MNIST and
FMNIST datasets, using standard training with the dopri5 AS solver as described in App. D. We
compare dopri5-based CAS with absolute error tolerance τ = 0.005 and a dopri5 ASβ with absolute
error tolerance τβ = τ · β and compute a ‘ground truth’ solution as reference for error computation
using an AS with a 100-times smaller error tolerance, i.e. β = 0.01. We report the mean and
standard deviation of the resulting absolute error |z(1) − zGT (1)| as a function of the number of
solver steps over the first 1000 test set samples.

Using the same error tolerance for CAS and AS solvers, i.e. β = 1, we observe for both datasets,
that while CAS solvers tend to perform more solver steps than AS1, they have significantly smaller
absolute errors at the same number of solver steps. We track this back to the conservative step-size
update rule of CAS solvers. When decreasing the absolute error tolerance of the AS by factor 2,
i.e. β = 0.5, we observe that the AS solver tends to performs more solver steps while still yielding
larger absolute errors (see Fig. 13c). We thus conclude that CAS solvers are generally competitive
with AS solvers.
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Figure 13: Comparison of CAS and AS solvers on learned NODEs.

C.3 BOUND CALCULATION

We introduce three different approaches to compute the bounds of a neuron, namely GAINS,
GAINS-BOX, and GAINS-Linear. GAINS-BOX computes the bounds by only considering inter-
val bound propagation techniques, whereas GAINS-Linear uses linear bound propagation methods
(as described in §5). However, observe that when using the ReLU activation function, the selection
of the slope λ of the lower bounding function (see Fig. 2) allows some design choice, because each
λ ∈ [0, 1] is valid (Singh et al., 2019a). GAINS-Linear selects λ such that the area between the up-
per and lower bound is minimized, i.e. λ = 1 if ux ≥ −lx and λ = 0 otherwise. Finally, GAINS is
a combination of GAINS-BOX and GAINS-Linear, where we compute the bounds for each neuron
using both methods and use the tightest bounds to proceed. In order to further tighten the bounds,
GAINS additionally instantiates GAINS-Linear with λ = 0 for each ReLU and GAINS-Linear
with λ = 1 for each ReLU.

D CLASSIFICATION EXPERIMENTS

In this section, we extend the experimental details from App. C with emphasize on the classification
experiments on the MNIST and FMNIST datasets.

Preprocessing We have rescaled the data in both datasets such that the values are in [0, 1]. After-
wards, we have standardized the data using µ = 0.1307, σ = 0.3081 on the MNIST dataset and
µ = 0.286, σ = 0.353 on the FMNIST dataset, e.g. for input x we have x← x−µ

σ .

Neural Network Architecture In Table 5, the neural network architecture we use in classification
is shown. The four arguments of the Conv2d layer in Table 5 represent the input channel, output
channel, kernel size, and the stride. The two arguments of the Linear layer represents the input
dimension and the output dimension. The NODE layer has Tend = 1 and ODE dynamics gθ.
Moreover, the ConcatConv2d layer takes as input a state x and time t, where it concatenates t along
the channel dimension of x before applying a standard Conv2d layer. The five arguments of the
ConcatConv2d layer represent the input channel, output channel, kernel size, stride and the padding.

Training Details We used the ADAM (Kingma & Ba, 2015) optimizer with learning rate 1e-3 and
weight decay 1e-4 as well as batch size b = 512 and all the training samples in training and we have
used Lstd = LCE in Eq. (13).

In provable training, we have used a warm-up training session, in which we have trained the model
for 50 epochs using the fixed step size ODE solver euler with h = 1

2 . Moreover, in the warm-up
training session, we used the scheduler Smooth( 1

255 , 10, 40) for the annealing of the perturbation ϵ.
Afterward, in the actual training session, the NODE layer uses a CAS as described in App. C.
Furthermore, we train for 100 epochs using the Smooth(ϵt, 0, 60) schedule with ϵt ∈ {0.11, 0.22}
on the MNIST dataset and ϵt ∈ {0.11, 0.16} on the FMNIST dataset. The approximation of the
abstract transformer of the NODE layer uses κ = 2 in epochs 1 until 25, κ = 8 in epochs 51 until
65 and κ = 4 in all the other epochs. Moreover, we set q1 = q2 and use the annealing process
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Table 5: The neural network architecture used in classification on the MNIST and FMNIST
datasets.

