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Appendix

A ADDITIONAL EXPERIMENTS

4 x 4 Frozen Lake problem. The 4 x 4 frozen lake is similar to the 8 x 8 one but with a smaller
map. Similarly, we randomly generate the utility signal for each state-action pair. The results are
shown in Fig[4]
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Figure 4: Comparison on 4 x 4 Frozen-Lake Problem.

N-Chain problem. We then compare three algorithms under the N-Chain problem environment.
The N-chain problem involves a chain contains [NV nodes. The agent can either move to its left or right
node. When it goes to left, it receives a reward-utility signal (1,0); When it goes right, it receives a
reward-utility signal (0, 2), and if the agent arrives the N-th node, it receives a bonus reward of 40.
There is also a small probability that the agent slips to the different direction of its action. In this
experiment, we set N = 40. The results are shown in Fig[3]
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Figure 5: Comparison on N-Chain Problem.

B PROOF OF TWO EQUIVALENT FORMULATION OF LAGRANGIAN FUNCTIONS

Consider the problem
max mrjn Ve (18)
s.b.min Vi, > 0 (19)
The Lagrangian function of it is given by L(7, A) = minp V§', + Aminp V.. Hence the original
problem is equivalent to the problem max, miny>o L(m, A).

We also consider an alternative problem formulation max, minyso L(, \), where L(m,\) =
minp{Vg", + AVE'.}. These two problem is actually equivalent, i.e., miny>oL(m,\) =

miny>o L(7, \) for any 7.
Proof. For the feasible policies, i.e., VPT . > 0forany P € P. Thus
nin L(m,\) = iy mln{va,} + AV .}

= Ve AV
Ipnelflg 1’I1>1{)1{ P,r + P, c}
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= min{{V,fm + I){lzlgl AVE b}

Ipnem Ve, (20)

On the other hand,
in L(7m, \) = min{min V§' in AVg'
in (m, A) Igun{mm o min b et

= min Vg’ + min min AVg',
PEP A>0 PEP

= win V&, @1

For any infeasible 7, i.e., 3P’ € P, s.t. minp VRC < 0. Clearly miny>¢ L(m, A) = —oco. And

in L(r,\) = minmin{V§, + AVF,} <min{VZ , + AV .} = —occ. 22
min L(m, A) = minmin{Vy, + AV} < min{Vg, , + AVE  } = —o0 (22)

Hence miny>o L(m, A) = minyso L(, A) for any 7, and hence the two problems are equivalent. [

C PROOF OF LEMMA [T

Denote by P™ = {(p™)% € As : s € §,a € A} the worst-case transition kernel corresponding to the
policy 7. We consider the -contamination uncertainty set defined in Section[d] We then show that
under d-contamination model, the set of visitation distributions is non-convex. The robust visitation
distribution set can be written as follows:

d(s,a) = 7(als) stb
Y " Lal)+ (L=7)p(s) =Y _d(s,a).

s’,a’

de Agypq:Im el s.t.Y(s,a),

(23)

Under the §-contamination model, P™ can be explicated as (p™)¢ ;, = (1-6)pg o +01 o —arg min v}
Hence the set in eq. (23) can be rewritten as

d(s,a) (Zd s, b) )
d € Asxn: 3m, s.t.¥(s,a),{ y(1 — Zps’,sd s',a") + Y01 {s—arg min v} . (24

= Zd(s,a).

Now consider any two pairs (71, d1 ), (72, d2) of policy and their worst-case visitation distribution,
to show that the set is convex, we need to find a pair (7', d’) such that VA € [0, 1] and Vs, a,

Ad1(s,a) + (1 — N)da(s,a) = d'(s,a), (25)

d'(s,a) (Zd’ s b) (26)

Zd s,a’) =~(1— Zps,’sd (s',a") +751{s:argminw’} + (1 —7)p(s). 27

s’,a’

eq. firstly implies that Vs,

/\]l{s:argmin Vil + (1 - A)]l{s:arg minV72} = ]l{s:argmin V“’}’ (28)
where from eq. (23 and eq. (26)), 7’ should be
d Ad 1-MNd
ﬂ_l(a|5) — (37 CL) — 1(57 a) + ( ) 2(37 a) . (29)

2 d(5:0) 3 p(Adi(s,b) + (1= A)da(s, b))
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We then construct the following counterexample, which shows that there exists a robust MDP,
two policy-distribution pairs (71, d1), (2, dz), and X € (0,1), such that A1 {,— g min v} + (1 —
M s—argminvrey 7# 1 {s=argmin v’} and therefore the set of robust visitation distribution is
non-convex.

