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ABSTRACT

Diffusion-based purification (DBP) methods aim to remove adversarial noise from
the input sample by first injecting Gaussian noise through a forward diffusion pro-
cess, and then recovering the clean example through a reverse generative process.
In the above process, how much Gaussian noise is injected to the input sample
is key to the success of DBP methods, which is controlled by a constant noise
level t* for all samples in existing methods. In this paper, we discover that an
optimal t* for each sample indeed could be different. Intuitively, the cleaner a
sample is, the less the noise it should be injected, and vice versa. Motivated by
this finding, we propose a new framework, called Sample-specific Score-aware
Noise Injection (SSNI). Specifically, SSNI uses a pre-trained score network to
estimate how much a data point deviates from the clean data distribution (i.e.,
score norms). Then, based on the magnitude of score norms, SSNI applies a
reweighting function to adaptively adjust t* for each sample, achieving sample-
specific noise injections. Empirically, incorporating our framework with exist-
ing DBP methods results in a notable improvement in both accuracy and robust-
ness on CIFAR-10 and ImageNet-1K, highlighting the necessity to allocate dis-
tinct noise levels to different samples in DBP methods. Our code is available at:
https://anonymous.4open.science/r/SSNI-F746.

1 INTRODUCTION

Deep neural networks (DNNs) are vulnerable to adversarial examples, which is a longstanding prob-
lem in deep learning (Szegedy et al., 2014; Goodfellow et al., 2015). Adversarial examples aim
to mislead DNNs into making erroneous predictions by adding imperceptible adversarial noise to
clean examples, which pose a significant security threat in critical applications (Dong et al., 2019;
Finlayson et al., 2019; Cao et al., 2021; Jing et al., 2021). To defend against adversarial examples,
adversarial purification (AP) stands out as a representative defensive mechanism, by leveraging
pre-trained generative models to purify adversarial examples back towards their natural counterparts
before feeding into a pre-trained classifier (Yoon et al., 2021; Nie et al., 2022). Notably, AP meth-
ods benefit from their modularity, as the purifier operates independently of the downstream classifier,
which facilitates seamless integration into existing systems and positions AP as a practical approach
to improve the adversarial robustness of DNN-based classifiers.

Recently, diffusion-based purification (DBP) methods have gained much attention as a promising
framework in AP, which leverage the denoising nature of diffusion models to mitigate adversarial
noise (Nie et al., 2022; Xiao et al., 2023; Lee & Kim, 2023). Generally, diffusion models train a
forward process that maps from data distributions to simple distributions, e.g., Gaussian, and reverse
this mapping via a reverse generative process (Ho et al., 2020; Song et al., 2021b). When applied
in DBP methods, the forward process gradually injects Gaussian noise into the input sample, while
the reverse process gradually purify noisy sample to recover the clean sample. The quality of the
purified sample heavily depends on the amount of Gaussian noise added to the input during the
forward process, which can be controlled by a noise level parameter ¢*. Existing DBP methods (Nie
et al., 2022; Xiao et al., 2023; Lee & Kim, 2023) manually select a constant ¢* for all samples.

However, we find that using a sample-shared t* may overlook the fact that an optimal ¢* indeed
could be different at sample-level, as demonstrated in Figure 1. For example, in Figure 1a, t* = 100
is too small, resulting in the adversarial noise not being sufficiently removed by the diffusion models.
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Figure 1: For each sub-figure: the 1st column contains the input (i.e., could either be AEs or CEs),
the 2nd column contains noise-injected examples with different ¢*s, and the 3rd column contains
purified examples. We use DiffPure (Nie et al., 2022) with a sample-shared t* = 100 selected by Nie
et al. (2022) to conduct this experiment on CIFAR-10 (Krizhevsky et al., 2009). The globally shared
t* = 100 offers a baseline, but results in suboptimal prediction performance compared to what could
be achieved by tuning the noise level for individual samples. Notably, while the recovered images
obtained by different noise levels may be visually indistinguishable, they carry different semantics.
For instance, the image is classified as “frog” (incorrect) with ¢t* = 100 but as “dog” (correct) with
t* = 60 (Figure 1b). These highlight the need for a sample-wise noise level adjustment.