Classification neural network fθ

Conv2d(1, 32, 5, 2) + ReLU
Conv2d(32, 32, 5, 2) + ReLU

NODE (gθ, 1)
AdaptiveAvgPool2d

Linear(32,10)

ODE dynamics gθ
[ConcatConv2d(33, 32, 3, 1, 1) + ReLU ] x2

Sin(0.15, 0.33, 10, 80) in order to increase the value of q1. The neural network is trained using the
loss function defined in Eq. (13) with ω1 = 2

3 and ω2 = 0.01.

In the standard training baseline, we have trained the neural network for 100 epochs using the loss
function defined in Eq. (13) with ω1 = ω2 = 0.

In the adversarial training baseline we have trained the neural network for 100 epochs, where the
samples from the dataset are attacked using PGD(ϵ,N = 10, α = ϵ

5 ,LCE) prior to being fed into
the model as input. Moreover, we use Smooth(ϵt, 5, 65) for the annealing of ϵ and ϵt = 0.11 on both
datasets. We use the loss function in Eq. (13) with ω1 = ω2 = 0 in training.

Furthermore, we want to emphasize that whenever we are considering abstract input regions, e.g. in
provable training and adversarial training, we do not allow perturbations outside of the [0,1] interval.

Evaluation Details In order to obtain the adversarial accuracies reported in Table 1, we have used
the PGD(ϵ,N = 200, α = 1

40 ,LCE) attack with ϵ ∈ {0.1, 0.15, 0.2} on the MNIST dataset and
ϵ ∈ {0.1, 0.15} on the FMNIST dataset.

E FURTHER DETAILS FOR TIME-SERIES FORECASTING EXPERIMENTS

In this section, we extend the experimental details from App. C with emphasize on the time-series
forecasting task on the PHYSIO-NET dataset. Moreover, we have made use of the code provided by
Rubanova et al. (2019)6 for the fetching of the dataset and parts of the latent ODE architecture.

PHYSIO-NET Preprocessing The PHYSIO-NET dataset contains data from the first 48 hours of a
patients stay in intensive care unit (ICU). The dataset consists of 41 possible features per observed
measurement, where the measurements are made at irregular times and not all possible features are
measured. We round up the time steps to three minutes, which results in the length of the time-series
being at most 48 · 20 + 1 = 961.

Moreover, we remove four time-invariant features and additionally two categorical features from the
series, namely the Gender, Age, Height, ICUType, GCS, and MechVent. The removed features are
inserted in an initial state x0 ∈ R6 of the time-series, which is used to initialize the hidden state of
the encoder. Note that there is exactly one measurement for the features Gender, Age, Height, and
ICUType, which we used unaltered as the first four entries of the initial state x0. On the other hand,
in the case where we want to predict a value in the future while only using the first L′ entries of an
input series, there can be multiple or no measurements for the GCS and MechVent features among
the first L′ entries of the series. If there are measurements made for the GCS feature, we use the
average of the observed values as the fifth entry of x0, whereas if there are measurements for the
MechVent feature we set the sixth entry of x0 to 1. Otherwise, if there are no measurements for the
two aforementioned features their corresponding entry in x0 is set to zero.

6https://github.com/YuliaRubanova/latent_ode
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Additionally, we clip the measurements for features with high noise or atypical values. Concretely,
we clip the Temp feature to the [32,45] interval, the Urine feature to the [0,2000] interval, the WBC
feature to the [0,60] interval, and the pH feature to the [0,14] interval.

Furthermore, we split the dataset into a training set containing 7200 time-series, validation set con-
taining 400 time-series, and testing set containing 400 time-series.

We normalize the features to be normally distributed, where we estimate the mean and standard
deviation of each feature using the training set. The normalization is used for all features except
the categorical features (Gender, ICUType, GCS, MechVent) and the features Fi02 and Sa02, which
represent a ratio. The categorical features are used unaltered, whereas the ratios are rescaled in order
to be in the [0,1] interval.

