000 001 002 003 SAMPLE-SPECIFIC NOISE INJECTION FOR DIFFUSION-BASED ADVERSARIAL PURIFICATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Diffusion-based purification (DBP) methods aim to remove adversarial noise from the input sample by first injecting Gaussian noise through a forward diffusion process, and then recovering the clean example through a reverse generative process. In the above process, how much Gaussian noise is injected to the input sample is key to the success of DBP methods, which is controlled by a constant noise level t^* for all samples in existing methods. In this paper, we discover that an optimal t^* for each sample indeed could be different. Intuitively, the cleaner a sample is, the less the noise it should be injected, and vice versa. Motivated by this finding, we propose a new framework, called *Sample-specific Score-aware Noise Injection* (SSNI). Specifically, SSNI uses a pre-trained score network to estimate how much a data point deviates from the clean data distribution (i.e., score norms). Then, based on the magnitude of score norms, SSNI applies a reweighting function to adaptively adjust t^* for each sample, achieving samplespecific noise injections. Empirically, incorporating our framework with existing DBP methods results in a notable improvement in both accuracy and robustness on CIFAR-10 and ImageNet-1K, highlighting the necessity to allocate *distinct noise levels to different samples* in DBP methods. Our code is available at: <https://anonymous.4open.science/r/SSNI-F746>.

1 INTRODUCTION

031 032 033 034 035 036 037 038 039 040 041 *Deep neural networks* (DNNs) are vulnerable to adversarial examples, which is a longstanding problem in deep learning [\(Szegedy et al.,](#page-11-0) [2014;](#page-11-0) [Goodfellow et al.,](#page-10-0) [2015\)](#page-10-0). Adversarial examples aim to mislead DNNs into making erroneous predictions by adding imperceptible adversarial noise to clean examples, which pose a significant security threat in critical applications [\(Dong et al.,](#page-10-1) [2019;](#page-10-1) [Finlayson et al.,](#page-10-2) [2019;](#page-10-2) [Cao et al.,](#page-10-3) [2021;](#page-10-3) [Jing et al.,](#page-10-4) [2021\)](#page-10-4). To defend against adversarial examples, *adversarial purification* (AP) stands out as a representative defensive mechanism, by leveraging pre-trained generative models to purify adversarial examples back towards their natural counterparts before feeding into a pre-trained classifier [\(Yoon et al.,](#page-11-1) [2021;](#page-11-1) [Nie et al.,](#page-11-2) [2022\)](#page-11-2). Notably, AP methods benefit from their modularity, as the purifier operates independently of the downstream classifier, which facilitates seamless integration into existing systems and positions AP as a practical approach to improve the adversarial robustness of DNN-based classifiers.

052 053 However, we find that using a sample-shared t^* may *overlook* the fact that an optimal t^* indeed could be different at sample-level, as demonstrated in Figure [1.](#page-1-0) For example, in Figure [1a,](#page-1-0) $t^* = 100$ is too small, resulting in the adversarial noise not being sufficiently removed by the diffusion models.

⁰⁴² 043 044 045 046 047 048 049 050 051 Recently, *diffusion-based purification* (DBP) methods have gained much attention as a promising framework in AP, which leverage the denoising nature of diffusion models to mitigate adversarial noise [\(Nie et al.,](#page-11-2) [2022;](#page-11-2) [Xiao et al.,](#page-11-3) [2023;](#page-11-3) [Lee & Kim,](#page-11-4) [2023\)](#page-11-4). Generally, diffusion models train a forward process that maps from data distributions to simple distributions, e.g., Gaussian, and reverse this mapping via a reverse generative process [\(Ho et al.,](#page-10-5) [2020;](#page-10-5) [Song et al.,](#page-11-5) [2021b\)](#page-11-5). When applied in DBP methods, the forward process gradually injects Gaussian noise into the input sample, while the reverse process gradually purify noisy sample to recover the clean sample. The quality of the purified sample heavily depends on the amount of Gaussian noise added to the input during the forward process, which can be controlled by a noise level parameter t^* . Existing DBP methods [\(Nie](#page-11-2) [et al.,](#page-11-2) [2022;](#page-11-2) [Xiao et al.,](#page-11-3) [2023;](#page-11-3) [Lee & Kim,](#page-11-4) [2023\)](#page-11-4) manually select a constant t^* for all samples.

Figure 1: For each sub-figure: the 1st column contains the input (i.e., could either be AEs or CEs), the 2nd column contains noise-injected examples with different t ^{*}s, and the 3rd column contains purified examples. We use *DiffPure* [\(Nie et al.,](#page-11-2) [2022\)](#page-11-2) with a sample-shared $t^* = 100$ selected by [Nie](#page-11-2) [et al.](#page-11-2) [\(2022\)](#page-11-2) to conduct this experiment on CIFAR-10 [\(Krizhevsky et al.,](#page-11-6) [2009\)](#page-11-6). The globally shared $t^* = 100$ offers a baseline, but results in suboptimal prediction performance compared to what could be achieved by tuning the noise level for individual samples. Notably, while the recovered images obtained by different noise levels may be visually indistinguishable, they carry different semantics. For instance, the image is classified as "frog" (incorrect) with $t^* = 100$ but as "dog" (correct) with t [∗] = 60 (Figure [1b\)](#page-1-0). These *highlight the need for a sample-wise noise level adjustment*.

071 072 073

074 075 076 077 078 079 080 081 This is because diffusion models are good at denoising samples that have been sufficiently corrupted by Gaussian noise through the forward process [\(Ho et al.,](#page-10-5) [2020;](#page-10-5) [Song et al.,](#page-11-5) [2021b\)](#page-11-5). With a small t ∗ , the sample remains insufficiently corrupted, which limits the denoising capability in the reverse process and thereby compromising the robustness against adversarial examples. On the other hand, in Figure [1b](#page-1-0) and [1c,](#page-1-0) $t^* = 100$ is too large, resulting in excessive disruption of the sample's semantic information during the forward process, which makes it difficult to recover the original semantics in the reverse process. In this case, both robustness and clean accuracy are compromised, as the purified samples struggle to preserve the semantic consistency of clean samples. These observations motivate us to make the *first* attempt to adjust the noise level on a sample-specific basis.

082 083 084 085 In this paper, we propose *Sample-specific Score-aware Noise Injection* (SSNI), a new framework that leverages the distance of a sample from the clean data distribution to adaptively adjust t^* on a sample-specific basis. SSNI aims to inject less noise to cleaner samples, and vice versa.

086 087 088 089 090 091 092 093 094 095 096 To implement SSNI, inspired by the fact that *scores* (i.e., $\nabla_{\mathbf{x}} \log p_t(\mathbf{x})$) reflect the directional momentum of samples toward the high-density areas of clean data distribution (Song $\&$ Ermon, [2019\)](#page-11-7), we use *score norms* (i.e., $\|\nabla_{\mathbf{x}}\log p_t(\mathbf{x})\|$) as a natural metric to measure the deviation of a data point from the clean data distribution. In Section [3,](#page-2-0) we establish the relationship between the score norm and the noise level required for different samples. Specifically, samples with different score norms tend to have accumulated different noise levels. Furthermore, we empirically show that the cleaner samples – those closer to the clean data distribution – exhibit lower score norm, justifying the rationale of using score norms for reweighting t^* . Concretely, we use a pre-trained score network to estimate the score norm for each sample. Based on this, we propose two reweighting functions that adaptively adjust t^* according to its score norm, achieving sample-specific noise injections (see Section [4.3\)](#page-5-0). Notably, this reweighting process is *lightweight*, ensuring that SSNI is computationally feasible and can be applied in practice with minimal overhead (see Section [5.5\)](#page-9-0).

097 098 099 100 101 Through extensive evaluations on benchmark image datasets such as CIFAR-10 [\(Krizhevsky et al.,](#page-11-6) [2009\)](#page-11-6) and ImageNet-1K [\(Deng et al.,](#page-10-6) [2009\)](#page-10-6), we demonstrate the effectiveness of SSNI in Section [5.](#page-6-0) Specifically, combined with different DBP methods [\(Nie et al.,](#page-11-2) [2022;](#page-11-2) [Xiao et al.,](#page-11-3) [2023;](#page-11-3) [Lee &](#page-11-4) [Kim,](#page-11-4) [2023\)](#page-11-4), SSNI can boost clean accuracy and robust accuracy *simultaneously* by a notable margin against the well-designed adaptive white-box attack (see Section [5.2](#page-7-0) and Algorithm [2\)](#page-19-0).

102 103 104 105 106 107 The success of SSNI takes root in the following aspects: (1) an optimal noise level t^* for each sample indeed could be different, making SSNI a more effective approach to unleash the intrinsic strength of DBP methods; (2) existing DBP methods often inject excessive noise into clean samples, resulting in a degradation in clean accuracy. By contrast, SSNI injects less noise to clean samples, and thereby notably improving the clean accuracy. Meanwhile, SSNI can effectively handle adversarial samples by injecting sufficient noise on each sample; (3) SSNI is designed as general framework instead of a specific method, allowing it to be seamlessly integrated with a variety of existing DBP methods.

108 109 2 PRELIMINARY AND RELATED WORK

110 111 In this section, we first review the concepts of diffusion models and scores in detail. Then, we review the related work of DBP methods.

113 114 115 116 Diffusion models are generative models designed to approximate the underlying clean data distribution $p(\mathbf{x}_0)$, by learning a parametric distribution $p_\theta(\mathbf{x}_0)$ with a *forward* and a *reverse* process. In *Denoising Diffusion Probabilistic Models* (DDPM) [\(Ho et al.,](#page-10-5) [2020\)](#page-10-5), the *forward* process of a diffusion model defined on $\mathcal{X} \subseteq \mathbb{R}^d$ can be expressed by:

$$
q(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}\left(\mathbf{x}_t; \sqrt{\bar{\alpha}}\mathbf{x}_0, (1-\bar{\alpha}_t)\mathbf{I}\right),\tag{1}
$$

119 120 122 where $\bar{\alpha}_t = \prod_{i=1}^t (1 - \beta_i)$ and $\{\beta_t\}_{t \in [0,T]}$ are predefined noise scales with $\beta_t \in (0,1)$ for all t. As t increases, x_t converges toward isotropic Gaussian noise. In the *reverse* process, DDPM seeks to recover the clean data from noise by simulating a Markov chain in the reverse direction over T steps. The reverse transition at each intermediate step is modeled by

$$
p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \mu_{\theta}(\mathbf{x}_t, t), \sigma_t^2 \mathbf{I}),
$$
\n(2)

.

124 125 126 127 128 where $\mu_{\theta}(\mathbf{x}_t, t) = \frac{1}{\sqrt{1-\beta_t}} \left(\mathbf{x}_t - \frac{\beta_t}{\sqrt{1-\beta_t}} \right)$ $\frac{\beta_t}{1-\bar{\alpha}_t} \epsilon_{\theta}(\mathbf{x}_t, t)$ is the predicted mean at t, and σ_t is a fixed variance [\(Ho et al.,](#page-10-5) [2020\)](#page-10-5). More specifically, the model predicts the noise $\epsilon_{\theta^*}(\mathbf{x}_t, t)$ using a Unet architecture, allowing the estimation of $\mu_{\theta}(\mathbf{x}_t, t)$ at each noise level. The training objective minimizes the distance between the true noise and the predicted noise:

$$
\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} \mathbb{E}_{\mathbf{x}_0, t, \boldsymbol{\epsilon}} \left[\left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\boldsymbol{\theta}} \left(\sqrt{\bar{\alpha}}_t \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}}_t \boldsymbol{\epsilon}, t \right) \right\|_2^2 \right]
$$

131 132 During inference, starting from $x_T \sim \mathcal{N}(0, I)$, the model generates a sample by iteratively sampling \mathbf{x}_{t-1} from \mathbf{x}_t using the learned reverse process over all $1 \le t \le T$:

$$
\hat{\mathbf{x}}_{t-1} = \frac{1}{\sqrt{1-\beta_t}} \left(\hat{\mathbf{x}}_t - \frac{\beta_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta^*}(\hat{\mathbf{x}}_t, t) \right) + \sqrt{\beta_t} \boldsymbol{\epsilon}, \quad \text{with } \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}). \tag{3}
$$

136 137 138 139 140 141 142 143 144 145 Score and score norm. In this paper, a *score* refers to the gradient of the log-probability density, i.e., $\nabla_{\mathbf{x}}\log p_t(\mathbf{x})$, which represents the direction of maximum increase in the log-density across a vector field [\(Song & Ermon,](#page-11-7) [2019\)](#page-11-7). The *score norm* is the magnitude (or length) of this gradient, denoted as $\|\nabla_{\mathbf{x}}\log p(\mathbf{x})\|$. It reflects how much a data point deviates from the clean data distribution. A larger score norm suggests the data point is situated in a low-probability region, while a smaller score norm indicates it is closer to regions where clean data occurs. [Yoon et al.](#page-11-1) [\(2021\)](#page-11-1) discover that score norms can effectively differentiate adversarial examples from clean examples. Building on this, [Zhang et al.](#page-11-8) [\(2023\)](#page-11-8) propose a more robust score called the *expected perturbation score* (EPS), which computes the expected scores of perturbed samples over a range of noise levels. EPS improves robustness against noise variations, providing a more reliable metric for detecting adversarial samples.