Consider the following Robust MDP. It has three states 1, 2, 3 and two actions a, b. When the agent is
at state 1, if it takes action a, the system will transit to state 2 and receive reward r = 0; if it takes
action b, the system will transit to state 3 and receive reward » = 2. When the agent is at state 2/3,
it can only take action a/b, the system can only transits back to state 1 and the agent will receive
reward r = 1. The initial distribution is 1,—;.

action=a r =20

action=a r =1
action=b r =2

action=b r =1

Clearly all policy can be written as m = (p, 1 — p), where p is the probability of taking action a at
state 1. We consider two policies, m; = (1,0) and w2 = (0, 1).

It can be verified that arg min V™ = 1, and its robust visitation distribution, denoted by d;, is

L—7
di(1,a) = T2 (30)
dy(1,b) =0, 31
11 —7)
d1(2,a) = =2 (32)
d1(2,0) =0, (33)
dy(3,a) =0, (34)
dy(3,0) =0 (35)
Similarly, arg min V™2 = 2, and and its robust visitation distribution, denoted by do, is
da(1,a) =0, (36)
L—n
1,0) = ——=
d2(1,) = T3 (37)
da(2,a) =0, (38)
da(2,b) =0, 39)
d2(3,a) =0, (40)
(1 =7)
= 41
da(3,b) = (41)

Hence according to eq. (29), 7’ should be as follows:
' (a|]l) =\, 7'(b]1) =1 — A\, 7'(a]2) = 1,7'(b|3) = 1. (42)
We then show that there exists A € [0, 1], such that Al ,—1y + (1 — A\)1g,—0y # ]l{arg min V')

Clearly eq. holds only if V™ (1) = V™ (2) = min, V™ (s). However, according to the Bellman
equations for 7/, we have that

V(1) = Ay(1 = 8)V™(2) + 46 min V™) + (1 = A)(2 + (1 — ) V™ (3) + vdmin V™),
(43)
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VT (2) =141 -8V (1) +~+min V", (44)
VT (3)=1+~v(1-6)V™ (1) +~+émin V" . (45)

If we set A = 1,
VT (1) = % +46min V™ +~(1 —8)V™ (2), (46)
VT (2)=14+45min V™ + (1 —8)V™ (1). (47)

Clearly, V™' (1) # V™' (2), and hence AL farg min vty + (1 = A)Lfargmin vy # 1 {argmin v}

D PROOF OF LEMMAS[2]AND
Proof of Lemma

Proof. We firstset C' = V™o (p) + \* (V7o (p) —b), clearly max e V.7 (p) + X (V7 (p) —b) = C,
and hence

C = max V7 (p) + A" (VI (p) = ) 2 VI () + A" (V" () =0) 2 VI (p) £ A°C. (48)

Thus we have that

7S
A< ¢ -V (P) (49)
¢
Note that
(a) 1
= 1 7T 7T _— < Tr <
¢ =minmaxV, (p) + AV (p) = b) < maxV7(p) < 5 — (50)

where (a) is because miny>o maxye V.7 (p) + A(V7 (p) — b) is less than the optimal value of inner
problem when A\ = 0, i.e., max,e; V,"(p), and 1iv is the upper bound of robust value functions.
Hence we have that

_
(1-=¢

which completes the proof. O

)\*

IN

D

Proof of Lemma|3]
Proof. Set C = Vg;.(p) + X*(Vei(p) — b), then
C = max V7, (p) + X" (V7(p) = 0) 2 Viy (o) + X'(Vie (p) = ) 2 Vip (p) + X°¢. (52)

Thus we have that

C >V (p) + A\C, (53)
hence
C =V (p)
N (54)
Note that
— : ™ g _b< ™ <
¢ =minmax V7, (p) + A(Vs.(p) — b= max Vi, (p) < Co, (55)

where C, is the upper bound of smoothed robust value functions (Wang & Zou, 2022): C, =
ﬁ (1+ QVR@)- Hence we have that

A< %, (56)

which completes the proof. O
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E PROOF OF LEMMA

Proof. For any ), denote the optimal value of the inner problems max e, V,J,.(p) + A(V.(p) —b)

o,r

and max ¢ 7o V,"(p) + MV (p) — b) by VP(X) and V.2 (). It is then easy to verify that
VPN = V)< (14 Ne < (1+ A% (57)

Denote the optimal solutions of minyeo, 4-) V2 (A) and minyepo, 4+ V2 (A) by AP and 2. We thus
conclude that |V,P (AD) — VP(AP)| < (1 + A*) e, and this thus completes the proof. O

F PROOF OF THEOREM I

We restate Theorem [T with all the specific step sizes as follows.