Finally, we introduce three different data modes 6h, 12h and 24h, which we consider for the
time-series forecasting task. The data modes differ in the number of entries L′ which are used
as input in order to estimate the final data point of a series. When considering the time-series
xL
ts = {(x(i), t(i))}Li=1 and the data mode 6h, the number of entries used as input is L′

6 = maxi∈[L] i
such that t(i) ≤ t(L) − 6, i.e. we try to predict at least six hours into the future. The data modes 12h
and 24h are defined in the same way, where we try to predict at least 12 or 24 hours into the future.
Furthermore, for a fixed time-series it follows that L′

6 ≥ L′
12 ≥ L′

24.

Time-Series Forecasting Architecture In Table 6, we show the main components of the latent
ODE architecture, which we use for the time-series forecasting task on the PHYSIO-NET dataset.
In the NODE layer of the encoder eθ we use a one-step euler ODE solver, where the step size h
depends on the measured time points in the input time-series. On the other hand, the NODE layer
in the decoder dθ uses the CAS as specified in App. C and the final integration time depends on the
time-series point we want to estimate, e.g. if we estimate x(L) we use Tend = t(L).

Table 6: The main components of the latent ODE architecture used in time-series forecasting on the
PHYSIO-NET dataset.

Encoder eθ
Linear(6,80) + ReLU

GRU-Unit fGRU
θ

Linear(80,100) + ReLU
Linear(100,40)

GRU-Unit fGRU
θ

fz NODE (ge
θ)

fu, fr Linear(115,50) + ReLU
Linear(50,40) + Sigmoid

fs Linear(115,50) + ReLU
Linear(50,80)

ODE dynamics ge
θ

[Linear(40,40) + ReLU ] x3
Linear(40,40)

Decoder dθ

NODE(gd
θ )

Linear(20,35)

ODE dynamics gd
θ

Linear(20,40) + ReLU
[Linear(40,40) + ReLU ] x2

Linear(40,20)
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Training Details We have used batch size b = 128 and Lstd = Lf in Eq. (13) with Lf defined
in Eq. (9) and γ = 30000. Moreover, we assume that the initial state of the generative model of the
time series has prior distribution N (0, 1). What is more, since not all feature values are observed
in each measurement, we want to emphasize that only the observed features are used to evaluate
any metric. For example, if the final data point xL has measured features at the entries in the set
M ⊆ [35] and we obtain the estimate x̂L, the MAE is given by

MAE(xL, x̂L) =
1

|M |
∑
j∈M

|xL,j − x̂L,j |. (16)

Additionally, as our validation metric, we use the MAE with concrete inputs in all experiments in
order to evaluate the performance of the model on the validation set. We have trained the models on
the random seeds 100, 101, and 1027.

Moreover, observe that in a batched input setting the sequence length of the individual time-series
can be different, and also the time in which measurements are made differs. In order to circumvent
this issue and allow batched training, we take the union of the time points and extend each individual
series to contain all time points observed in the batch, where we add data points with no measured
features to each series. Furthermore, in batched training, the GRU-unit of latent ODE only performs
an update to the hidden state to those inputs in the batch, for which at least one feature was observed
in the data point at the currently considered time.

In standard training, we have trained the latent ODE for at most 120 epochs, where after each epoch
we evaluate the performance of the model on the validation set and use the model with the best
performance on the validation set in testing. Note, that if the performance on the validation does not
improve for 10 epochs we apply early stopping. Furthermore, ADAM (Kingma & Ba, 2015) was
used as optimizer with learning rate 1e-3 and weight decay 1e-4 and we have used ω1 = ω2 = 0 in
Eq. (13).