146 147 148 149 150 151 152 153 154 Diffusion-based purification. Adversarial purification (AP) leverages generative models as an addon module to purify adversarial examples before classification. With in this context, *diffusionbased purification* (DBP) methods have emerged as a promising framework, exploiting the inherent denoising nature of diffusion models to filter out adversarial noise [\(Nie et al.,](#page-11-2) [2022;](#page-11-2) [Wang et al.,](#page-11-9) [2022;](#page-11-9) [Xiao et al.,](#page-11-3) [2023;](#page-11-3) [Lee & Kim,](#page-11-4) [2023\)](#page-11-4). Specifically, [Nie et al.](#page-11-2) [\(2022\)](#page-11-2) and [Xiao et al.](#page-11-3) [\(2023\)](#page-11-3) integrate diffusion models to purify adversarial inputs. [Wang et al.](#page-11-9) [\(2022\)](#page-11-9) introduce input guidance during the reverse diffusion process to ensure the purified outputs stay close to the inputs. Lee $\&$ [Kim](#page-11-4) [\(2023\)](#page-11-4) further establish a reliable evaluation framework for DBP methods and propose a finetuned gradual noise scheduling for multi-step purifications. More recently, [Bai et al.](#page-10-7) [\(2024\)](#page-10-7) propose to guide diffusion models with contrastive loss through the reverse process.

155 156

157

112

117 118

121

123

129 130

133 134 135

3 MOTIVATION

158 159 160 In this section, we elaborate on the motivation of our method by connecting the impact of different perturbation budgets ϵ to the required noise level t^* of each sample through score norm.

161 Sample-shared noise-level t^* fails to address diverse perturbation budgets. We empirically observe that an optimal noise level t^* for each sample indeed could be different. Figure [1](#page-1-0) illustrates

162 163 164 165 166 167 168 169 170 that, while a constant noise level $t^* = 100$, as suggested by [Nie et al.](#page-11-2) [\(2022\)](#page-11-2), yields strong performances for some samples, it leads to *suboptimal* results for others. Since DBP relies on adequate t^* for forward noise injection to remove adversarial perturbation, a shared t^* cannot adapt to the distinct perturbation budgets of individual examples, leading to a suboptimal accuracy-robustness trade-off. Specifically, Figure [1a](#page-1-0) shows that $t^* = 100$ is insufficient remove the adversarial noise, leaving residual perturbations that compromise robustness. On the contrary, Figure [1c](#page-1-0) and [1b](#page-1-0) reveal that $t^* = 100$ overly suppresses the other sample's semantic information during the forward process, making it difficult to recover the original semantics via the reverse process. These findings *highlight the need for sample-specific noise injection levels tailored to individual perturbation budgets*.

171 172 173 174 175 176 177 178 179 Score norms vary across perturbation budgets. Adversarial and clean examples are from distinct distributions [\(Gao et al.,](#page-10-8) [2021\)](#page-10-8). Motivated by this, we further investigate how different perturbation budgets ϵ affect score norms under adversarial attacks (see Appendix [B\)](#page-17-0). Specifically, we compute the score norm of different samples undergoing PGD+EOT $\ell_{\infty}(\epsilon = 8/255)$ with perturbation budgets varying between 0 and $8/255$ on CIFAR-10. Our finding reveals a consistent pattern: The results consistently reveal that *samples subjected to stronger perturbations (higher* ϵ *) exhibit larger score norms, whereas cleaner samples (lower* ϵ) *show smaller score norms.* These results imply the utility of score norms can be extended from detecting adversarial samples from clean ones, as shown by [\(Yoon et al.,](#page-11-1) [2021\)](#page-11-1), to *differentiate adversarial examples based on their perturbation strength*.

180 181 182 183 Different score norms imply different t^* . Building on the observed relationship between perturbation budgets and score norms, we next explore how score norms of different samples correlate with the noise level t^* , hypothesizing that *score norms can inform noise strengths* \dot{t}^* tailored to *individual samples*. The proofs of the following Lemma [1](#page-3-0) and Proposition [1](#page-3-1) are in Appendix [A.](#page-12-0)

184 185 We consider a diffusion model over a measurable space $\mathcal{X} \subseteq \mathbb{R}^d$, with forward process characterized by a Gaussian transition kernel $q(\mathbf{x}_t|\mathbf{x}_0)$ as defined in Eq. [\(1\)](#page-2-1).

186 187 188 Lemma 1. Suppose there exists a constant $K > 0$ such that for all $t \ge 0$ and all $x_t \in \mathcal{X}$, the e xpected norm of \mathbf{x}_0 given \mathbf{x}_t satisfies: $\mathbb{E}_{\mathbf{x}_0 \sim p(\mathbf{x}_0|\mathbf{x})}[\|\mathbf{x}_0\|] \leq K \|\mathbf{x}_t\|$. Then, there exist constants $0 < C < 1$ and $T_0 > 0$ such that for all $t \geq T_0$:

 $\|\nabla_{\mathbf{x}} \log p_t(\mathbf{x})\| > C \|\mathbf{x}\|.$

191 192 193 194 Lemma [1](#page-3-0) establishes that we can find a time threshold T_0 , after which the score norm maintains proportional to the input norm as t increases (and higher noise levels t^* as diffusion steps accumulate). Building on this, we now investigate how the score norm varies between different time steps t_1 and t_2 , providing a lower bound on the difference in score norms over time.

195 196 197 198 Proposition 1. *Consider the diffusion model satisfying all conditions as specified in Lemma [1.](#page-3-0) Assume that there exist constants* $K > 0$, such that $\beta_t \leq K$ for all $t \geq 0$. Additionally, suppose $\|\mathbf{x}\|$ ≤ M for any $\mathbf{x} \in \mathcal{X}$, for some $M > 0$. Then, for any ϵ , there exists a constant $\Delta = 2\epsilon/(CK)$ *such that for* $t_1, t_2 \geq 0$ *, we have:*

 $\|\nabla_{\mathbf{x}} \log p_{t_1}(\mathbf{x})\| - \|\nabla_{\mathbf{x}} \log p_{t_2}(\mathbf{x})\| \,| > \epsilon, \text{ with } |t_1 - t_2| \geq \Delta.$

189 190

199 200

201 202 203 204 Proposition [1](#page-3-1) shows that the score norm varies with t, and the variation exceeds a threshold $\epsilon > 0$ when the time difference $|t_2 - t_1|$ is sufficiently large. Consequently, for two noisy samples x_1 and x_2 with different score norms, the monotonic increase of $\{\beta_t\}_{t\in[0,T]}$ with t implies that different score norms correspond to different noise levels, i.e., $t_1 \neq t_2$.

205 206 207 208 209 Recall that DBP involves Gaussian noise injection (i.e., forward process) followed by denoising in the reverse process to remove the adversarial perturbation. As samples x_1 and x_2 differ in score norms, they inherently present different denoising difficulties and require different optimal noise levels $t_1^* \neq t_2^*$ accordingly. This aligns with the established intuition that score norms reflect perturbation strengths and corresponding denoising requirements.

210 211 212 213 214 Motivated by the relationship between ϵ , score norms, and t^* , we propose using *score norm as an indicator of denoising difficulty* to reweight the noise injection level, which transforms the globallyshared noise level into sample-specific configurations, tailoring the denoising strength to each sample's specific requirements. The success of this hypothesis is further empirically validated by the purification outcomes reported in Sec. [5.](#page-6-0)

215 *Remark* 1 (Limitation)*.* We acknowledge that Proposition [1](#page-3-1) does not explicitly focus on the properties of adversarial attacks, which is often infeasible to analyze rigorously. To simplify the setup, we

216

Figure 2: An overview of the proposed SSNI framework. Compared to existing DBP methods, SSNI use a pre-trained score network s_{θ} to estimate the score norm $||s_{\theta}(\mathbf{x})||$. Then, SSNI applies a reweighting function f to adaptive adjust t^* for each sample x_i based on its score norm $||s_{\theta}(x_i)||$, achieving sample-specific noise injections. Notably, SSNI is designed as general framework instead of a specific method, allowing it to be seamlessly integrated with a variety of existing DBP methods.

disregard potential compounding interactions between adversarial perturbation and injected Gaussian noise in the forward pass of DBP. Instead, we leverage the properties of diffusion models and present the analysis as a *conceptual motivation to inspire the design of the proposed method*, rather than as a basis for a comprehensive theory.

4 SAMPLE-SPECIFIC SCORE-AWARE NOISE INJECTION

Motivated by Section [3,](#page-2-0) we propose *Sample-specific Score-aware Noise Injection* (SSNI), a flexible framework that adaptively adjusts the noise level for each sample based on how much it deviates from the clean data distribution, as measured by the score norm. We begin by introducing the SSNI framework, followed by a connection with related work and the empirical realization of SSNI.

4.1 FRAMEWORK OF SSNI

249 250 251 252 253 Overview. SSNI builds upon existing DBP methods by reweighting the optimal noise level t^* from a global, sample-shared constant to a sample-specific quantity. The core idea behind SSNI is to leverage score norms to modulate the noise injected to each sample during the diffusion process, ensuring a more targeted denoising process tailored to each individual sample. For clarity, we provide a visual illustration of SSNI in Figure [2,](#page-4-0) and the procedure is described in Algorithm [1.](#page-5-1)

254 255 256 257 258 DBP with sample-shared noise level t^* . Existing DBP methods use an off-the-shelf diffusion model for data purification, and a classifier responsible for label prediction. Let $\mathcal Y$ be the label space for the classification task. Denote the forward diffusion process by $D : \mathcal{X} \to \mathcal{X}$, the reverse process by $R : \mathcal{X} \to \mathcal{X}$, and the classifier by $C : \mathcal{X} \to \mathcal{Y}$. The overall prediction function is formulated as:

$$
h(\mathbf{x}) = C \circ R \circ D(\mathbf{x}), \quad \text{with } \mathbf{x} = \mathbf{x}_0. \tag{4}
$$

In this context, $x_T = D(x_0)$ refers to the noisy image obtained after T steps of diffusion, and $\hat{x}_0 =$ $R(\mathbf{x}_T)$ represents the corresponding recovered images through the reverse process. Specifically, these methods predetermine a *constant* noise level $T = t^*$ for all samples, following a shared noise schedule $\{\beta_t\}_{t\in[0,T]}$. The outcome of the forward process defined in Eq. [\(1\)](#page-2-1) can be expressed as:

264 265 266

$$
\mathbf{x}_T = \sqrt{\prod_{i=1}^T (1-\beta_i)} \mathbf{x} + \sqrt{1-\prod_{i=1}^T (1-\beta_i)} \mathbf{\epsilon} \quad \text{with } \mathbf{x} = \mathbf{x}_0, \forall \mathbf{x} \in \mathcal{X},
$$

267 268 where x_0 represents the original data, and $\epsilon \sim \mathcal{N}(0, I)$ denotes the Gaussian noise.