CV 2 *
Set b, = 2051%’ e = E(CY ) + 15(75,§+;’))2 —2v, B = %,at = v+ , where § > %

v is any positive number and 7 is any number greater than 2, then

min Gl < 2e, (58)
when
*\4 . V2 2
T = max { 72;164) ) <2 + 98(r 2)620‘7 ) UK> } =0(e). (59)

The definitions of u, K can be found in Section[J}
Theorem [T]can be proved similarly as Theorem 2] and hence the proof is omitted here.
G PROOF OF LEMMA[3]

Proof. Recall that V.J(0,X) = VI2.(p) + AM(VT%(p) — b), hence we have that

VAVE(6,0) = V]2(p) — b, (60)
VoV (0,)) = VoVIo(p) + AVeV o p). (61)

Note that in (Wang & Zoul [2022), it has been shown that

Vot = Vo || < G5 [16r = ba]], (62)
VoVt = VeVar || < Lo|61 — o], (63)

where the definition of constants CY and L, can be found in Section m Hence
IVAVZ (0, Mo, — VaVa (8, Nloull = IVore (p) = Ve (p)| < CF 161 — 62l (64)
VAV (0, X5, = VAV (0, )], [l = 0. (65)

Similarly, we have that
IVeVa (0, Mo, — VoV (0, Mo [l < (1+ N Lo |01 — O2]] < (1+A%) Lo |01 — 02|, (66)
VoV (0, M = VoV (0, Vs | < 10 = Ao) | max [V VI (p)l| < C5' [ M = Aol (67)

This completes the proof. O
H PROOF OF PROPOSITIONII]
Proof. The A-entry of Gy is smaller than 2e, i.e.,

[(Gw)al = ’/3w <AW — H[O,A*] (Aw — ﬂiv(vAVUL(ew,AW)))N < 2e. (68)

19



Under review as a conference paper at ICLR 2023

Denote AT £ [0, 241 ()\W - BLW (VAVE(Ow, )\W))). From Lemma 3 in (Ghadimi & Lan, 2016),
—VAVE (O, AT) can be rewritten as the sum of two parts: —VV.E (0w, AT) € Njg a+)(AT)+4€B,
where N (z) £ {g ERY: (gy—2)<0:Vy € K} is the normal cone, and B is the unit ball.

This hence implies that for any A € [0, A*], (A — AT)(VIV —b) > —4(X — AT)e. By setting A = A*,
we have VCV,Z + 4€ > b, which means 7y is feasible with a 4e-violation. O

I PROOF OF THEOREM 2]

We then prove Theorem 2] Our proof extends the one in (Xu et al.l 2020) to the biased setting.

A

To simplify notations, we denote the updates in Algorithm [3{ by f(6;) 2 V,et(p) — b, and
G0, Mi11) 2 VoVart(p) + Mi11VeVa ot (p), and denote the update functions in Algorithm

by £(0:) = Voo (p) — b, and g(0;, M y1) £ VaVist (p) + Ar41VeVae! (p). Here f and § can be
viewed as biased estimations of f and g.

In the following, we will first show several technical lemmas that will be useful in the proof of
Theorem 21

Lemma 7. Recall that the step size oy = v + pyg. If py > (1 + A*) Ly, Vit > 0, then
VEO1, M) = VEOr, A1) > (Ori1 — O, —3(08, 1) + (04, Ae1))

1
+ (54 2) 100 - 01 (©9)

Proof. Note that from the update of ; and proposition of projection, it implies that

1.
<9t + afg(@t, A1) = Ory1, 00 — 0t+1> <0. (70)
t
Hence
(9006, A1) — (011 — 0¢),0¢ — O11) < 0. (71)
From Lemma 3] we have that
14+ A%)L,
VB dein) = VO M) 2 Ben = 009000 2ei)) — 2 oy a2 a2
Summing up the two inequalities implies
VE(Os1, A1) — VE (61, Agr)
. 14+ A%)L,
2 (Or1 — 01, =901, Aeg1) + 9(0r, A1) + au(Oeq1 — 01)) — %HaHl — 6:?
. L,(14 A*
> (Or11 — 01, =901, A1) + 9(01, A1) + (at - (2)) 16541 — 0]
~ Mt 2
> (041 — 0t =90, A1) + g (O, A1) + (5 + V) 16241 — O:]7, (73)
and hence completes the proof. O

Lemma 8. Recall that the step size B; = ¢, and set £ < % , then

1
5!
VEOus1, M1) — VE(O, M)

f N CV 2
> (f(tgt—l) - f(et—l))()\t-H - )\t) + <9t+1 - 9t7 —g(Gt’)\t_H) +g(9t7)\t+1)> _ f( 20 ) Het _ 975_1“2
by 1 )
+ (% + V) 10541 — 0:]|* + tTl()\f — A1) — E()‘t—kl )2 - 275()% ) (74)
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Proof. Forany t > 1, define V;(6, \) 2 V.2 (6, \) + 252 A2, Thus we have
IVaVi(0s, A1) — VaVi(0r, Ae)| = be—1/Aev1 — M| < bolAews — Ml (75)

where that last inequality is due to b;_; < by. Note that IN/t(H, A) is b;_1-strongly convex in A, hence
we have

(VaVi(0, Adg1) — VaVi(0, \e)) (A1 — Ae)
> by 1 (A1 — Ae)?