In provable training, we have trained the latent ODE for 120 epochs, where we have used the sched-
uler Smooth(ϵt, 5, 65) for the perturbation with ϵt ∈ {0.1, 0.2}. The approximation of the abstract
transformer of the NODE layer in the decoder dθ uses κ = 1 in all epochs, whereas the NODE layer
in the encoder eθ has due to the chosen ODE solver always only one possible trajectory. Moreover,
in the NODE layer of dθ, we set q1 = q2 and use the annealing process Sin(0.15, 0.33, 10, 80) in
order to increase the value of q1. Furthermore, the abstract ratio ρ is initialized as ρ = 0.1 and we in-
crease its value by 0.05 at the end of epochs {10, 15} and by 0.1 at the end of epochs {10+5 · i}9i=2.
Moreover, ADAM was used as optimizer with learning rate 1e-3 and weight decay 1. Furthermore,
as soon as the target perturbation is reached (ϵ′ = ϵt), we evaluate the performance of the model on
the validation set after each epoch and use the model with the best performance on the validation set
in verification.

Evaluation Details In order to obtain the adversarial accuracies reported in Table 2, we have used
the PGD(ϵ,N = 200, α = 1

40 ,MAE) attack with ϵ ∈ {0.05, 0.1, 0.2} on all data modes of the
PHYSIO-NET dataset.

F TRAJECTORY ATTACKS

In order to describe the used attacking procedure, let us denote by δ1 the local error estimate of the
solver in the first step, e.g. δ1 = δ(0, h0), and by δ2 the local error estimate from the second step.
Moreover, assume that we use a CAS with update factor α.

We describe the attack for a single δi with i = 1, 2 first and afterward how to combine them. The
loss function Latt(z0) we try to maximize during the attack, depends on the value of δi, where in
the case that δi ∈ [0, τα] ∪ [ τα+1

2 , 1], we have Li(z0) = δi, whereas otherwise Li(z0) = −δi is
used. Hence, we try to decrease or increase the error estimate δi depending on the closest decision
boundary, such that a different update is performed.

The attacks are performed by using the {PGD(ϵ, 100, 1
40 ,Latt,m)}5i=−1 attacks with ϵ ∈

{0.1, 0.15, 0.2} and we define Latt,m next. The parameter m specifies how to combine the

7Some models were trained with seed 103.
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loss functions for the individual local error estimates δ1 and δ2, where for m = −1 we use
Latt,−1(z0) = L1(z0), for m = 0 we use Latt,0(z0) = L1(z0) + L2(z0) and for m ≥ 1 we use in
PGD iteration j the loss Latt,i(z0) = L2(z0) if j mod m = 0 and otherwise Latt,i(z0) = L1(z0).

In our experiments, we use the attacks with −1 ≤ m ≤ 5 for the same input z0 and as soon as
we have successfully found z′

0 ∈ Bϵ(z0) such that Γ(z0) ̸= Γ(z′
0) holds, the attack is stopped and

considered to be successful.

G DEEPPOLY TOY DATASET & LP BASELINE

In this section, we describe the generation of the DEEPPOLY toy dataset and the used LP baseline in
the LCAP experiments in §6.3. In order to do so, we define the discrete uniform distribution U(X )
over a set X = {xi}ni=1 and the continuous uniform distribution U(a, b) on a bounded domain
[a, b], i.e. −∞ < a < b < ∞. The former distribution is a categorical distribution with pi = 1

n

∀ i ∈ [n], whereas the latter distribution has probability density function pU (x) =
1

b−a ∀x
′ ∈ [a, b]

and pU (x) = 0 otherwise.

LCAP Toy Dataset To generate m different linear constraints in order to describe a random
relation between activation y ∈ R and activations x ∈ Rd. We only describe the process for
the upper bounds of the linear constraints, since the construction of the lower bounding con-
straint follows analogously. Additionally, we define the cosine similarity between two vectors as

sim(a, b) =
∑d

i=1 ai·bi
∥a∥2∥b∥2

with ∥a∥2 =
(∑d

i=1 a
2
i

) 1
2

. We ensure that the average cosine similarity
among the produced upper bounds is within [0.975, 0.99]. The lower bound on the similarity is in-
cluded since we assume that all linear constraints describe the same relation and therefore we expect
them to be similar. On the other hand, the upper bound on the similarity is included such that there
are at least some differences between the constraints and the LCAP is harder to solve.