269 From sample-shared to sample-specific noise level. SSNI takes a step further by transforming the sample-shared noise level $T_{\text{SH}}(\mathbf{x}) = t^*$ into a *sample-specific* noise level $T_{\text{SI}}(\mathbf{x}) = t(\mathbf{x})$, which

6: end for

270

7: **return** purified samples $\hat{\mathbf{x}}$

adapts the noise injection for each sample. Given a sample-shared noise level t^* , SSNI defines $t(\mathbf{x})$ as

$$
t(\mathbf{x}) = f(\|s_{\theta}(\mathbf{x})\|, t^*),
$$
\n(5)

where $s_{\theta}(\mathbf{x})$ represents the score of a sample x, which is estimated by the score network s_{θ} . To avoid potential ambiguity, we have not explicitly denoted the dependency of $s_{\theta}(\mathbf{x})$ on t. However, it is important to note that the calculation of $s_{\theta}(\mathbf{x})$ requires a set of noise levels, which differs from the sample-shared noise level t^* . To further clarify, the samples $\{x_i\}_{i=1}^n$ in $s_\theta(x_i)$ is associated with a corresponding set of noise levels $\{t_i\}_{i=1}^n$. These individual noise levels $\{t_i\}_{i=1}^n$ are determined dynamically based on the specific characteristics of x_i . $f(\cdot, \cdot)$ is a reweighting function that adjusts t^* based on the score norm, allowing the noise level to vary depending on the sample's deviation from the clean data distribution. The outcome of the forward process of SSNI is:

$$
\mathbf{x}_{t(\mathbf{x})} = \sqrt{\prod_{i=1}^{t(\mathbf{x})} (1-\beta_i)} \mathbf{x} + \sqrt{1-\prod_{i=1}^{t(\mathbf{x})} (1-\beta_i)} \mathbf{\epsilon} \quad \text{with } \mathbf{x} = \mathbf{x}_0, \forall \mathbf{x} \in \mathcal{X}.
$$
 (6)

In this way, SSNI enables an adaptive noise injection process tailored to the properties (i.e., score norm) of each individual sample.

4.2 UNIFYING SAMPLE-SHARED AND SAMPLE-SPECIFIC DBP

302 303 304 305 306 We define a generalized purification operator encompassing both sample-shared and sample-specific noise based DBP methods as $\Phi(\mathbf{x}) = R(\mathbf{x}_{T(\mathbf{x})})$, where R denotes the reverse process, $\mathbf{x}_{T(\mathbf{x})}$ is the noisy version of x after $T(x)$ steps of diffusion, and $T : \mathcal{X} \to \mathcal{T}$ is a function that determines the noise level for each input, with $\mathcal{T} = [0, T_{\text{max}}]$ being the range of possible noise levels. With this operator, we have the following understandings (detailed justifications are in Appendix [C\)](#page-17-1).

307 308 309 310 Sample-shared DBP is a special case of SSNI. For a sample-shared DBP, the noise level, denoted as $T_{\text{SH}}(\mathbf{x}) = t^*$, is a constant for $\forall \mathbf{x} \in \mathcal{X}$, while for SSNI: $T_{\text{SI}}(\mathbf{x}) = t(\mathbf{x}) = f(||s_{\theta}(\mathbf{x})||, t^*)$. Clearly, any $T_{\rm SH}(\mathbf{x})$ can be expressed by $T_{\rm SI}(\mathbf{x})$, implying that any sample-shared noise level t^* is equivalently represented by SSNI with a constant reweighting function.

311 312 313 314 315 316 SSNI has higher purification flexibility. For a given DBP strategy, we further define the purification range Ω for an input $\mathbf{x} \in \mathcal{X}$, as the set $\Omega(\mathbf{x}) = \{ \Phi(\mathbf{x}) \mid \Phi(\mathbf{x}) = R(\mathbf{x}_{\tau(\mathbf{x})}), \tau : \mathcal{X} \to \mathcal{T} \}$, which characterizes all possible purified outputs of the input x. This concept captures the flexibility of a DBP strategy. We find that $\Omega_{\text{SH}} \subseteq \Omega_{\text{SI}}$ holds for any $\mathbf{x} \in \mathcal{X}$, and there exists at least one $\mathbf{x} \in \mathcal{X}$ for which the inclusion is strict, i.e., $\Omega_{SH} \subsetneq \Omega_{SI}$. These results show that SSNI achieves a broader purification range than sample-shared DBP, thus enabling *greater flexibility* in the purification process.

318 4.3 REALIZATION OF SSNI

317

319 320 In this section, we discuss the empirical realizations of SSNI in detail.

321 322 323 Realization of the score. In Section [4.1,](#page-4-1) The samples $\{x_i\}_{i=1}^n$ in $s_\theta(x_i)$ are associated with a corresponding set of noise levels $\{t_i\}_{i=1}^n$. However, a direct realization of this idea presents two challenges: (1) If each sample x_i corresponds to a single noise level t_i , the resulting score calculation becomes highly sensitive to the choice of t_i [\(Zhang et al.,](#page-11-8) [2023\)](#page-11-8). (2) It is difficult to pre-determine **324 325 326 327** an optimal set of noise levels $\{t_i\}_{i=1}^n$ when calculating $s_\theta(\mathbf{x}_i)$, which still remains as an open question. To address the above-mentioned limitations, following [Zhang et al.](#page-11-8) [\(2023\)](#page-11-8), we use *expected perturbation score* (EPS) to measure how much a data point deviates from the clean distribution, which is defined as:

$$
EPS(\mathbf{x}) = \mathbb{E}_{t \sim U(0,T')} \nabla_{\mathbf{x}} \log p_t(\mathbf{x}),\tag{7}
$$

329 330 331 332 333 334 335 where $p_t(\mathbf{x})$ is the marginal probability density and T' is the maximum noise level for EPS. EPS computes the expectation of the scores of perturbed images across different noise levels t ∼ U(0, T′), making it more invariant to the changes in noise levels. Notably, this T ′ is *different* from the optimal noise level t^* in this paper. Following [Zhang et al.](#page-11-8) [\(2023\)](#page-11-8), we set $T' = 20$. In practice, a score $\nabla_x \log_{p_t}(x)$ can be approximated by $s_\theta(x)$, where s_θ is a score network. In this paper, we use a pre-trained score network that has a training objective of score matching [\(Song &](#page-11-7) [Ermon,](#page-11-7) [2019\)](#page-11-7) to achieve the estimation for the score $s_{\theta}(\mathbf{x})$.

Realization of the linear reweighting function. We first design a linear function to reweight t^* :

$$
f_{\text{linear}}(\|\text{EPS}(\mathbf{x})\|, t^*) = \frac{\|\text{EPS}(\mathbf{x})\| - \xi_{\text{min}}}{\xi_{\text{max}} - \xi_{\text{min}}} \times t^* + b,\tag{8}
$$

where b is a bias term and t^* denotes the optimal sample-shared noise level selected by [Nie et al.](#page-11-2) [\(2022\)](#page-11-2). Specifically, we extract 5,000 validation clean examples from the training data (denoted as \mathbf{x}_v) and we use $\|\text{EPS}(\mathbf{x}_v)\|$ as a *reference* to indicate the approximate EPS norm values of clean data, which can help us reweight t^* . Then we define:

$$
\xi_{\min} = \min(||\text{EPS}(\mathbf{x})||, ||\text{EPS}(\mathbf{x}_v)||), \xi_{\max} = \max(||\text{EPS}(\mathbf{x})||, ||\text{EPS}(\mathbf{x}_v)||).
$$

346 347 348 The key idea is to normalize $||$ EPS(x) $||$ such that the coefficient of t^* is within a range of [0, 1], ensuring that the reweighted t^* stays positive and avoids unbounded growth, thus preserving the semantic information.

349 350 Realization of the non-linear reweighting function. We then design a non-linear function based on the sigmoid function, which has two horizontal asymptotes:

$$
f_{\sigma}(\|\text{EPS}(\mathbf{x})\|, t^*) = \frac{t^* + b}{1 + \exp\{-(\|\text{EPS}(\mathbf{x})\| - \mu)/\tau\}},
$$
(9)

where b is a bias term and t^* denotes the optimal sample-shared noise level selected by [Nie et al.](#page-11-2) [\(2022\)](#page-11-2) and τ is a temperature coefficient that controls the sharpness of the function. We denote the mean value of $||EPS(\mathbf{x}_v)||$ as μ . This ensures that when the difference between $||EPS(\mathbf{x})||$ and μ is large, the reweighted t^* can approach to the maximum t^* in a more smooth way, and vice versa.

358 359 360 362 363 Adding a bias term to the reweighting function. One limitation of the above-mentioned reweighting functions is that *the reweighted* t^* *cannot exceed the original* t^* , which may result in some adversarial noise not being removed for some adversarial examples. To address this issue, we introduce an extra bias term (i.e., b) to the reweighting function, which can increase the upper bound of the reweighted t^* so that the maximum possible reweighted t^* can exceed original t^* . Empirically, we find that this can further improve the robust accuracy without compromising the clean accuracy.

5 EXPERIMENTS

365 366 367

368 369

371

364

361

328

> In this section, we use *SSNI-L* to denote our method with the *linear* reweighting function, and use *SSNI-N* to denote our method with the *non-linear* reweighting function.

370 5.1 EXPERIMENTAL SETTINGS

372 373 374 375 376 Datasets and model architectures. We consider two datasets for our evaluations: CIFAR-10 [\(Krizhevsky et al.,](#page-11-6) [2009\)](#page-11-6), and ImageNet-1K [\(Deng et al.,](#page-10-6) [2009\)](#page-10-6). For classificaion models, we use the pre-trained WideResNet-28-10 and WideResNet-70-16 for CIFAR-10, and the pre-trained ResNet-50 for ImageNet-1K. For diffusion models, we employed two off-the-shelf diffusion models pre-trained on CIFAR-10 and ImageNet-1K [\(Song et al.,](#page-11-5) [2021b;](#page-11-5) [Dhariwal & Nichol,](#page-10-9) [2021\)](#page-10-9).

377 Evaluation metrics. For all experiments, we consider the standard accuracy (i.e., accuracy on clean examples) and robust accuracy (i.e., accuracy on adversarial examples) as the evaluation metrics.

Baseline settings. We use three well-known DBP methods as our baselines: *DiffPure* [\(Nie et al.,](#page-11-2) [2022\)](#page-11-2), *GDMP* [\(Wang et al.,](#page-11-9) [2022\)](#page-11-9) and *GNS* [\(Lee & Kim,](#page-11-4) [2023\)](#page-11-4). The detailed configurations of baseline methods can be found in Appendix [D.](#page-18-0) For the reverse process within diffusion models, we consider DDPM sampling method [\(Ho et al.,](#page-10-5) [2020\)](#page-10-5) in the DBP methods.

401 402 403 404 405 406 407 408 409 410 411 Evaluation settings for DBP baselines. Following [Lee & Kim](#page-11-4) [\(2023\)](#page-11-4), we use a fixed subset of 512 randomly sampled images for all evaluations due to high computational cost of applying adap-tive white-box attacks to DBP methods. [Lee & Kim](#page-11-4) (2023) provide a robust evaluation framework for existing DBP methods and demonstrate that PGD+EOT is the golden standard for DBP evalua-tions. Therefore, following [Lee & Kim](#page-11-4) [\(2023\)](#page-11-4), we mainly use adaptive white-box PGD+EOT attack with 200 PGD iterations for CIFAR-10 and 20 PGD iterations for ImageNet-1K. We use 20 EOT iterations for all experiments to mitigate the stochasticity introduced by the diffusion models. As PGD is a gradient-based attack, we compute the gradients of the entire process from a surrogate process [\(Lee & Kim,](#page-11-4) [2023\)](#page-11-4). The details of the surrogate process is explained in Appendix [E.](#page-19-1) We also evaluate DBP methods under adaptive BPDA+EOT attack, which leverages an identity function to approximate the direct gradient rather than direct computing the gradient of the defense system.