> by (bf_lerO) (A1 — Ae)?

bi—1+bo
be—1bo 2, bi, 2
= 0 AP T (A - A
b1 + bo( t41 = Ad) b1 + bo( t41 = Ad)
bi_1b 1 - ~
> ﬁ()‘ﬂrl — )+ m(vﬂ/}(@t, Nit1) — VaVi(0i, Ao))?, (76)

where the last inequality is from eq. (73).
Recall the update of \; in Algorithm [3| which can be rewritten as

1 - 1 .
Aty1 = At — =V Vir1(0s, M) + —(f(6y) — f (64 , 77
1= Ty (3= 3 VaTina(@ 00 + 3700 — 0 )
This further implies that VA € [0, A*]:
(BeAes1 — M) + VaVig1 (0, Ae) — £(00) + f(00)) (A — A1) > 0. (78)
Hence setting A = Ay implies that
(Beer1 — M) + VaVig1 (0, Ae) — F(0e) + f(0:)) (A — Aegr) = 0. (79)
Similarly, we have that
(Be(Ae — Ae1) + VaVi(Or—1, M—1) — f(0—1) + f(etfl))(/\tJrl —At) > 0. (80)

Note that f/t is convex, we hence have that
Vi(0s, A1) = Vi(0s, M)
> (VaVi(0r, M) (A1 — Ae)
= (VaVi(0s, Ae) = VaVa(r-1, Ae-1)) Aer1 = Ae) + (VaVa(Or-1, Ae-1)) (Aern — Ao)

2 (T 0 = AT B )1, At — M)
+ (F(Oem1) = F(Bem1) = Be(he — Aem1)) (Meg1 — Mo), 81
where (a) is from eq. (80). The first term in the RHS of eq. can be further bounded as follows.
(VaViBs, M) = VaVi(Bi—1: Ae—1)) Aer = Ar)
= (VaVa(0r, Ae) = VaVi(Br1, M) (Aegr — Ae)
+ (v)\‘;vt(gtfly At) — v)\‘?t(gtfla At—1)) (A1 — Ar)
= (VaVa0r, Ae) = VaVi(Br—1, M) (A1 — Ae)
+ (v)\fft(gtfla At) — v)\f/;f(gtfla At—1))(Ae — A1)
+ 1 (VaVe(0r-1, M) = VaVi(Or-1, Ae—1)), (82)

where my1 2 (M1 — Ae) — (A¢ — A\r_1). Plug it in eq. and we have that
‘71‘,(01% >\t+1) - ‘N/t(etv )\t)
> (f(0r-1) = f(Bi-1) = Beh = A1) Aegr — o)
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+ (V)\Vt(et, At) — V)\f/;f(etflv Ae))(Aer1 — At)
(a)
+ (VaViO—1, M) = VaVi (-1, A1) (A = A1)
(b)
+ (VaVi(Or—1, \e) — VaVi(Or—1, Ae—1))mugr - (83)

(e)
We then provide bounds for each term in eq. (83) as follows.

Term (a) can be bounded as follows:
(VAVe(Br, M) = VaVi(Br-1, M) Aer — M)
= (VAVE(Br, M) = VaVE B 1, 0)) v — M)

(Mt — A2
> Qe 2T (9 V6, 0) — VAV (B M)

= 26 2
—(\ Y 2 CV 2
> ( H;g t) - g( 2{7 ) ||0t - 0t—1||27 (84)

which is from Cauchy-Schwarz inequality and C¥ -smoothness of V.2 (6, \).
Term (b) can be bounded as follows:

(VaVi(B—1, M) = VaVi(Or—1, A1) (M — A1)

> (VaVi(Or—1, M) — VaVi(0r—1, Mi—1))?, (85)
bi—1 + bo

which is from eq. (76).
Term (c) can be bounded as follows by Cauchy—Schwarz inequality:

M1 (VaVi(0r—1, M) — VaVi(0i—1, \—1))

- - 1
> =S (Va1 M) = VATl )P = ety (86)
Moreover, it can be shown that
1 1 1 1
E()\H-l —A) (A = Nm1) = 2*5()%4-1 - )\t)2 + E(At - >\t—1)2 - imf_;_l- 87

Plug eq. to eq. in[83] and we have that
Vi(0s, Aes1) = Vi(0r, Ar)
> (f(Bi-1) = F(61-1)) N1 = M) = B = A1) (Aer = Ao)
+ (VaVi(8e, M) = VaVi(0e—1, M) Argr — M) + (VaVi(0e—1, M) = VaVa(Br-1, A1) (Ae = A1)

+ mt+1(v)\fft(0t—17 At) — VAVt(@t—h Ai—1))