Furthermore, we define the functions g1(d) = 5 ·
(
min

(
1, 20

d+1

))2

, g2(d) = β ·

min
(
1, 5

d+1 ·
⌈
d+1
50

⌉)
with β = 3 and the ceiling function ⌈z⌉ = min{n ∈ N|n ≥ z}, and

gα(x) =
∑d

j=1 αj · xj + αd+1 for any α ∈ Rd+1.

First, we construct the abstract input domain X , where for each entry xj we sample z1, z2 ∼
U(−g1(d), g1(d)) and set lxj = min(z1, z2) and uxj = max(z1, z2).

Afterwards, we sample the coefficients aj ∼ U
(
−β

2 ,
β
2

)
∀j ∈ [d+ 1] and fix the relation between

x and y as y = ga(x). Next, we sample the coefficients w0
j ∼ U(−β, β) ∀j ∈ [d + 1] and define

the proposal upper bound gw0(x). We apply an upper bounding update to the bias term if it is not a
proper upper bound, i.e. w0

d+1 ← w0
d+1 −minx′∈X gw0−a(x

′) if minx′∈X gw0−a(x
′) < 0. The

proposal upper bound is accepted as the upper bound if |w0
d+1| ≤ 2 · β and otherwise we repeat the

procedure until we have an accepted upper bound.

Afterward, we initialize the upper bounding set U = {}, which is iteratively augmented until its
cardinality is m. In the first iteration we sample ∆1

j ∼ U(−g2(d), g2(d)) ∀j ∈ [d + 1] and define
w1 = w0+∆1. Moreover, the bias term of gw1 is corrected using the upper bounding update, such
that we have gw1(x′) ≥ ga(x

′) ∀x′ ∈ X . We include w1 to U if |w1
d+1| ≤ 2 · β, and otherwise

repeat until the iteration is accepted.
In the i-th iteration, wi is obtained by applying the same procedure as in the first iteration. However,
wi is only included to U if |wi

d+1| ≤ 2·β and 1
|U |

∑|U |
k=1 sim(wi,wk) ≥ 0.975, otherwise we repeat

the calculation of wi.

As soon as the cardinality of U equals m, we calculate the average similarity of the vectors in U and
accept the set U if the similarity is less than 0.99, i.e. 1

(m−1)·(m−2)

∑m
i=1

∑m
k=i+1 sim(wi,wk) ≤

0.99. Otherwise, the set is rejected and we reinitialize the process from the beginning. If the set is
accepted, we define the linear upper bounding constraints using ui = gwi for i ∈ [m].
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Observe that the generation process is probabilistic and we often reject proposal coefficients and
sets. Hence, in order to avoid a non-terminating process, we limit the number of sampled vectors to
35000.

LP Baseline We have used LP(8, 50, 40) as a baseline for the LCAP toy dataset experiment, where
for a LCAP with m different constraints that describe the relation between z ∈ Z ⊆ Rd and y ∈ R
the baseline works as follows. The LP baseline initially defines the set Z ′ = {z′

(j)}
8·d
j=1 with z′

(j) ∼
U(∂Z) ∀j ∈ [8 · d], where ∂Z are the corners of Z , and solves the resulting optimization problem
when replacing Z with Z ′ in Eq. (7). We denote the optimal solution of the simplified optimization
problem by uZ′

, which is obtained by using a commercial linear program solver (GUROBI (Gurobi
Optimization, LLC, 2022)). Note that due to the linear form of all the constraints, it is enough to
only consider the 2d points in ∂Z in the optimization constraint of Eq. (7).

Observe that since we have loosened the restrictions, we may have that uZ′
is unsound in ∂Z , i.e. it

exists some z′ ∈ ∂Z and i ∈ [m] such that uZ′
(z′) < ui(z′).

If uZ′
is sound it is used as the solution of the LP baseline, otherwise for all i ∈ [m] that violate

the soundness check, we add ẑi = argminz′∈∂Z uZ′
(z′) − ui(z′) to the current Z ′. Moreover,

for each ẑi we produce the corner points {zi,k}40−1
k=1 and add them to Z ′ as well, where we have

zi,kj = ẑij with probability 0.75 and else zi,kj = lzj + uzj − ẑij ∀k ∈ [40− 1], ∀j ∈ [d].