412 413 414 415 416 Evaluation settings for SSNI. Since SSNI introduces an extra reweighting process than DBP baselines, we implicitly design two adaptive white-box attacks by considering the *entire defense mechanism* of SSNI (i.e., adaptive white-box PGD+EOT attack and adaptive white-box BPDA+EOT attack). *To make a fair comparison, we evaluate SSNI on adaptive white-box attacks with the same configurations mentioned above*. The algorithmic descriptions for the adaptive white-box PGD+EOT attack and adaptive white-box BPDA+EOT attack is provided in Appendix [F](#page-19-2) and [G.](#page-20-0)

417 418 419

379

5.2 DEFENDING AGAINST ADAPTIVE WHITE-BOX PGD+EOT

420 421 We mainly present and analyze the evaluation results of *SSNI-N* in this section and the experimental results of *SSNI-L* can be found in Appendix [H.](#page-20-1)

422 423 424 425 426 427 428 429 430 431 Result analysis on CIFAR-10. Table [1](#page-7-1) shows the standard and robust accuracy against PGD+EOT $\ell_{\infty}(\epsilon = 8/255)$ and $\ell_2(\epsilon = 0.5)$ threat models on CIFAR-10, respectively. Notably, *SSNI-N* effectively improves the accuracy-robustness trade-off on PGD+EOT $\ell_{\infty}(\epsilon = 8/255)$ compared to DBP baselines. Specifically, *SSNI-N* improves standard accuracy of *DiffPure* by 3.58% on WideResNet-28-10 and WideResNet-70-16 without compromising robust accuracy. For *GDMP*, the standard accuracy grows by 1.63% on WideResNet-28-10 and by 2.47% on WideResNet-70-16, respectively. Notably, *SSNI-N* improves the robust accuracy of *GDMP* by 4.23% on WideResNet-28-10 and by 2.48% on WideResNet-70-16. For *GNS*, both the standard accuracy and robust accuracy are improved by a notable margin. We can observe a similar trend in PGD+EOT $\ell_2(\epsilon = 0.5)$. Despite some decreases in robust accuracy (e.g., 0.06% on *DiffPure* and 0.39% on *GDMP*), *SSNI-N* can improve standard accuracy by a notable margin, and thus improving accuracy-robustness trade-off.

432 433 434 4/255) on *ImageNet-1K*.

Table 2: Standard and robust accuracy (%) Table 3: Standard and robust accuracy (%) against adaptive white-box PGD+EOT $\ell_{\infty}(\epsilon =$ against adaptive white-box BPDA+EOT $\ell_{\infty}(\epsilon =$ 8/255) attack on *CIFAR-10*.

Result analysis on ImageNet-1K. Table [2](#page-8-0) presents the evaluation results against adaptive white-box PGD+EOT $\ell_{\infty}(\epsilon = 4/255)$ on ImageNet-1K. *SSNI-N* outperforms all baseline methods by notably improving both the standard and robust accuracy, which demonstrates the effectiveness of *SSNI-N* in defending against strong white-box adaptive attack and indicates the strong scalability of SSNI on large-scale datasets such as ImageNet-1K.

5.3 DEFENDING AGAINST ADAPTIVE WHITE-BOX BPDA+EOT

453 454 We mainly present and analyze the evaluation results of *SSNI-N* in this section and the experimental results of *SSNI-L* can be found in Appendix [H.](#page-20-1)

455 456 457 458 459 460 461 462 We further evaluate the performance of *SSNI-N* against adaptive white-box BPDA+EOT $\ell_{\infty}(\epsilon =$ $8/255$), which is an adaptive attack specifically designed for DBP methods [\(Tramer et al.](#page-11-10), [2020;](#page-11-10) [Hill et al.,](#page-10-10) [2021\)](#page-10-10), as demonstrated in Table [6.](#page-21-0) Specifically, incorporating *SSNI-N* with *DiffPure* can further improve the standard accuracy by 3.58% without compromising robust accuracy. Notably, incorporating *SSNI-N* with *GDMP* can improve the standard and robust accuracy *simultaneously* by a large margin. Despite some decreases in robust accuracy when incorporating *SSNI-N* with *GNS* (i.e., 1.10%), *SSNI-N* can improve standard accuracy significantly (i.e., 3.45%), and thus improving the accuracy-robustness trade-off by a notable margin.

463 464

465

5.4 ABLATION STUDY

466 467 468 469 470 471 472 473 Ablation study on τ **in** *SSNI-N*. We investigate how the temperature coefficient τ in Eq. [\(9\)](#page-6-1) affects the performance of *SSNI-N* against adaptive white-box PGD+EOT $\ell_{\infty}(\epsilon = 8/255)$ attack on CIFAR-10 in Figure [3.](#page-9-1) The temperature coefficient τ controls the sharpness of the curve of the *non-linear* reweighting function. A higher τ leads to a more smooth transition between the low and high values of the reweighting function, resulting in less sensitivity to the changes of the input. From Figure [3,](#page-9-1) the standard accuracy remains stable across different τs , while the robust accuracy increases to the climax when $\tau = 20$. Therefore, we choose $\tau^* = 20$ for the non-linear reweighting function to optimize the accuracy-robustness trade-off for DBP methods.

474 475 476 477 478 479 480 481 482 Ablation study on sampling methods. *DiffPure* originally used an adjoint method to efficiently compute the gradients of the system, but [Lee & Kim](#page-11-4) [\(2023\)](#page-11-4) and [Chen et al.](#page-10-11) [\(2024\)](#page-10-11) suggest to replace adjoint solver with sdeint solver for the purpose of computing full gradients more accurately [\(Li](#page-11-11) [et al.,](#page-11-11) [2020;](#page-11-11) [Kidger et al.,](#page-11-12) [2021\)](#page-11-12). Therefore, we investigate whether using different sampling methods affect the performance of DBP methods (here we use *DiffPure* as the baseline method). We further compare the results with DDIM sampling method [\(Song et al.,](#page-11-13) [2021a\)](#page-11-13), which is a faster sampling method than DDPM [\(Ho et al.,](#page-10-5) [2020\)](#page-10-5). From Table [4,](#page-9-1) DDPM achieves the best accuracyrobustness trade-off among the three sampling methods, and thus we select DDPM as the sampling method for all baseline methods in this paper.

483 484 485 Ablation study on score norms. We investigate the effect of using single score norm (i.e., $\|\nabla_{\mathbf{x}} \log p_t(\mathbf{x})\|$ for SSNI in Appendix [I.](#page-21-1) We find that although single score norm can notably improve the standard accuracy, it suffers from the degradation in robust accuracy. This might be attributed to the fact that single score norm is sensitive to the purification noise levels.

486 487 488 489 490 491 492 493 Table 4: Ablation study on different sampling methods during the reverse diffusion process. We measure the standard and robust accuracy $(\%)$ against PGD+EOT $\ell_{\infty}(\epsilon = 8/255)$ on *CIFAR*-*10*. We use *DiffPure* as the baseline method and we set $t^* = 100$. WideResNet-28-10 is used as the classifier. We report mean and the standard deviations over three runs.

Sampling Method	Standard	Robust
sdeint solver	$89.06 + 0.48$	$47.72 + 0.24$
DDPM	$89.71 + 0.72$	$47.98 + 0.64$
DDIM	$91.54 + 0.72$	37.5 ± 0.80

Figure 3: **Top:** standard accuracy $(\%)$ vs. τ ; **Bottom:** robust accuracy $(\%)$ vs. τ . We report mean and the standard deviations over three runs.

Ablation study on bias terms b. We investigate the effect of the bias term b in reweighting functions to the performance of our framework in Appendix [J.](#page-21-2) We find that the selection of bias term will not significantly impact the performance of our framework under CIFAR-10 and ImageNet-1K. Note that when bias increases, there is a general observation that the clean accuracy drops and the robust accuracy increases. This perfectly aligns with the understanding of optimal noise level selections in existing DBP methods, where large noise level would lead to drop of both clean and robust accuracy and small noise level cannot remove the adversarial perturbation effectively.

506 507 508

5.5 INFERENCE TIME OF SSNI

515 The inference time (in seconds) for incorporating SSNI modules into existing DBP methods on CIFAR-10 and ImageNet-1K are reported in Appendix [K.](#page-22-0) The inference time is measured as the time it takes for a single test image to complete the purification process. Specifically, SSNI is approximately 0.5 seconds slower than baseline methods on CIFAR-10 and 5 seconds slower than baseline methods on ImageNet-1K. Thus, compared with DBP baseline methods, this reweighting process is *lightweight*, ensuring that SSNI is computationally feasible and can be applied in practice with minimal overhead. The details of computing resources can also be found in Appendix [K.](#page-22-0)

516 517 518

6 LIMITATION

519 520 521 522 The design of reweighting functions. The proposed reweighting functions (i.e., the linear and nonlinear reweighting functions) may not be the optimal ones for SSNI. However, designing an effective reweighting function is an open question, and we leave it as future work.

524 525 Extra computational cost. The integration of an extra reweighting process will inevitably bring some extra cost. Luckily, we find that this reweighting process is *lightweight*, making SSNI computationally feasible compared to existing DBP methods (see Section [5.5\)](#page-9-0).

- 7 CONCLUSION
- **527 528**

526

523

- **529 530 531 532 533** In this paper, we find that an optimal t^* indeed could be different at sample-level. Motivated by this finding, we propose a new framework called *Sample-specific Score-aware Noise Injection* (SSNI). SSNI sample-wisely reweight t^* for each sample based on its score norm, which generally injects less noise to clean samples and sufficient noise to adversarial samples, leading to a notable improvement in accuracy-robustness trade-off. We hope this simple yet effective framework could open up a new perspective in DBP methods and lay the groundwork for sample specific noise injections.
- **534 535**
- **536** ETHICS STATEMENT
- **537**

538 539 This study on adversarial defense mechanisms raises important ethical considerations that we have carefully addressed. We have taken steps to ensure our adversarial defense method is fair. We use widely accepted public benchmark datasets to ensure comparability of our results. Our evaluation **540 541 542** encompasses a wide range of attack types and strengths to provide a comprehensive assessment of our defense mechanism.

543 544 545 546 We have also carefully considered the broader impacts of our work. The proposed defense algorithm contributes to the development of more robust machine learning models, potentially improving the reliability of AI systems in various applications. We will actively engage with the research community to promote responsible development and use of adversarial defenses.

548 REPRODUCIBILITY STATEMENT

550 551 552 553 Appendix [A](#page-12-0) include justifications of the theoretical results in Section [3.](#page-2-0) To replicate the experimental results presented in Section [5,](#page-6-0) we have included a link to our anonymous downloadable source code in the abstract. We include additional implementation details required to reproduce the reported results in Appendix [D](#page-18-0) and [E.](#page-19-1)

REFERENCES

547

549

566

- Anish Athalye, Nicholas Carlini, and David A. Wagner. Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples. In *ICML*, 2018.
- **559 560 561** Mingyuan Bai, Wei Huang, Tenghui Li, Andong Wang, Junbin Gao, Cesar F. Caiafa, and Qibin Zhao. Diffusion models demand contrastive guidance for adversarial purification to advance. In *ICML*, 2024.
- **562 563 564 565** Yulong Cao, Ningfei Wang, Chaowei Xiao, Dawei Yang, Jin Fang, Ruigang Yang, Qi Alfred Chen, Mingyan Liu, and Bo Li. Invisible for both camera and lidar: Security of multi-sensor fusion based perception in autonomous driving under physical-world attacks. In *IEEE Symposium on Security and Privacy*, pp. 176–194, 2021.
- **567 568** Huanran Chen, Yinpeng Dong, Zhengyi Wang, Xiao Yang, Chengqi Duan, Hang Su, and Jun Zhu. Robust classification via a single diffusion model. In *ICML*, 2024.
- **569 570 571** Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. In *ICML*, 2020.
- **572 573** Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In *CVPR*, 2009.
- **574 575 576** Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat gans on image synthesis. In *NeurIPS*, 2021.
- **577 578** Yinpeng Dong, Hang Su, Baoyuan Wu, Zhifeng Li, Wei Liu, Tong Zhang, and Jun Zhu. Efficient decision-based black-box adversarial attacks on face recognition. In *CVPR*, 2019.
- **579 580 581** Samuel G Finlayson, John D Bowers, Jonathan L Zittrain Joichi Ito, Andrew L Beam, and Isaac S Kohane. Adversarial attacks on medical machine learning. In *Science*, pp. 1287–1289, 2019.
- **582 583** Ruize Gao, Feng Liu, Jingfeng Zhang, Bo Han, Tongliang Liu, Gang Niu, and Masashi Sugiyama. Maximum mean discrepancy test is aware of adversarial attacks. In *ICML*, 2021.
- **584 585** Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In *ICLR*, 2015.
- **587 588** Mitch Hill, Jonathan Craig Mitchell, and Song-Chun Zhu. Stochastic security: Adversarial defense using long-run dynamics of energy-based models. In *ICLR*, 2021.
- **589 590 591** Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *NeurIPS*, 2020.
- **592 593** Pengfei Jing, Qiyi Tang, Yuefeng Du, Lei Xue, Xiapu Luo, Ting Wang, Sen Nie, and Shi Wu. Too good to be safe: Tricking lane detection in autonomous driving with crafted perturbations. In *USENIX Security Symposium*, pp. 3237–3254, 2021.