> (F(01-1) = FO-1))(eia =20 = 56 (s =M = 520 = M) + gem,
- Qe 207 SR g g2 (T )~ Vi1, A1)
- VA1, 0 — VaTlOs h) = g,

> (F00-1) = FO) s =20 = £ 0 =20 = 500 = = S5 - a2

(83)
From the definition of f/t, we have that
‘z(eta At-‘rl) - ‘N/t(ot; At)
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bi—1

2 (89)

by—
= VI (0, A1) + tTlA?H — VIO, ) —
Then we have that

VgL (9t7 )‘t+1) - VO-L (etv >\t)

> P20 = M)+ (F01) = F01) O = A
V2
- %(AM A - %(At Y e (90)

Combining with Lemma if Vt, uy > (1 + A*)L,, we then have that
VEOr1, A1) — VE (O, M)

. ) V)2
> (f(Or—1) = f(Or—1)) (N1 — Ae) + (Orq1 — Op, —9(0r, Aeg1) + 90, A1) — %Het — 0 |?
bi_ 1 1
* (% + V) [66+1 = Oal1” + tTl()‘g — A1) — E()‘tJrl - )’ - 275()“ — A1) o1
O
Lemma 9. Define
8 8 b b
F, é [ — 2 _ = 1— 7’5 2 L 7t 2
t+1 2 (At — Aeg1) ¢ ( th) A1+ Vi (01, Mg1) + 5 Ay
16(Cy)*  &(Cy)? 8 1
(_ i | L Sl S O RS R R G
andifbirl - é < %, then
Fiyn— F
e 16(CY)2  €(CY)? by — by
25+ (5 +v Tl - MG I o e,
9 5 8 by b1\ .o
+ ﬁ()\fﬂkl )\t> + Z (bt+1 bt> )\t+17 (93)

where Sy £ 25 (f(61-1) = f(61-1) = F(60) + F(00) (=M + A1) + (F(Br1) = F(01-1)) g1 —
At) + (Orr1 — O, =G0, A1) + g(02, Ae1))-

Proof. From eq. (79) and eq. (80), we have that
Bemas1 (A — A1) = (VaVis1 (0, M) — VaVa(O—1, Ae—1)) (= Ae + Aes1)
+ (f(Be1) = F(Br1) = F(O) + F0)) (=N + Aiga)- (94)
The first term can be rewritten as
(VaVir1 (06 A) = VaVe(Or-1, Ae-1)) (A1 — Ar)
= (VaVis1 (06, M) = VaVi(Or—1, A0)) A1 — Ae) + (VaVi(Or—1, M) — VaVe(Or—1, Ae—1)) (A1 — Ar)
= (VaVis1 (0, A) = VaVi(Or-1, M) Qi1 = M) + (VaVa(Or-15 ) = VaVe(Or—1, Ae-1)) (A = A1)
+ 1 (VaVe(0r-1, M) = VaVi(0r-1, Ae—1)). (95)
The first term in eq. (95) can be bounded as
(VaVir1 (0, M) = VaVe(0r—1, M) Ae1 — Ar)
= (VAVE(0r, M) — VAVE(Br—1, M) (A1 — Ae) + (beAe = be—1Xe) (Aes1 — Ae)

@ 1

h
> —ﬁ(wvf(et, M) = VaVE(Or—1, M) — 5()\t+1 - \)?
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(by — bi—1) (b — bi—1)

+ 2 (A — AD) — #(/\Hl —A)?
(b) CV 2 h
> _( Qah) [160; — 9t71||2 o §(>‘t+1 - )‘t)2
b _ b _ b - b —
+ %O\%—H - /\?) - %()\H—l - /\t)z’ 0

where (a) is from the Cauchy—Schwarz inequality and (b) is from the C¥ -smoothness of V.2, for
any h > 0.

Similar to eq. (76), the second term in eq. (93] can be bounded as
(VaVi(Or—1, M) = VaVi(Or—1, M—1)) (A — Ae—1)

bi—1bo

> (VaVi(0:—1, M) — VaVi(Be1, Me1))% (97)
t—1 + bo

A= A1)+ ———
(¢ = A1) bi—1 +bo

The third term in eq. (93] can be bounded as
M1 (VaVi(Or—1, M) — VaVi(0y—1, Ae—1))

- - 1
> —g(VAVtth, M) = VaVi(Oe1, Ai-1))? = imf+1~ (98)

Hence combine eq. (96) to eq. (97) and plug in eq. (93)), we have that
(VAVig1(0s, M) = VaVi(Or—1, Adi—1)) (A1 — M)

cYy? h
> el g - B - 20?
by — bs by — b
+ %(Agﬂ =)~ %O‘Hﬂ - )2
btflbo 2 1 ~ ~ 9
+———— (N = M)+ (VaVi(lim1, M) — VaVa(Bp—1, A
bt_1+b0(t t-1) bt_1—|—b0( AVi(Or—1, At) AVi(0r—1, 1))
- - 1
B g(vAVt(et*b/\t) — VaVi(0r-1,M-1))* — imfﬂ- (99)