This process is repeated at most 50 times and if the solution uZ′
is still unsound after 50 iterations,

we add maxi∈[m],z′∈∂Z ui(z′)− uZ′
(z′) as a correction bias.

H ADDITIONAL EXPERIMENTS

H.1 COMPARISON CAS AND AS

To further compare CAS and AS solvers, we train and evaluate NODEs of the same architecture
(see App. D) with either CAS or AS using both standard and adversarial training (ϵt = 0.11). We
report mean and standard deviation of the resulting standard and adversarial accuracy on MNIST
and FMNIST across three runs in Table 7. We observe that while the mean performance with AS
is better than that with CAS solvers in more settings than vice-versa, across both datasets and all
perturbation magnitudes, there is not a single setting, where the±1 standard deviation ranges do not
overlap. Further, we observe the same trends regardless which solver we use. We thus conclude that
any performance difference between CAS and AS solvers is statistically insignificant.

Table 7: Means and standard deviations of the standard (Std.) and adversarial (Adv.) accuracy
evaluated using CAS or AS on the first 1000 test set samples.

Dataset Training Method ODE Solver Std. [%]
Adv. [%]

ϵ = 0.10 ϵ = 0.15 ϵ = 0.20

MNIST

Standard AS 99.2±0.1 24.5±2.0 1.9±0.7 0.0±0.2

CAS 98.8±0.4 23.2±3.5 2.5±1.6 0.3±0.2

Adv. AS 99.2±0.2 95.9±0.2 88.5±0.6 54.6±2.4

CAS 99.2±0.1 95.4±0.4 88.3±0.6 59.4±3.2

FMNIST

Standard AS 90.3±0.4 1.3±1.6 0.5±0.7

CAS 88.6±1.2 0.1±0.1 0.0±0.0

Adv. AS 80.8±0.5 70.3±0.3 53.6±3.1

CAS 80.9±0.7 70.2±0.5 47.1±3.7

H.2 COMPARISON GAINS AND TISODE

We compare our certified training via GAINS to the heuristic defence of Yan et al. (2020), which
introduce time-invariant steady neural ODEs (TisODEs) using a pre-trained TisODE model from

25



Published as a conference paper at ICLR 2023

Table 8: Comparison of GAINS-trained and TisODEs (Yan et al., 2020) with respect to standard
(Std.) and adversarial (Adv.) accuracy on the first 1000 test set samples of the MNIST dataset.

Training Method Std. [%]
Adv. [%]

ϵ = 0.10 ϵ = 0.15 ϵ = 0.20

TisODE (Yan et al., 2020) 99.3 93.1 78.6 55.5
GAINS (ϵt = 0.22) 91.8 88.5 86.8 84.5

Table 9: Means and standard deviations of the standard (Std.) and certified (Cert.) accuracy obtained
using GAINS, GAINS-Linear and GAINS-BOX evaluated on the first 1000 FMNIST test set
samples.

ϵt Std. [%]
ϵ = 0.10 ϵ = 0.15

GAINS-BOX Cert. [%] GAINS-Linear Cert. [%] GAINS Cert. [%] GAINS-BOX Cert. [%] GAINS-Linear Cert. [%] GAINS Cert. [%]

0.11 75.1±1.2 44.2±5.5 56.3±1.4 62.5±1.1 3.5±1.4 8.4±2.3 13.3±3.1

0.16 71.5±1.7 47.0±5.7 54.7±2.5 61.3±2.7 36.8±5.2 42.7±1.4 55.0±4.3

Yan et al. (2020)8 with 141 130 trainable parameters and a GAINS-trained NODE with 45 866
parameters. Reporting standard and adversarial accuracies for MNIST in Table 8, we observe that
while the TisODE has a higher standard accuracy, its adversarial accuracy quickly decreases with
perturbation size, falling to 55.5% at ϵ = 0.2, where the GAINS-trained NODE still has 84.5%
adversarial accuracy. We highlight that TisODEs are not trained with future certification in mind,
explaining the gap in standard accuracy.