A DETAILED PROOFS

Definition 1 (Marginal Probability Density). Let X be the image sample space, $p(\mathbf{x}_0)$ be the natural data distribution over \mathcal{X} , and the diffusion process kernel defined in Eq. [\(1\)](#page-2-1). The marginal probability density $p_t : \mathcal{X} \to \mathbb{R}_+$ at time $0 \le t \le T$ can be expressed as:

$$
p_t(\mathbf{x}) = \int_{\mathcal{X}} q(\mathbf{x}|\mathbf{x}_0) p(\mathbf{x}_0) d\mathbf{x}_0,
$$
\n(10)

.

 \Box

where $q(\mathbf{x}|\mathbf{x}_0)$ describes how a natural sample \mathbf{x}_0 evolves under the forward process to x at time t.

Before proceeding with the proof of Lemma [1](#page-3-0) and Proposition [1,](#page-3-1) we start by presenting two lemmas to facilitate the proof.

Lemma 2. Let $p_t(\mathbf{x})$ denote the marginal probability density of x at time t. For any $\mathbf{x} \in \mathcal{X}$ and $0 \le t \le T$, the score function $\nabla_{\mathbf{x}} \log p_t(\mathbf{x})$ *at time t can be expressed as:*

$$
\nabla_{\mathbf{x}} \log p_t(\mathbf{x}) = \mathbb{E}_{p(\mathbf{x}_0|\mathbf{x})} \left[\nabla_{\mathbf{x}} \log q(\mathbf{x}|\mathbf{x}_0) \right],
$$

where $p(\mathbf{x}_0|\mathbf{x})$ *is the posterior given by Bayes' Rule:*

$$
p(\mathbf{x}_0|\mathbf{x}) = \frac{q(\mathbf{x}|\mathbf{x}_0)p(\mathbf{x}_0)}{\int q(\mathbf{x}|\mathbf{x}_0)p(\mathbf{x}_0)d\mathbf{x}_0}
$$

Proof.

699

$$
\nabla_{\mathbf{x}} \log p_t(\mathbf{x}) = \nabla_{\mathbf{x}} \log \int q(\mathbf{x}|\mathbf{x}_0) p(\mathbf{x}_0) d\mathbf{x}_0 \qquad \text{(by Def. 1)}
$$
\n
$$
= \frac{\nabla_{\mathbf{x}} \int q(\mathbf{x}|\mathbf{x}_0) p(\mathbf{x}_0) d\mathbf{x}_0}{\int q(\mathbf{x}|\mathbf{x}_0) p(\mathbf{x}_0) d\mathbf{x}_0}
$$
\n
$$
= \frac{\int \nabla_{\mathbf{x}} q(\mathbf{x}|\mathbf{x}_0) p(\mathbf{x}_0) d\mathbf{x}_0}{\int q(\mathbf{x}|\mathbf{x}_0) p(\mathbf{x}_0) d\mathbf{x}_0}
$$
\n
$$
= \frac{\int \frac{\nabla_{\mathbf{x}} q(\mathbf{x}|\mathbf{x}_0) p(\mathbf{x}_0) d\mathbf{x}_0}{\int q(\mathbf{x}|\mathbf{x}_0) p(\mathbf{x}_0) d\mathbf{x}_0}}{\int q(\mathbf{x}|\mathbf{x}_0) p(\mathbf{x}_0) d\mathbf{x}_0}
$$
\n
$$
= \frac{\int (\nabla_{\mathbf{x}} \log q(\mathbf{x}|\mathbf{x}_0) p(\mathbf{x}_0) d\mathbf{x}_0}{\int q(\mathbf{x}|\mathbf{x}_0) p(\mathbf{x}_0) d\mathbf{x}_0}
$$
\n
$$
= \int (\nabla_{\mathbf{x}} \log q(\mathbf{x}|\mathbf{x}_0)) p(\mathbf{x}_0) d\mathbf{x}_0 \qquad (p(\mathbf{x}_0|\mathbf{x}) \triangleq \frac{q(\mathbf{x}|\mathbf{x}_0) p(\mathbf{x}_0)}{\int q(\mathbf{x}|\mathbf{x}_0) p(\mathbf{x}_0) d\mathbf{x}_0}
$$

This ends up with the expectation over the posterior $p(\mathbf{x}_0|\mathbf{x})$ as $\mathbb{E}_{p(\mathbf{x}_0|\mathbf{x})} [\nabla_{\mathbf{x}} \log q(\mathbf{x}|\mathbf{x}_0)].$

Lemma [2](#page-12-2) establishes a relationship between the marginal density and the forward process, where we can express the behavior of $\nabla_{\mathbf{x}} \log p_t(\mathbf{x})$ in terms of the well-defined $q(\mathbf{x}|\mathbf{x}_0)$.

Lemma 3. Consider the forward process $q(\mathbf{x}_t|\mathbf{x}_0)$ is defined with noise schedule $\{\beta_t\}_{t\in[0,T]}$, where $\beta_t \in (0,1)$ *for all* $0 \le t \le T$ *. Then, for any* $\mathbf{x} \in \mathcal{X}$ *and* $0 \le t \le T$ *, the score function* $\nabla_{\mathbf{x}} \log p_t(\mathbf{x})$ *can be decomposed as:*

$$
\nabla_{\mathbf{x}} \log p_t(\mathbf{x}) = -g(t)\mathbf{x} + \mathbb{E}_{p(\mathbf{x}_0|\mathbf{x})} \left[g(t) \sqrt{\bar{\alpha}_t} \mathbf{x}_0 \right],
$$

697 698 *where* $g(t) = 1/(1 - \bar{\alpha}_t)$ *and* $\bar{\alpha}_t = \prod_{i=1}^t (1 - \beta_i)$ *.*

700 701 *Proof.* Denote the score function $s_t(\mathbf{x}) = \nabla_{\mathbf{x}} \log p_t(\mathbf{x})$ for convenience. By applying the results from Lemma [2,](#page-12-2) we write:

$$
s_t(\mathbf{x}) = \mathbb{E}_{p(\mathbf{x}_0|\mathbf{x})} [q(\mathbf{x}|\mathbf{x}_0)].
$$

702 703 704 Provided that $q(\mathbf{x}|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}; \sqrt{\bar{\alpha}_t} \mathbf{x}_0, (1 - \bar{\alpha}_t)\mathbf{I})$, we compute the gradient of the log-probability of the forward process as:

$$
\nabla_{\mathbf{x}} \log q(\mathbf{x}|\mathbf{x}_0) = \nabla_{\mathbf{x}} \mathcal{N}\left(\mathbf{x}; \sqrt{\bar{\alpha}_t} \mathbf{x}_0, (1 - \bar{\alpha}_t) \mathbf{I}\right)
$$

\n
$$
= \nabla_{\mathbf{x}} \left[-\frac{1}{2(1 - \bar{\alpha}_t)} (\mathbf{x} - \sqrt{\bar{\alpha}_t} \mathbf{x}_0)^\top (\mathbf{x} - \sqrt{\bar{\alpha}_t} \mathbf{x}_0) + C \right]
$$

\n
$$
= -\frac{1}{1 - \bar{\alpha}_t} (\mathbf{x} - \sqrt{\bar{\alpha}_t} \mathbf{x}_0),
$$

where C is a constant term independent of x. Substitute the result back into $s_t(\mathbf{x})$, we have:

 \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r}

712
\n713
\n714
\n715
\n716
\n717
\n718
\n719
\n711
\n715
\n716
\n717
\n718
\n719
\n711
\n718
\n719
\n711
\n711
\n712
\n
$$
\mathbb{E}_{p(\mathbf{x}_0|\mathbf{x})} [q(\mathbf{x}|\mathbf{x}_0)]
$$
\n
$$
= -\frac{1}{1 - \bar{\alpha}_t} \mathbb{E}_{p(\mathbf{x}_0|\mathbf{x})} [\mathbf{x}_0] \mathbb{E}_{p(\mathbf{x}_0|\mathbf{x})} [\mathbf{x}_0]
$$
\n
$$
= -g(t)\mathbf{x} + \mathbb{E}_{p(\mathbf{x}_0|\mathbf{x})} [g(t)\sqrt{\bar{\alpha}_t}\mathbf{x}_0].
$$

$$
\frac{719}{720}
$$

The Lemma is completed by substituting $g(t) = \frac{1}{1 - \bar{\alpha}_t}$ into the last equation.

Lemma [3](#page-12-3) expresses the score function by the noisy data x with noise level t and the clean data x_0 . We next examine how the score norm evolves to further understand its behavior as time increases.

Lemma 4 (*cf.* Lemma [1\)](#page-3-0). Suppose there exists a constant $K > 0$ such that for all $t \ge 0$ and all $\mathbf{x}_t \in \mathcal{X}$, the expected norm of the clean data given \mathbf{x}_t satisfies: $\mathbb{E}_{\mathbf{x}_0 \sim p(\mathbf{x}_0 | \mathbf{x})}[\|\mathbf{x}_0\|] \leq K \overline{\|\mathbf{x}_t\|}$. Then, *there exist constants* $0 < C < 1$ *and* $T_0 > 0$ *such that for all* $t \geq T_0$ *:*

$$
\frac{\|\nabla_{\mathbf{x}}\log p_t(\mathbf{x})\|}{\|\mathbf{x}\|} > C.
$$

Proof. Again, denote $s_t(\mathbf{x}) = \nabla_{\mathbf{x}} \log p_t(\mathbf{x})$. From Lemma [3,](#page-12-3) we have:

$$
s_t(\mathbf{x}) = -g(t)\mathbf{x} + \mathbb{E}_{p(\mathbf{x}_0|\mathbf{x})} [g(t)\sqrt{\bar{\alpha}_t}\mathbf{x}_0].
$$

733 Applying the triangle inequality to it, we have:

$$
||s_t(\mathbf{x})|| \ge g(t) ||\mathbf{x}|| - ||\mathbb{E}_{p(\mathbf{x}_0|\mathbf{x})} [g(t)\sqrt{\bar{\alpha}_t}\mathbf{x}_0]||
$$

\n
$$
\ge g(t) ||\mathbf{x}|| - g(t)\sqrt{\bar{\alpha}_t}\mathbb{E}_{p(\mathbf{x}_0|\mathbf{x})} [||\mathbf{x}_0||],
$$

where the second inequality comes from applying Jensen's inequality: $f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)]$ for convex function f and random variable X , which leads to:

$$
\|\mathbb{E}_{p(\mathbf{x}_0|\mathbf{x})}\left[g(t)\sqrt{\bar{\alpha}_t}\mathbf{x}_0\right]\| \leq \mathbb{E}_{p(\mathbf{x}_0|\mathbf{x})}\left[\|g(t)\sqrt{\bar{\alpha}_t}\mathbf{x}_0\right\| \right] = g(t)\sqrt{\bar{\alpha}_t}\mathbb{E}_{p(\mathbf{x}_0|\mathbf{x})}\left[\|\mathbf{x}_0\| \right].
$$

743 744 As we have assumed the existence of $K > 0$ that makes $\mathbb{E}_{\mathbf{x}_0 \sim p(\mathbf{x}_0|\mathbf{x})}[||\mathbf{x}_0||] \le K ||\mathbf{x}_t||$ holds for all $x \in \mathcal{X}$, we have:

$$
||s_t(\mathbf{x})|| \ge g(t) ||\mathbf{x}|| - g(t)\sqrt{\bar{\alpha}_t}K ||\mathbf{x}||
$$

= $g(t) ||\mathbf{x}|| (1 - K\sqrt{\bar{\alpha}_t}).$

We then turn to look into the asymptotic behavior of $g(t)$. We have $\bar{\alpha}_t = \prod_{s=1}^t (1 - \beta_s)$. Since $0 < 1 - \beta_s < 1$ for all s, and the sequence is decreasing (as β_s is increasing), it is easy to check that

$$
\lim_{t \to \infty} \bar{\alpha}_t = 0
$$

751 752

and

753

$$
\lim_{t \to \infty} g(t) = \lim_{t \to \infty} \frac{1}{1 - \bar{\alpha}_t} = 1.
$$

754 755 This can then be formalized as, for any $\epsilon > 0$, there exists a T_{ϵ} such that for all $t > T_{\epsilon}$.