Hence eq. (94) can be further bounded as

(Bemis1) (At — Aeg1)
> (f(0r—1) — F(Oi—1) — F(00) + F(O)) (= ¢ + A1)

R 2 R L
P 0o oy - e
4 %ut M g (VaVhB M) = VaTi(Bis, )
~ ST = VaTi s d))? — e (100)
It can be directly verified that
M1 — Aes1) = %()\t S al)? - %(At CAa)? - mi“. (101)
Recall that 5, = %, hence
%(At — )P - %(At — M) - mjgl

> (f(0i—1) — F(Bi—1) — F(00) + F(O)) (= A¢ + A1)
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(CV)

h
16 — Oe—1|* — 5()\t+1 —Ae)?

be — be by — bi
+ %Qgﬂ a2y %(Am )
be_1b
F o (A = M)

VaVi(Or—1, M) = VaVi(Oy_1, M\—1))?
b1+ bo (VaAVi(Or—1, M) = VaVi(Or—1, A1)

bi—1 +bo

- - 1
- g(vAVt(et—ly M) = VaVi(Or—1, Ae—1))? — imfﬂ. (102)

From § < % < ﬁ, we have ;— +Z,O(VAVtwt L) — VaVi(O-1, Mi-1))? —
g(vm(et_l,At) —V,\‘N/t(et—l,/\t_l)) > 0. Also, it can be shown that ; be— lfg > bgblob(’ = bgl.

Thus, it follows that

1 1 2
é?N*MAV*%QrWHN*nzl
> (f(Br—1) — F(Be—1) — f(0e) + F(O)) (= e + A1)
CV h
Y
by — by by — by
L ety - Bl
b 1
+ til()\t )\t71)2 - Emtar (103)
Re-arrange the terms, it follows that
1 by —b
- 2*5()% — Aeg1)? — tTtl)\tﬂ
; 5 (CV) 2 h 2
> (f(Or—1) = f(0r-1) = f(Or) + F(O)) (= At + Aey1) — [0: — 0: 1" — §(>\t+1 - At)
by — by by — by by
- & 2t 1))‘3 - Qt 1)(>\t+1 - M)* 4 t21(>\t O ?(At Ai-1)”
1 by — b R
> — e = A0)? = PN (00) = F(0-1) = 100 + FO) A+ )
CV h b
G, - B a4 - A (104

where the 1ast inequality is from the fact that b, is decreasing.

Now multiply 5% on both sides, we further have that

1 1 bi_1
e — A1) = <1 - tbt ) A1

& 3

> g O = = g (1 252 ) e 00e) = F60) = 160 + FOD) A+ A
el o, 011 - O = 20+ F0u = Ar ), (105)

If we set h = % eq. (105) can be rewritten as

- gzibm - (1= 1)

> g O = Mt = ¢ (1= 22 N (0 01m0) = F(Orma) = £0) + FO0)+ A
- ﬁ?n@—muw éleAN+§w—&4ﬂ (106)
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Further we have that

1 , 1 1 , 1 be N o L (b b\
- £2bt+1 ()\t - )\t+1) - (§2bt+1 - €2bt> ()\t - )\t+1) - g (1 - bt+1> )\t+1 " g ( bt - bt-i-l) )\t+1
1 1 by 2 A N
> g O = Mt = ¢ (1= B2 ) 0 (0 01m0) = FGrma) = £0) + FO0)+ A
14
- (2)2) 16 = 6r—1]|* — 1€(>\t+1 A)?+ %(/\t — A1) (107)

Re-arranging the terms in eq. (I07) implies that

1 1 b 1 1 by
~ g M W“g(“mil)ﬁﬂ‘(‘szbt“t”t”2‘5( b)A>

1 1 1 /b1 by
> o— = —— | (M = A1) — = - Y
- <f2bt+1 €2bt)( £ = dee1) f( by bt+1> b
2(CY)?

e 160 =01l = 5 Ohss = AP+ 20 = Aroa)?
§b (f(9t 1) = F(0—1) — F(8:) + F(0:)) (=Xt + Aeg1)
7 2(CY by b
> — 105( e+ Aeg1)? — (ng) 16, — et_1||2+2(At—At_1)2+§<bt; —tbt1> A2,
+ %(fwt_l) (i) — FB) + FO)) (A + M), (108)

1 _ 1
bty bt

where the last inequality is from < % Recall in Lemma we showed that

VEO i1, A1) — VE(O:, \e)

> (f(0i-1) — F(0:-1)) i1 — Ae) + (Brg1 — O, —3(0r, A1) + 9(05, Aer)) —
bt 1

CV 2
E( 20) Het_et—le

1
— (A= A1) (109)