H.3 ABLATION GAINS VERIFICATION

To analyse the effect of combining linear-bound propagation with interval bound propagation, dis-
cussed in App. C.3, we conduct two experiments: First, we compare the certified accuracies obtained
with GAINS to GAINS-Linear, a version only using linear-bound propagation, and GAINS-BOX,
a version only using interval bound propagation (both use our trajectory graph construction). Sec-
ond, we compare the bounds on output logit differences obtained with GAINS, GAINS-Linear and
GAINS-BOX to those obtained via an adversarial attack using PGD.

In Table 9, we report the certified accuracies obtained with GAINS, GAINS-Linear and GAINS-
BOX on the FMNIST dataset and observe that GAINS outperforms the other methods in every
setting, showcasing that GAINS inherits benefits from both linear- and interval bound propagation.
Moreover, we additionally observe that using GAINS-Linear results in higher accuracies than using
GAINS-BOX, demonstrating the importance of linear bound propagation and thus CURLS for our
method GAINS.

−5 0 5
Adv. Bounds 

−5

0

5
Cert. Bounds

GAINS
GAINS-Linear
y = x

0 1 2
Bound Tightness

Frequency
GAINS
GAINS-Linear
GAINS-Box

Figure 14: Comparison of certified (GAINS and GAINS-
Linear) and empirical (Adv.) bounds on the worst case logit-
difference (left) and illustration of the frequency of the bound
tightness depending on the verification method (right).

In Fig. 14, we compare the tightness
of the certified bounds computed with
GAINS, GAINS-Linear and GAINS-
BOX to empirical bounds obtained via
an adversarial attack on a GAINS-
trained NODE (ϵt = 0.16) for FM-
NIST. We illustrate both the certi-
fied over adversarial bounds (left) and
the frequency of different tightness-
gap sizes depending on the verification
method (right) for a perturbation mag-
nitude of ϵ = 0.15. In both settings, we
evaluate the first 1000 test-set images
and compute the empirical bounds with
a strong PGD attack using 200 steps.
We clearly observe that using GAINS
significantly improves bound tightness.

8https://github.com/HanshuYAN/TisODE
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Table 10: The standard (Std.), adversarial (Adv.), and certified (Cert.) accuracy obtained with
GAINS evaluated on the first 1000 CIFAR-10 test set samples .

Training Method ϵt Std. [%]
ϵ = 0.001

Adv. [%] Cert. [%]

GAINS 0.001 60.8 57.6 57.1

H.4 SCALABILITY TO CIFAR-10

In this section, we evaluate the scalability of GAINS to the CIFAR-10 dataset(Krizhevsky et al.,
2009). Training a NODE with GAINS as described below, we report standard, adversarial and
certified accuracies in Table 10. We observe that for most perturbation magnitudes (ϵt = ϵ = 0.001),
we achieve a standard accuracy of over 60% and and a certified accuracy of 57.1%, demonstrating
the scalability of our approach to CIFAR-10.

Experimental Setup We modify the experimental details from App. D such that they are
applicable to the CIFAR-10 dataset. We use µ = [0.4914, 0.4822, 0.4465] and σ =
[0.2023, 0.1994, 0.2010] for standardization.

During warm-up, we use the scheduler Smooth( 0.1
255 , 10, 40) for ϵ-annealing. During the main train-

ing, we use κ = 2 in epochs 1-25, and κ = 4 in otherwise. For evaluation, we have used a strong
PGD attack with 200 steps.

H.5 HYPERPARAMETER SELECTION

In this section, we investigate the effects of different hyperparameter selections in provable NODE
training, with emphasis on the trajectory exploration and update sampling described in App. B. All
experiments in this section were conducted on the FMNIST dataset using provable training with
ϵt = 0.16 and the remaining hyperparameters are as described in App. D, except when explicitly
stated otherwise.