 $|g(t) - 1| < \epsilon$, and $\sqrt{\bar{\alpha}_t} < \epsilon$.

 \Box

736 737 738

Then, for $t > T_{\epsilon}$, we have

756

772 773 774

757 758 759 760 761 762 $||s_t(\mathbf{x})|| \geq g(t) ||\mathbf{x}|| (1 - K\sqrt{\bar{\alpha}_t})$ $> (1 - \epsilon) ||\mathbf{x}|| (1 - K\epsilon),$ $= (1 - \epsilon - K\epsilon + K\epsilon^2) ||\mathbf{x}||$ $= (1 - (K + 1)\epsilon + K\epsilon^2) ||\mathbf{x}||$.

763 764 765 766 To establish the desired inequality $||s_t(\mathbf{x})|| \geq C ||\mathbf{x}||$ for constants $C > 0$, we next investigate whether this quatratic inequality $K\epsilon^2 + (K + 1)\epsilon + (1 - C) > 0$ can be solved. Denote the discriminant $D = (K + 1)^2 - 4K(1 - C)$, we have

767 768 769 770 771 $D = (K+1)^2 - 4K(1-C)$ $= K^2 - 2K + 1 + 4KC$ $=(K-1)^2+4KC$ > 0 (since $(K - 1)^2 \ge 0$ and $K > 0$).

Then, let $\epsilon_1 < \epsilon_2$ be two real roots of $K\epsilon^2 + (K+1)\epsilon + (1-C) = 0$, as the parabola opens upwards, i.e., $K > 0$, note that $\epsilon > 0$, we further need to ensure the smaller root $\epsilon = \frac{K+1-\sqrt{D}}{2K} > 0$, such that

$$
K + 1 > \sqrt{(K+1)^2 - 4K(1-C)}
$$
\n
$$
776
$$
\n
$$
777
$$
\n
$$
778
$$
\n
$$
4K > 4KC
$$
\n
$$
1 > C.
$$

780 Putting them together, we have $\epsilon \in (0, \epsilon_1) \cup (\epsilon_2, \infty)$ that makes $||s_t(\mathbf{x})|| \ge C ||\mathbf{x}||$ hold, given a **781** constant $0 < C < 1$ in relation to K and ϵ . Setting $T_0 = T_{\epsilon}$ completes the proof. \Box **782**

783 784 785 786 Proposition 2 (*cf.* Proposition [1\)](#page-3-1). *Consider the diffusion model satisfying all conditions as specified in Lemma [1.](#page-3-0) Assume that there exist constants* $K > 0$, such that $\beta_t \leq K$ for all $t \geq 0$. Additionally, *suppose* $||\mathbf{x}||$ ≤ *M for any* \mathbf{x} ∈ *X, for some M* > 0*. Then, for any* ϵ *, there exists a constant* $\Delta = 2\epsilon/(CK)$ *such that for* $t_1, t_2 \geq 0$ *, we have:*

$$
\left|\left\|\nabla_{\mathbf{x}}\log p_{t_1}(\mathbf{x})\right\|-\left\|\nabla_{\mathbf{x}}\log p_{t_2}(\mathbf{x})\right\|\right|>\epsilon,\ \ \text{with}\ |t_1-t_2|\geq \Delta.
$$

Proof. Denote $s_t(\mathbf{x}) = \nabla_{\mathbf{x}} \log p_t(\mathbf{x})$. Recall that we can express the score function as

$$
s_t(\mathbf{x}) = \mathbb{E}_{p(\mathbf{x}_0|\mathbf{x})} [q(\mathbf{x}|\mathbf{x}_0)]
$$

1

$$
= -\frac{1}{1 - \bar{\alpha}_t} \mathbb{E}_{p(\mathbf{x}_0|\mathbf{x})} \left[\mathbf{x} - \sqrt{\bar{\alpha}_t} \mathbf{x}_0 \right]
$$

$$
= -\frac{1}{1-\bar{\alpha}_t}\mathbf{x} + \frac{\sqrt{\bar{\alpha}_t}}{1-\bar{\alpha}_t}\mathbb{E}_{p(\mathbf{x}_0|\mathbf{x})}[\mathbf{x}_0]
$$

Let $g(t) = ||s_t(\mathbf{x})||^2$. We compute $\frac{\partial g(t)}{\partial t}$ using the chain rule and the product rule:

$$
\frac{\partial g(t)}{\partial t} = 2 \left\langle s_t(\mathbf{x}), \frac{\partial s_t(\mathbf{x})}{\partial t} \right\rangle
$$

= $2 \left\langle s_t(\mathbf{x}), \frac{\partial}{\partial t} \left(-\frac{1}{1 - \bar{\alpha}_t} \mathbf{x} + \frac{\sqrt{\bar{\alpha}_t}}{1 - \bar{\alpha}_t} \mathbb{E}_{p(\mathbf{x}_0|\mathbf{x})}[\mathbf{x}_0] \right) \right\rangle$

Recall that $\bar{\alpha}_t = \prod_{i=1}^t (1 - \beta_i)$, we next derive the derivative of $\bar{\alpha}_t$. We consider the continuous approximation of t , where the product is approximated as an exponential of the integral

$$
\bar{\alpha}_t = \exp\left(\int_0^t \log(1-\beta_i)\mathrm{d}i\right).
$$

As β_t is typically assumed to be small (which is an implicit common practice [\(Ho et al.,](#page-10-5) [2020\)](#page-10-5)), we further simplify $\log(1-\beta_i)$ with its first-order Taylor approximation, i.e., $\log(1-\beta_i) \approx -\beta_i$, which

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 thus leads to the approximated $\bar{a}_t \approx \exp\left(-\int_0^t \beta_i \mathrm{d}i\right)$. This way we compute the derivative of \bar{a}_t as $\frac{\partial}{\partial t}\bar{a}_t = \frac{\partial}{\partial t}\exp\left(-\int_0^t$ $\int_0^t \beta_i \mathrm{d}i \bigg)$ $=\exp\left(-\int^t\right)$ $\int_0^t \beta_i \mathrm{d}i \bigg) \, \frac{\partial}{\partial t} \, \bigg(- \int_0^t$ $\int_0^t \beta_i \mathrm{d}i \bigg)$ $=\exp\left(-\int^t\right)$ $\int_0^t \beta_i \mathrm{d}i \bigg) (-\beta_t)$ $=-\beta_t\bar{\alpha}_t$ We can then compute the derivatives of the coefficients: $\frac{\partial}{\partial t}\left(\frac{1}{1-\right)$ $1 - \bar{\alpha}_t$ $=\frac{-1}{(1-\frac{1}{2})}$ $(1 - \bar{a}_t)^2$ $\frac{\partial}{\partial t}\left(1-\bar{a}_t\right)$ $=\frac{\beta_t\bar{\alpha}_t}{\sqrt{1-\bar{\alpha}}$ $(1-\bar{\alpha}_t)^2$ $\frac{\partial}{\partial t}\left(\frac{\sqrt{\bar{\alpha}}_t}{1-\bar{\alpha}}\right)$ $1 - \bar{\alpha}_t$ $=$ $\frac{\partial}{\partial t}$ $\sqrt{\bar{\alpha}_t}(1-\bar{\alpha}_t)-\sqrt{\bar{\alpha}_t}\frac{\partial}{\partial t}(1-\bar{\alpha}_t)$ $(1-\bar\alpha_t)^2$ = $\left(\frac{1}{2}\bar{\alpha}_t^{-1/2}\frac{\partial \bar{\alpha}_t}{\partial t}\right)(1-\bar{\alpha}_t)+\sqrt{\bar{\alpha}_t}\frac{\partial \bar{\alpha}_t}{\partial t}$ $(1-\bar\alpha_t)^2$ = $\left(\frac{1}{2}\bar{\alpha}_t^{-1/2}\left(-\beta_t\bar{\alpha}_t\right)\right)\left(1-\bar{\alpha}_t\right)+\sqrt{\bar{\alpha}_t}\left(-\beta_t\bar{\alpha}_t\right)$ $(1-\bar\alpha_t)^2$ $=\frac{-\frac{1}{2}\beta_t\bar{\alpha}_t^{1/2}(1-\bar{\alpha}_t)-\beta_t\bar{\alpha}_t^{3/2}}{(1-\bar{\alpha}_t)^2}$ $(1-\bar\alpha_t)^2$ $=-\beta_t\bar{\alpha}_t^{1/2}$ $\frac{1}{2}(1-\bar{\alpha}_t)+\bar{\alpha}_t$ $(1-\bar{\alpha}_t)^2$ $=-\beta_t\sqrt{\bar{\alpha}_t}\frac{1+\bar{\alpha}_t}{2(1-\bar{z})}$ $2(1-\bar\alpha_t)^2$ Using the computed derivatives: $\frac{\partial s_t(\mathbf{x})}{\partial t} = \frac{\beta_t \bar{\alpha}_t}{(1-\bar{\alpha}_t)}$ $\frac{\beta_t\bar{\alpha}_t}{(1-\bar{\alpha}_t)^2}\mathbf{x}-\beta_t\sqrt{\bar{\alpha}_t}\frac{1+\bar{\alpha}_t}{2(1-\bar{\alpha}_t)}$ $\frac{1+\alpha_t}{2(1-\bar{\alpha}_t)^2}\mathbb{E}_{p(\mathbf{x}_0|\mathbf{x})}[\mathbf{x}_0].$

Substituting these back, we get: √

$$
\frac{\partial g}{\partial t} = 2 \left\langle -\frac{1}{1 - \bar{\alpha}_t} \mathbf{x} + \frac{\sqrt{\bar{\alpha}_t}}{1 - \bar{\alpha}_t} \mathbb{E}_{p(\mathbf{x}_0|\mathbf{x})}[\mathbf{x}_0], \frac{\beta_t \bar{\alpha}_t}{(1 - \bar{\alpha}_t)^2} \mathbf{x} - \beta_t \sqrt{\bar{\alpha}_t} \frac{1 + \bar{\alpha}_t}{2(1 - \bar{\alpha}_t)^2} \mathbb{E}_{p(\mathbf{x}_0|\mathbf{x})}[\mathbf{x}_0] \right\rangle
$$

$$
= \frac{2\beta_t \bar{\alpha}_t}{(1 - \bar{\alpha}_t)^2} \left\langle s_t(\mathbf{x}), \mathbf{x} - \frac{1 + \bar{\alpha}_t}{2\sqrt{\bar{\alpha}_t}} \mathbb{E}_{p(\mathbf{x}_0|\mathbf{x})}[\mathbf{x}_0] \right\rangle.
$$

Next, under Cauchy-Schwarz inequality: $|\langle \mathbf{a}, \mathbf{b} \rangle| \leq ||\mathbf{a}|| ||\mathbf{b}||$, we have

$$
|\frac{\partial g}{\partial t}| \le \frac{2\beta_t \bar{\alpha}_t}{(1 - \bar{\alpha}_t)^2} \left\| s_t(\mathbf{x}) \right\| \cdot \left\| \mathbf{x} - \frac{1 + \bar{\alpha}_t}{2\sqrt{\bar{\alpha}_t}} \mathbb{E}_{p(\mathbf{x}_0|\mathbf{x})}[\mathbf{x}_0] \right\|
$$

Then, by the triangle inequality for vectors a and b:

∥a − b∥ = ∥a + (−b)∥ ≤ ∥a∥ + ∥−b∥ = ∥a∥ + ∥b∥ ,

and the assumption $\|\mathbf{x}\| \le M$, we know that $\|\mathbb{E}_{p(\mathbf{x}_0|\mathbf{x})}[\mathbf{x}_0]\| \le M$ almost surely. Thus,