PN - 5

1
+ (B4 v) 180 - 00> + gD =) -

Combine both inequality together, and we further have that

8 8 bt 8 8 bt—l
S S VD VIR e [ i [ N [y O W W £ | - A2
By, M) 5< bt+1> t ( gop, M M) £< bt> '
+VEO, 11, Mq1) — VL(9t7 At)

28 16(CY 8 by b
> —5*5(—& + A1) — (§b2 ks 16 — 01 ]|* + E(/\t — A1)’ + ¢ (bt; - tbt1> X1
+ g (0s) = F(62) = £(00) + O A+ Newn)
R . £cy)? 2
+ (f(0r—1) = f(Or—1)) (Nt — Ae) + (Orp1 — Op, —9(0r, M) + 9(0s, Aey1)) — B 0: — Oc—1l|
b 1 1
(5 ) 1000 = 8P+ Z5EOF = 02) = g0 =27 = 5 (= Au)?
16(CY cY 28 1 b
=S, + <— (gb;;) £ 5 > ) 16; — 0,—1]1* + (—55 - 5) (At + Aeg1)? + = 1()\2 A
8 1 s, 8 ( b bi—1 Mt 2
+ <§ - 25) (At = Ae—1)” + g (th T > >‘t+1 + ( 5 + V) 101 — Oc]I7, (110)

where S £ 25 (f(61-1) — f(0:-1) — (60) + F(0)) (=N + A1) + (F(Br—1) = F(Br1)) Negr —
)\t) <9t+1 et, (Gt, AtJr]) + g(9t, )\t+1)>- Now

8 , 8 b\ L, 8 , 8 Dot 1o
N — - — |1 - — | - — _ —— 1=
€2bt+1 ()\t )\t+1) 5 ( bt-‘,—l) )\t+1 ( é’th (At )\t 1) 5 bt )\t
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by

+ VE(Ors1, Aes1) — VE(Or Ar) + >‘t+1 t2 : A

16(CY)*  €(C))? 2 16(Cy)*  &(Cy)? 2
o (-l — G 1o = - (g - S5 Y i —a

8 1 8 1

# (g 0g) Qo= = (§ - gg) e nar

" 16(CY)?  g(C))? by — by

>S5+ (2 +tv— @, 5 1641 — 6:11° + T)‘?H

8 1 28 1 8 by b1
+l-—-=—-=—-= As1 — A 2+< - >>\2
(f 2% 5 £>( M g T ) e

it 16(Cy)*  €(Cy)* be—1
=5t (2 Tve §bt+1 2 18usr = O0ll” + Tﬁﬂ
9 by bi—1
— (N1 — M) o [ — - — ) 2 111
 qigen 20"+ (5 = 5 ) o
which then completes the proof. O

We now restate Theorem [2] with all the specific step sizes. The definitions of these constants can also
be found in Section[J}
167(C X )2

Theorem 3. (Restatement of Theorem Set by = 20&%, e = f((}'(‘,/)2 + o T 2v,
By = %, oy = v+, where € > %, v is any positive number and T is any number greater
1 1 192¢2 €2
than 2. Moreover, set €y = o5, 32025 A" +2A% + L (1+A*)CY 3200¢(r—2)(CY )?uly = O(m7s ),
then
i G < (1+v2)e, (112)
when T = O(e™%).
Proof. Denote by p; = £ w and M; = (7163)2 + 64%(02%2)(20_;;52. Then it can be verified
that v 4 5t — (CTV)z — ﬁgci = p¢. Then eq. .D can be rewritten as
by —b
Fio1 — Fy > Sy +pe|0es1 — 04 + 7f1)\t+1
9 2 8 bt bt 1
— — - — 11
* 105(/\t+1 M)t 3 <bt+1 by Aot (113
From the definition, we have that
Go — Be (At - H[O,A*] ()‘t - i (VAVF (0 M) (114)
t = )
( -1Ilo <9t + a% (VOVUL(et,At))
and denote by
sl B (A = Moy (M = 3 (VaVal0 20) ws)
t — ~
oy (9t —Ile (9t + a% (VGVt(Hta At)
It can be verified that
IGZ I = Gl < br—z|Ael. (116)
From Theorem 4.2 in (Xu et al.,[2020), it can be shown that
- 1
G < 20 + ) (1001 — 0c]1* + <2(C¥)2 + 52) (Aer1 — Ae)?, (117)
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and
2 2
My > LQM) (118)
D
Hence
~ 1
IGuI? < uslBess = 0+ (2(CH? + 5 ) O = 202 (19)
Set u; £ - {M 1§+20£2<O¥)2 } , then from eq. (113), we have that
max 1Pt779£
~ by — b1 by by
u|Ge||* < Fryr — Fy — Sp — 7)\t+1 ¢ (th - bt A7 (120)