Aggregation Method As described in App. B in training we sample κ trajectories from the trajec-
tory graph G(Z) in order to approximate the bounds of the NODE output z(Tend). We compare three
approaches on how to combine the κ trajectories in training, which we call stack, average and worst
case. The stack approach considers the bounds from each sampled trajectory individually and can be
interpreted as increasing the effective batchsize by factor κ, since we stack all obtained bounds along
the batch dimension and propagate the resulting output through the remainder of the architecture.
On the other hand, the average approach uses the mean of all obtained bounds, whereas the worst
case approach uses the loosest bounds for each neuron. The results are reported in Table 11, where
we see that the stack approach performs the best. We assume that this follows from the interpretation
that this can be seen as increasing the effective batchsize and results in better gradient estimation.
On the other hand, using the worst case approach suffers from gradient information loss, due to the
usage of the maximum and minimum operations.

Table 11: Means and standard deviations of the standard (Std.) and certified (Cert.) accuracy using
different aggregation methods evaluated on the first 1000 test set samples of the FMNIST dataset.

Aggregation Method Std. [%]
Cert. [%]

ϵ = 0.10 ϵ = 0.15

stack 71.5±1.7 61.2±2.7 54.8±4.1

average 71.0±0.4 60.0±1.4 52.8±0.9

worst case 69.0±1.5 57.9±2.1 50.9±2.1

Annealing Process In Table 12 we evaluate the influence of the used annealing process for the
sample probability q = q1 = q2 during training. We observe that when using a fixed sample
probability (last two processes in Table 12), GAINS achieves higher accuracies when the sampled
trajectories are closer to the reference trajectory, i.e. use smaller q. We hypothesize that the process
Sin(0.33, 0.33, 10, 80) considers too many trajectories which occur only due to approximation errors
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in the abstract domain. However, we observe the best performance in all settings, when annealing
the sampling probability. We assume that staying close to the reference trajectory in the early stages
of training stabilizes the network and reduces the number of vertices in the trajectory graph induced
by approximation errors. On the other hand, it is important to refine the bounds in all parts of the
trajectory graph, which is why the annealing works best, if in the end we have a uniform distribution,
i.e. q ≈ 1

3 .

Table 12: Means and standard deviations of the standard (Std.) and certified (Cert.) accuracy using
different annealing processes evaluated on the first 1000 test set samples of the FMNIST dataset.

Annealing Process Std. [%]
Cert. [%]

ϵ = 0.10 ϵ = 0.15

Sin(0.15, 0.33, 10, 80) 71.5±1.7 61.2±2.7 54.8±4.1

Sin(0.15, 0.4, 10, 80) 68.1±2.6 56.4±4.6 49.6±5.2

Sin(0.15, 0.15, 10, 80) 70.8±1.2 60.1±0.7 53.6±0.6

Sin(0.33, 0.33, 10, 80) 68.5±0.7 57.8±1.8 50.9±2.9

Number of Sampled Trajectories In Table 13 we evaluate the influence of the number of sam-
pled trajectories κ, where we additionally investigate the effect of including the reference trajectory
among the selected trajectories (fixed in Table 13). We consider three κ settings, in the first one we
always use κ = 1, in the second one we use κ ∈ [2, 4, 8] as described in App. D, and in the last
setting, we always use κ = 4. We observe that in the κ = 1 setting it is better to always use the
reference trajectory instead of sampling. When increasing κ, we note that the variant which does
not always include the reference trajectory performs better.

Table 13: Means and standard deviations of the standard (Std.) and certified (Cert.) accuracy using
different κ evaluated on the first 1000 test set samples of the FMNIST dataset.

κ Selection Method Std. [%]
Cert. [%]

ϵ = 0.10 ϵ = 0.15

1 sample κ 69.0±1.6 57.8±3.0 51.0±3.7

fixed 71.5±1.5 60.7±1.2 54.1±1.0

[2,4,8] sample κ 71.5±1.7 61.2±2.7 54.8±4.1

fixed + sample κ− 1 70.7±1.5 60.2±1.8 53.2±1.6

4 sample κ 71.8±0.9 62.2±1.0 54.7±1.5

fixed + sample κ− 1 69.9±2.0 59.2±2.6 53.4±3.9
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