858
\n859
\n860
\n
$$
|\frac{\partial g}{\partial t}| \leq \frac{2\beta_t \bar{\alpha}_t}{(1 - \bar{\alpha}_t)^2} ||s_t(\mathbf{x})|| \cdot \left\| \mathbf{x} - \frac{1 + \bar{\alpha}_t}{2\sqrt{\bar{\alpha}_t}} \mathbb{E}_{p(\mathbf{x}_0|\mathbf{x})}[\mathbf{x}_0] \right\|
$$
\n860
\n861
\n862
\n864
\n868
\n869
\n861
\n871
\n884
\n896
\n808
\n811
\n848
\n859
\n861
\n884
\n885
\n886
\n889
\n889
\n898
\n899
\n8

861
\n
$$
\leq \frac{2\beta_t \bar{\alpha}_t}{(1-\bar{\alpha}_t)^2} \|s_t(\mathbf{x})\| \cdot \left(\|\mathbf{x}\| + \left\| \frac{1+\bar{\alpha}_t}{2\sqrt{\bar{\alpha}_t}} \mathbb{E}_{p(\mathbf{x}_0|\mathbf{x})}[\mathbf{x}_0] \right\| \right)
$$

862
\n
$$
\leq \frac{2\beta_t\bar{\alpha}_t}{(1-\bar{\alpha}_t)^2} \|s_t(\mathbf{x})\| \left(M + \frac{1+\bar{\alpha}_t}{2\sqrt{\bar{\alpha}_t}}M\right).
$$

864 865 866 867 868 869 Let $C_1 = \sup_{t \ge 0} \frac{2\bar{\alpha}_t}{(1 - \bar{\alpha}_t)^2}$ and $C_2 = \sup_{t \ge 0} \frac{1 + \bar{\alpha}_t}{2\sqrt{\bar{\alpha}_t}}$. As $0 < \bar{\alpha}_t < 1$, it is easy to check the maximum value of $\frac{1+\bar{\alpha}_t}{2\sqrt{\bar{\alpha}_t}}$, i.e., C_2 is achieved when $\bar{\alpha}_t$ gets close to 1. This also aligns with the condition where $\sup \frac{2\bar{\alpha}_t}{(1-\bar{\alpha}_t)^2}$ is reached. Thus, $\left(1+\frac{1+\bar{\alpha}_t}{2\sqrt{\bar{\alpha}_t}}\right)M \le (1+C_2)M = C_3M$ for some constants $C_3 < 2$, since $C_2 \to 1$ when $\bar{\alpha}_t \to 1$. As a result, we have a constant $C > 0$ leading to the upper bound as

$$
\left|\frac{\partial g}{\partial t}\right| < C\beta_t \left\|s_t(\mathbf{x})\right\|, \quad \text{with } C = C_1 \cdot (C_3 M).
$$

Mean Value Theorem states that: for any t_1 , t_2 , there exists a ξ between t_1 and t_2 such that: $|g(t_2)$ $g(t_1)| = \left|\frac{\partial g}{\partial t}(\xi)\right| |t_2 - t_1| \leq C\beta_{\xi} \|s_{\xi}(\mathbf{x})\| |t_2 - t_1|.$

Applying this to $g(t)$, for any t_1, t_2 , there exists a ξ between t_1 and t_2 , such that:

$$
|g(t_2) - g(t_1)| = \left|\frac{\partial g}{\partial t}(\xi)\right| |t_2 - t_1|
$$

\n
$$
\leq C\beta_{\xi} \|s_{\xi}(\mathbf{x})\| |t_2 - t_1|
$$

\n
$$
\leq CK \|s_{\xi}(\mathbf{x})\| |t_2 - t_1| \qquad \text{(by assumption } \beta_t \leq K)
$$

Then, we can express

$$
|\n\|s_{t_2}(\mathbf{x})\| - \|s_{t_1}(\mathbf{x})\| \n= \frac{|\n\|s_{t_2}(\mathbf{x})\|^2 - \|s_{t_1}(\mathbf{x})\|^2|}{(\|s_{t_2}(\mathbf{x})\| + \|s_{t_1}(\mathbf{x})\|)}\n\geq \frac{CK \|s_{\xi}(\mathbf{x})\| |t_2 - t_1|}{\|s_{t_2}(\mathbf{x})\| + \|s_{t_1}(\mathbf{x})\|}
$$

From Lemma [1,](#page-3-0) we have: there exists $C' > 0$ and $T_0 > 0$ such that for all $t \geq T_0$: $||s_t(\mathbf{x})|| >$ C'||x||. Applying this to t_1, t_2 , and ξ with $\delta > 0$, we find that there exists a C' such that:

$$
||s_{t_1}(\mathbf{x})|| > C' ||\mathbf{x}||
$$

$$
||s_{t_2}(\mathbf{x})|| > C' ||\mathbf{x}||
$$

$$
||s_{\xi}(\mathbf{x})|| > C' ||\mathbf{x}||
$$

Substituting these back, we have:

$$
|\ ||s_{t_2}(\mathbf{x})|| - ||s_{t_1}(\mathbf{x})|| | \geq \frac{CK_2C' ||\mathbf{x}|| |t_2 - t_1|}{2C' ||\mathbf{x}||}
$$

=
$$
\frac{CK_2}{2} |t_2 - t_1|.
$$

For any $\epsilon > 0$, let $\Delta = \frac{2\epsilon}{CK_2}$. Then for $|t_2 - t_1| \ge \Delta$, we have: $||s_{t_2}(\mathbf{x})|| - ||s_{t_1}(\mathbf{x})||| > \epsilon$. This completes the proof. \Box

17

B RELATIONSHIP BETWEEN SCORE NORMS AND PERTURBATION BUDGETS

Figure 4: Relationship between score norms and perturbation budgets. We use one batch of clean data from *CIFAR-10* and employ PGD+EOT $\ell_{\infty}(\epsilon = 8/255)$ as the attack.

In Figure [4,](#page-17-2) we use an orange line to represent the score norm of clean data, while the score norms of adversarial data with varying perturbation budgets are shown using a gradient of blue lines. Specifically, we compute the score norm of different samples undergoing PGD+EOT $\ell_{\infty}(\epsilon = 8/255)$ with perturbation budgets varying between 0 and 8/255 on CIFAR-10. The results consistently reveal that *the cleaner (i.e., lower* ϵ *) a sample is, the smaller its score norm tends to be, and vise versa.* This further justifies the rationale of using score norms for reweighting t^* .

C JUSTIFICATION OF SECTION [4.2](#page-5-3)

Sampled-shared DBP is a special case of SSNI.

Proof. Let Φ_{SH} be a sample-shared purification operator with constant noise level t^* . We can express Φ_{SS} as a sample-specific purification operator Φ_{SI} by defining the reweighting function f as

$$
f(z, t^*) = t^* \quad \forall z \in \mathbb{R}, t \in [0, T_{\text{max}}].
$$

Then, for any $x \in \mathcal{X}$, we have

$$
\Phi_{\text{SI}}(\mathbf{x}) = R(\mathbf{x}_{T(\mathbf{x})})
$$

= $R(\mathbf{x}_{f(||s_{\theta}(\mathbf{x},t^*)||,t^*)})$
= $R(\mathbf{x}_{t^*})$
= $\Phi_{\text{SH}}(\mathbf{x}).$

 \Box

SSNI has a Higher Purification Capacity.

Statement 1 [Comparison of Purification Range]: For any $\mathbf{x} \in \mathcal{X}$, we have $\Omega_{\text{SH}}(\mathbf{x}) \subseteq \Omega_{\text{SI}}(\mathbf{x})$.

972 *Proof.* Let $y \in \Omega_{SH}(x)$. Then $\exists t^* \in [0, T_{max}]$ such that $y = R(x_{t^*})$. Define $f(z, t^*) = t^*$ for all **973** z and t^* , then $t(\mathbf{x}) = f(||s_{\theta}(\mathbf{x}, t^*)||, t^*) = t^*$. Therefore, $\mathbf{y} = R(\mathbf{x}_{t^*}) = R(\mathbf{x}_{t(\mathbf{x})}) \in \Phi_{\text{SI}}(\mathbf{x})$. This **974** completes the proof of $\Omega_{\text{SH}}(\mathbf{x}) \subseteq \Omega_{\text{SI}}(\mathbf{x})$. П **975**

Statement 2 [Strict Inclusion]: There exists $\mathbf{x} \in \mathcal{X}$, we have $\Omega_{\text{SH}}(\mathbf{x}) \subseteq \Omega_{\text{SI}}(\mathbf{x})$.

Proof. Consider a non-constant score function $s_{\theta}(\mathbf{x}, t)$ and a non-trivial reweighting function f. We can choose x such that $t(\mathbf{x}) \neq t^*$ for any fixed t^* . Then $R(\mathbf{x}_{t(\mathbf{x})}) \in \Phi_{\text{SI}}(\mathbf{x})$ but $\overline{R}(\mathbf{x}_{t(\mathbf{x})}) \neq \Phi_{\text{SH}}$. This completes the proof of $\Omega_{\text{SH}}(\mathbf{x}) \subseteq \Omega_{\text{SI}}(\mathbf{x})$. П

D DEFENSE METHODS CONFIGURATIONS

For all chosen DBP methods, we utilize surrogate process to obtain gradients of the defense system during white-box adaptive attack, but we directly compute the full gradients during defense evaluation. Furthermore, we consistently apply DDPM sampling method to the selected DBP methods, which means we replace the numeric SDE solver (sdeint) with DDPM sampling method in Diff-Pure [\(Nie et al.,](#page-11-2) [2022\)](#page-11-2) and GDMP [\(Wang et al.,](#page-11-9) [2022\)](#page-11-9). The reason is that the SDE solver does not support sample-specific timestep input. For DDPM sampling, we can easily manipulate samplespecific timestep input by using matrix operation.

992 D.1 DIFFPURE

993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 Existing DBP methods generally follow the algorithm of DiffPure [\(Nie et al.,](#page-11-2) [2022\)](#page-11-2). DiffPure conducts evaluation on AutoAttack [\(Croce & Hein,](#page-10-12) [2020\)](#page-10-12) and BPDA+EOT adaptive attack [\(Athalye](#page-10-13) [et al.,](#page-10-13) [2018\)](#page-10-13) to measure model robustness. DiffPure chooses optimal $t^* = 100$ and $t^* = 75$ on CIFAR-10 against threat models $\ell_{\infty}(\epsilon = 8/255)$ and $\ell_2(\epsilon = 0.5)$, respectively. It also tests on highresolution dataset like ImageNet-1K with $t^* = 150$ against threat models $\ell_{\infty}(\epsilon = 4/255)$. Calculating exact full gradients of the defense system of DiffPure is impossible since one attack iteration requires 100 function calls (with $t^* = 100$ and a step size of 1). DiffPure originally uses numerical SDE solver for calculating gradients. However, the adjoint method is insufficient to measure the model robustness since it relies on the performance of the underlying SDE solver [\(Zhuang et al.,](#page-11-14) [2020;](#page-11-14) [Lee & Kim,](#page-11-4) [2023;](#page-11-4) [Chen et al.,](#page-10-11) [2024\)](#page-10-11). Therefore, we apply surrogate process to efficiently compute gradients of direct back-propagation in our evaluation. To overcome memory constraint issue, we align the step size settings of denoising process in adversarial attack to 5 with the evaluation settings in [\(Lee & Kim,](#page-11-4) [2023\)](#page-11-4) and keep the timestep t^* consistent with DiffPure. For ImageNet-1K evaluation, we can only afford a maximum of 10 function calls for one attack iteration.

1007 1008 D.2 GDMP

1009 1010 1011 1012 GDMP basically follows the purification algorithm proposed in DiffPure [\(Nie et al.,](#page-11-2) [2022;](#page-11-2) [Wang](#page-11-9) [et al.,](#page-11-9) [2022\)](#page-11-9), but their method further introduces a novel guidance and use multiple purification steps sequentially. GDMP proposes to use gradients of a distance between an initial input and a target being processed to preserve semantic information, shown in Eq. [\(12\)](#page-18-1).