Summing the inequality above from ¢ = 1 to T, then

b b by — b
ZutuGtH < Fpoy— Fi - Zst e (- ) + (M52 w)

8bo , \x bo —br .o
SFT+1_F1_;St+gF(A )? + ( 5 (A7), (121)
which is from b, is decreasing and \; < A*. Note that
8 , 8 by
max oA Fy = max{ - @Ttﬂo\t = Ag1)” — 3 <1 - bt1> A1+ Vs (1, M) + )‘t+1
16(CY)*  &(CY)? 2, (8_1 2
(- G )1 0+ (G- 5) e =20
1.6 b 15
< ?(/1*)2 + (14 47)(2C,) + - (/1*) 2 So(A)?
L P, (122)

which is from the definition of by, and 8(;% — 1) < 8({4H= — 1) <8(24” ~ 1) < 1.6. Then

plugging in the definition of b; implies that
T 3 T 3 b
ZutHGtHQSF*—Fl—ZSH—E(A* )%+ ( 2(A%)? ) (123)
t=1 t=1

104+20£2(CY)?
If moreover set u £ max {M 1, 10+206°(C, )

9€p2
Yo ,gi”ét”2 u ( d 8 bo
=L < F*—F =) S+ £(A") + ((A*)Q) : (124)
T = T
Zt:l ﬁ Zt:l ,Tlt t=1 § 2
Plug in the definition of p, then we have that

S g IGIP _ 32006r —2CHPd (S S (B
ST T2 F—F1—;St+g(/l ( (A)>

, then u; > — p , and hence

— u

(125)
‘We moreover have that
|St| = %(f(ot—l) — f(0—1) = F(00) + F(0)) (=X + Aes1) + (f(Br—1) — F(Br1))Aes1 — Ae)

+(Or 41 — 0r, =305, Mey1) + g(0, )\t+1)>‘

1
< 3200 PN (0241 + 2,) + 24702, +— (1 + ANCY 2, (126)
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where (2; £ max {||g(9t, Ait1) — GO, M), | f(0:) — f(@t)\} Note that it has been shown in

(Wang & Zou, [2022) that £2; < L, max{”er — QU’TH, 1Qo.c — QUCH} = Leeq, and hence 2,
can be controlled by setting €.

Note that oy = v + p; is increasing, hence a% < a% Hence if we set eoq =
92 2 62
70- "LQ 320- 25A*+2A*+ (1 A7)0Y 32006(7—2)(CY)2uls (7575), then
1 192¢2
S, 127
15 = 453 3200£(T — 2)(CY)2uLg’ (127)
and hence
1922
T . 128
32006 (r — 2)(CY 2uLg (128)
Thus plug in eq. (I25) and we have that
T 19/~ 2
=G 2 _9 V2
Zt_17?t||lt|| < 3 005(27 (CT) UK+€2, (129)
it 192(V/T — 2)
where K = F* — F1 + §(A%)* + (% (A*)?). When T = (2 + 32005(7;922)6(55)%K)2, we have that
1 G 2
PO 1pt|| [ ~ e (130)
Zt 1 Pt
Similarly to Theorem 4.2 in (Xu et al.l [2020), if ¢ > %, then b; 1 < +x and by_1 A < €.

Hence combine with eq. (I16) we finally have that

min, IGT|| < (14 V2)e, (131)
¥ P 2
when T = max { 721164)4’ (2 i 95(7—2)6(20(‘,’)%1() } _ 0(674)_ ]

Remark 1. Note that the sample complexity of robust TD algorithm to achieve an €,y-error bound
is O(e,,2), hence the sample complexity at the time step t is O(e,”) = O(t:—f) Thus the total

—14)

1.5
sample complexity to find an e-stationary solution is Zle 2—4 =0(e . This great increasing of

complexity is due to the estimation of robust value functions.

J CONSTANTS AND NOTATIONS

In this section, we summarize the definitions of all the constants we used in this paper.

k|A|
Ly = 2
M CIE.
C, = 17(1+2 51°g‘8‘)

cy 7IA|/€CU,
L=~

1 2MAPY(1-6), 5
kp = ———— (JA|C,L + |A|KCY +7k6'g,
6 v 1
L = _— 2 —
c=kp+ T (\/|S|k3+ a|8|C) 17+7§k|A|Cg>,
b — 19
b 2061025

29



Under review as a conference paper at ICLR 2023

_ 1672 €y —v)?
M= 9p T 2y e
u:maX{MhW},
2
* E *\2 * bil *\2 E *\2
F* = ¢ (A")* + (14 A7) (2C,) + 2(A) +2£( )
K:F* 7F1 + %(A*)2+ <b21(/1*)2> ,
_ V2 167(C5)* .
ot *E(Ca) + €(bt+l)2 21/3
5t = %7
ap =V + [y (132)
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