1013 1014

$$
\mathbf{x}_{t-1} \sim \mathcal{N}(\boldsymbol{\mu}_{\theta} - s\boldsymbol{\Sigma}_{\theta} \nabla_{\mathbf{x}^t} \mathcal{D}(\mathbf{x}^t, \mathbf{x}_{\text{adv}}^t), \boldsymbol{\Sigma}_{\theta}),
$$
(12)

1015 1016 1017 1018 1019 1020 Given a DDPM $(\mu_{\theta}(\mathbf{x}_t), \Sigma_{\theta}(\mathbf{x}_t))$, a gradient scale of guidance s. \mathbf{x}_t is the data being purified, and \mathbf{x}_{adv}^{t} is the adversarial example at t. Also, GDMP empirically finds that multiple purification steps can improve the robustness. In the original evaluation of GDMP, the defense against the PGD attack consists of four purification steps, with each step including 36 forward steps and 36 denoising steps. For BPDA+EOT adaptive attack, GDMP uses two purification steps, each consisting of 50 forward steps and 50 denoising steps.

1021 1022 1023 1024 1025 [Lee & Kim](#page-11-4) [\(2023\)](#page-11-4) evaluated GDMP with three types of guidance and concluded that No-Guidance provides the best robustness performance when using the surrogate process to compute the full gradient through direct backpropagation. In our evaluation, we incorporate the surrogate process with No-Guidance to evaluate GDMP. Since it is impossible to calculate the gradients of the full defense system, we use a surrogate process consisting of same number of purification steps but with larger step size in the attack (with 6 denoising steps and 10 denoising steps for PGD+EOT and **1026 1027** BPDA+EOT attack, respectively). Notably, GDMP only uses one purification run with 45 forward steps to evaluate on ImageNet-1K, which we keep consistent with this setting.

1028 1029

1030

D.3 GNS

1031 1032 1033 1034 1035 1036 1037 1038 [Lee & Kim](#page-11-4) [\(2023\)](#page-11-4) emphasizes the importance of selecting optimal hyperparameters in DBP meth-ods for achieving better robust performance. Hence, [Lee & Kim](#page-11-4) [\(2023\)](#page-11-4) proposed Gradual Noise-Scheduling (GNS) for multi-step purification, which is based on the idea of choosing the best hyperparameters for multiple purification steps. It is basically the same architecture as GDMP (no guidance), but with different purification steps, forward steps and denoising steps. Specifically, GNS sets different forward and reverse diffusion steps and gradually increases the noise level at each subsequent purification step. We just keep the same hyperparameter settings and also use an ensemble of 10 runs to evaluate the method.

- **1039**
- **1040 1041**

E SURROGATE PROCESS OF GRADIENT COMPUTATION

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 The surrogate process is an efficient approach for computing approximate gradients through back-propagation, as proposed by [\(Lee & Kim,](#page-11-4) 2023). White-box adaptive attacks, such as PGD+EOT, involve an iterative optimization process that requires computing the exact full gradients of the entire system, result in high memory usage and increased computational time. DBP methods often include a diffusion model as an add-on purifier, which the model requires extensive function calls during reverse generative process. Hence, it is hard to compute the exact full gradient of DBP systems efficiently. The surrogate process takes advantage of the fact that, given a fixed total amount of noise, we can denoise it using fewer denoising steps [\(Song et al.,](#page-11-13) [2021a\)](#page-11-13), but the gradients obtained from the surrogate process slightly differ from the exact gradients. Instead of using the full denoising steps, we approximate the original denoising process with fewer function calls, which allows us to compute gradients by directly back-propagating through the forward and reverse processes.

1052 1053 1054 1055 1056 1057 1058 1059 There are other gradient computation methods such as adjoint method in DiffPure [\(Li et al.,](#page-11-11) [2020;](#page-11-11) [Nie et al.,](#page-11-2) [2022\)](#page-11-2). It leverages an underlying numerical SDE solver to solve the reverse-time SDE. The adjoint method can theoretically compute exact full gradient, but in practice, it relies on the performance of the numerical solver, which is insufficient to measure the model robustness [\(Zhuang](#page-11-14) [et al.,](#page-11-14) [2020;](#page-11-14) [Lee & Kim,](#page-11-4) [2023;](#page-11-4) [Chen et al.,](#page-10-11) [2024\)](#page-10-11). [Lee & Kim](#page-11-4) [\(2023\)](#page-11-4) conducted a comprehensive evaluation of both gradient computation methods and concluded that utilizing the surrogate process for gradient computation poses a greater threat to model robustness. Hence, we use gradients obtained from a surrogate process in all our experiments.

1060 1061

1062 1063

F ADAPTIVE WHITE-BOX PGD+EOT ATTACK FOR SSNI

1064

Algorithm 2 Adaptive white-box PGD+EOT attack for SSNI.

- **1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 Require:** clean data-label pairs (x, y) ; purifier f_p ; classifier f_c ; a noise level T; a score network $s_{\theta}(\mathbf{x}, T)$; objective function \mathcal{L} ; perturbation budget ϵ ; step size α ; PGD iterations K; EOT iterations N. 1: Initialize $\mathbf{x}_0^{\text{adv}} \leftarrow \mathbf{x}$ 2: for $k = 0, ..., K - 1$ do 3: Computing sample-specific noise levels: $t(\mathbf{x}_k^{\text{adv}}) \leftarrow f(||s_\theta(\mathbf{x}_k^{\text{adv}}, T)||, T)$ 4: Average the gradients over EOT: $g_k \leftarrow \frac{1}{N} \sum_{i=1}^N \nabla_{\mathbf{x}^{\text{adv}}} \mathcal{L}\left(f_c(f_p(\mathbf{x}_k^{\text{adv}}, t(\mathbf{x}_k^{\text{adv}}))), y\right)$ 5: Update adversarial examples: $\mathbf{x}_{k+1}^{\text{adv}} \leftarrow \Pi_{\mathcal{B}_{\epsilon}(\mathbf{x})} (\mathbf{x}_{k}^{\text{adv}} + \alpha \cdot \text{sign}(g_k))$ 6: end for 7: return $\mathbf{x}^{\text{adv}} = \mathbf{x}_K^{\text{adv}}$
- **1078**
- **1079**

1080 1081 G ADAPTIVE WHITE-BOX BPDA+EOT ATTACK FOR SSNI

Algorithm 3 Adaptive white-box BPDA+EOT attack.

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 Require: clean data-label pairs (x, y) ; purifier f_p ; classifier f_c ; approximation function f_{apx} ; a noise level T; a score network $s_{\theta}(\mathbf{x}, T)$; objective function \mathcal{L} ; perturbation budget ϵ ; step size α ; PGD iterations K; EOT iterations N. 1: Initialize $\mathbf{x}_0^{\text{adv}} \leftarrow \mathbf{x}$ 2: for $k \leftarrow 0$ to $K - 1$ do 3: Computing sample-specific $t: t(\mathbf{x}_k^{\text{adv}}) \leftarrow f(||s_{\theta}(\mathbf{x}_k^{\text{adv}}, T)||)$ $\mathcal{L}^{\text{adv}}(s) \leftarrow f(||s_{\theta}(\mathbf{x}_{k}^{\text{adv}}, T)||, T)$ 4: Average the gradient over EOT samples: $g_k \leftarrow \frac{1}{N} \sum_{i=1}^{N} \nabla_{\mathbf{x}^{\text{adv}}} \mathcal{L}\left(\left(f_c(f_{\text{apx}}(f_p(\mathbf{x}_k^{\text{adv}}))\right), y\right)$ 5: Update adversarial examples: $\mathbf{x}_{k+1}^{\text{adv}} \leftarrow \Pi_{\mathcal{B}_{\epsilon}(\mathbf{x})} (\mathbf{x}_{k}^{\text{adv}} + \alpha \cdot \text{sign}(g_k))$ 6: end for 7: **return** $\mathbf{x}^{\text{adv}} = \mathbf{x}^{\text{adv}}_K$

1096 H PERFORMANCE EVALUATION OF SSNI-L

1098 1099 1100 1101 1102 1103 1104 1105 We also incorporate *SSNI-L* reweighting framework with existing DBP methods for accuracy-robustness evaluation. In Table [5,](#page-20-2) we report the results against PGD+EOT $\ell_{\infty}(\epsilon = 8/255)$ and $\ell_2(\epsilon = 0.5)$ threat models on CIFAR-10, respectively. We can see that *SSNI-L* can still support DBP methods to better trade-off between standard accuracy and robust accuracy. Also, we report the results against BPDA+EOT $\ell_{\infty}(\epsilon = 8/255)$ threat model on CIFAR-10 in Table [6.](#page-21-0) Overall, *SSNI-L* slightly decreases the robustness of DBP methods against PGD+EOT attack and maintain the robustness of DBP methods against BPDA+EOT attack, but there is a notable improvement in standard accuracy.

1106 1107 1108 1109 Table 5: Standard and robust accuracy of DBP methods against adaptive white-box PGD+EOT (left: $\ell_{\infty}(\epsilon = 8/255)$, right: $\ell_2(\epsilon = 0.5)$) on *CIFAR-10*. WideResNet-28-10 and WideResNet-70-16 are used as classifiers. We compare the result of DBP methods with and without *SSNI-L*. We report mean and standard deviation over three runs. We show the most successful defense in bold.

1082 1083

1095

1097

- **1128**
- **1129**
- **1130**
- **1131**
- **1132**
- **1133**

1134 1135 1136 Table 6: Standard and robust accuracy (%) against adaptive white-box BPDA+EOT $\ell_{\infty}(\epsilon = 8/255)$ attack on *CIFAR-10*. We compare the result of DBP methods with and without *SSNI-L*. We report mean and standard deviation over three runs. We show the most successful defense in **bold**.

1144 1145 1146

1148

1147 I ABLATION STUDY ON SCORE NORM

1149 1150 1151 1152 1153 1154 We further provide experiments with single score norm as reweighting metric instead of EPS norm. [Yoon et al.](#page-11-1) [\(2021\)](#page-11-1) shows score norm $\nabla_{\mathbf{x}} \log p_t(\mathbf{x})$ is a valid measurement for adversarial detection. Incorporating single score norm with our SSNI-N framework, it still achieves notable improvement on standard accuracy, but the robustness of the DBP methods is exhausted. The single score norm is highly sensitive to the noise levels, which makes it insufficient to completely distinguish between natural and adversarial examples.

1155 1156 1157 1158 Table 7: Standard and robust accuracy (%) against adaptive white-box PGD+EOT $\ell_{\infty}(\epsilon = 8/255)$ attack on *CIFAR-10*. We use *single score norms* (i.e., $\|\nabla_{\mathbf{x}}\log p_t(\mathbf{x})\|$). We report mean and standard deviation over three runs. We show the most successful defense in bold.

1166 1167 1168

1169 1170 1171

1173 1174

1178 1179 1180

J ABLATION STUDY ON BIAS TERM

1172 Table 8: Ablation study on the bias term b. We report the standard and robust accuracy of DBP methods against adaptive white-box PGD+EOT on *CIFAR-10*. WideResNet-28-10 and WideResNet-70- 16 are used as classifiers. We report mean and standard deviation over three runs. We show the most successful defense in bold.

1184

1185

1186

1189 Table 9: Ablation study on the bias term b. We report standard and robust accuracy of DBP methods against adaptive white-box PGD+EOT on *ImageNet-1K*. ResNet-50 is used as the classifier. We report mean and standard deviation over three runs. We show the most successful defense in bold.

K COMPUTE RESOURCES

Table 10: Inference time of the DBP methods Table 11: Inference time of the DBP methods with and without SSNI for a single image run-WideResNet-28-10 as the classifier.

ning on one A100 GPU on *CIFAR-10*. We use ning on one A100 GPU on *ImageNet-1K*. We use with and without SSNI for a single image run-ResNet-50 as the classifier.

1215 1216 1217 1218 We implemented our code on Python version 3.8, CUDA version 12.2.0, and PyTorch version 2.0.1 with Slurm Workload Manager. We conduct each of the experiments on up to $4 \times$ NVIDIA A100 GPUs. Source code for this work is available at: [https://anonymous.4open.science/r/](https://anonymous.4open.science/r/SSNI-F746) [SSNI-F746](https://anonymous.4open.science/r/SSNI-F746).

23

1188

1190 1191 1192