This is because diffusion models are good at denoising samples that have been sufficiently corrupted
by Gaussian noise through the forward process (Ho et al., 2020; Song et al., 2021b). With a small
t*, the sample remains insufficiently corrupted, which limits the denoising capability in the reverse
process and thereby compromising the robustness against adversarial examples. On the other hand,
in Figure 1b and Ic, t* = 100 is too large, resulting in excessive disruption of the sample’s semantic
information during the forward process, which makes it difficult to recover the original semantics
in the reverse process. In this case, both robustness and clean accuracy are compromised, as the
purified samples struggle to preserve the semantic consistency of clean samples. These observations
motivate us to make the first attempt to adjust the noise level on a sample-specific basis.

In this paper, we propose Sample-specific Score-aware Noise Injection (SSNI), a new framework
that leverages the distance of a sample from the clean data distribution to adaptively adjust ¢* on a
sample-specific basis. SSNI aims to inject less noise to cleaner samples, and vice versa.

To implement SSNI, inspired by the fact that scores (i.e., Vxlog p;(x)) reflect the directional mo-
mentum of samples toward the high-density areas of clean data distribution (Song & Ermon, 2019),
we use score norms (i.e., | Vxlog p:(x)||) as a natural metric to measure the deviation of a data point
from the clean data distribution. In Section 3, we establish the relationship between the score norm
and the noise level required for different samples. Specifically, samples with different score norms
tend to have accumulated different noise levels. Furthermore, we empirically show that the cleaner
samples — those closer to the clean data distribution — exhibit lower score norm, justifying the ra-
tionale of using score norms for reweighting ¢t*. Concretely, we use a pre-trained score network
to estimate the score norm for each sample. Based on this, we propose two reweighting functions
that adaptively adjust t* according to its score norm, achieving sample-specific noise injections (see
Section 4.3). Notably, this reweighting process is lightweight, ensuring that SSNI is computationally
feasible and can be applied in practice with minimal overhead (see Section 5.5).

Through extensive evaluations on benchmark image datasets such as CIFAR-10 (Krizhevsky et al.,
2009) and ImageNet-1K (Deng et al., 2009), we demonstrate the effectiveness of SSNI in Section
5. Specifically, combined with different DBP methods (Nie et al., 2022; Xiao et al., 2023; Lee &
Kim, 2023), SSNI can boost clean accuracy and robust accuracy simultaneously by a notable margin
against the well-designed adaptive white-box attack (see Section 5.2 and Algorithm 2).

The success of SSNI takes root in the following aspects: (1) an optimal noise level ¢* for each sample
indeed could be different, making SSNI a more effective approach to unleash the intrinsic strength of
DBP methods; (2) existing DBP methods often inject excessive noise into clean samples, resulting
in a degradation in clean accuracy. By contrast, SSNI injects less noise to clean samples, and thereby
notably improving the clean accuracy. Meanwhile, SSNI can effectively handle adversarial samples
by injecting sufficient noise on each sample; (3) SSNI is designed as general framework instead of
a specific method, allowing it to be seamlessly integrated with a variety of existing DBP methods.
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2  PRELIMINARY AND RELATED WORK

In this section, we first review the concepts of diffusion models and scores in detail. Then, we review
the related work of DBP methods.

Diffusion models are generative models designed to approximate the underlying clean data distri-
bution p(xg), by learning a parametric distribution py(xo) with a forward and a reverse process.
In Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020), the forward process of a
diffusion model defined on X C R can be expressed by:

a(xilxo) = N (xi3 Vaxo, (1 - a)t) M

where a; = H;Zl(l — Bi) and {B; }+cjo,7) are predefined noise scales with 3; € (0,1) for all ¢.
As t increases, x; converges toward isotropic Gaussian noise. In the reverse process, DDPM seeks
to recover the clean data from noise by simulating a Markov chain in the reverse direction over T'
steps. The reverse transition at each intermediate step is modeled by

pg(Xt_1|Xt) :N(xt—l;ﬂe(xtvt)vgt21>7 (2)
where pg(x¢,t) = ﬁ (xt - \/16%75”69 (Xt,t)) is the predicted mean at ¢, and o; is a fixed
variance (Ho et al., 2020). More specifically, the model predicts the noise €g+(x¢,t) using a U-

net architecture, allowing the estimation of pg(x;,t) at each noise level. The training objective
minimizes the distance between the true noise and the predicted noise:

0* = arg m@inIExO’t,6 {He — €0 (Vauxo + V1 — aue, t) H;] )

During inference, starting from x7 ~ A/(0, I), the model generates a sample by iteratively sampling
xy—1 from x; using the learned reverse process overall 1 <t < T"

1
)A(t_l = \/Tiﬁt ()A(t — \/lﬂ_tio[tee* (f(t,t)) + ,Bte, with € ~ N(O, I) (3)

Score and score norm. In this paper, a score refers to the gradient of the log-probability density, i.e.,
Vxlog p:(x), which represents the direction of maximum increase in the log-density across a vector
field (Song & Ermon, 2019). The score norm is the magnitude (or length) of this gradient, denoted as
[IVxlog p(x)||. It reflects how much a data point deviates from the clean data distribution. A larger
score norm suggests the data point is situated in a low-probability region, while a smaller score norm
indicates it is closer to regions where clean data occurs. Yoon et al. (2021) discover that score norms
can effectively differentiate adversarial examples from clean examples. Building on this, Zhang et al.
(2023) propose a more robust score called the expected perturbation score (EPS), which computes
the expected scores of perturbed samples over a range of noise levels. EPS improves robustness
against noise variations, providing a more reliable metric for detecting adversarial samples.

Diffusion-based purification. Adversarial purification (AP) leverages generative models as an add-
on module to purify adversarial examples before classification. With in this context, diffusion-
based purification (DBP) methods have emerged as a promising framework, exploiting the inherent
denoising nature of diffusion models to filter out adversarial noise (Nie et al., 2022; Wang et al.,
2022; Xiao et al., 2023; Lee & Kim, 2023). Specifically, Nie et al. (2022) and Xiao et al. (2023)
integrate diffusion models to purify adversarial inputs. Wang et al. (2022) introduce input guidance
during the reverse diffusion process to ensure the purified outputs stay close to the inputs. Lee &
Kim (2023) further establish a reliable evaluation framework for DBP methods and propose a fine-
tuned gradual noise scheduling for multi-step purifications. More recently, Bai et al. (2024) propose
to guide diffusion models with contrastive loss through the reverse process.

3 MOTIVATION
In this section, we elaborate on the motivation of our method by connecting the impact of different
perturbation budgets € to the required noise level ¢* of each sample through score norm.

Sample-shared noise-level ¢* fails to address diverse perturbation budgets. We empirically ob-
serve that an optimal noise level ¢t* for each sample indeed could be different. Figure 1 illustrates
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that, while a constant noise level ¢* = 100, as suggested by Nie et al. (2022), yields strong perfor-
mances for some samples, it leads to suboptimal results for others. Since DBP relies on adequate
t* for forward noise injection to remove adversarial perturbation, a shared ¢* cannot adapt to the
distinct perturbation budgets of individual examples, leading to a suboptimal accuracy-robustness
trade-off. Specifically, Figure la shows that t* = 100 is insufficient remove the adversarial noise,
leaving residual perturbations that compromise robustness. On the contrary, Figure 1c and 1b reveal
that t* = 100 overly suppresses the other sample’s semantic information during the forward process,
making it difficult to recover the original semantics via the reverse process. These findings highlight
the need for sample-specific noise injection levels tailored to individual perturbation budgets.

Score norms vary across perturbation budgets. Adversarial and clean examples are from distinct
distributions (Gao et al., 2021). Motivated by this, we further investigate how different perturbation
budgets e affect score norms under adversarial attacks (see Appendix B). Specifically, we compute
the score norm of different samples undergoing PGD+EOT /(¢ = 8/255) with perturbation bud-
gets varying between 0 and 8/255 on CIFAR-10. Our finding reveals a consistent pattern: The
results consistently reveal that samples subjected to stronger perturbations (higher €) exhibit larger
score norms, whereas cleaner samples (lower €) show smaller score norms. These results imply the
utility of score norms can be extended from detecting adversarial samples from clean ones, as shown
by (Yoon et al., 2021), to differentiate adversarial examples based on their perturbation strength.

Different score norms imply different ¢*. Building on the observed relationship between pertur-
bation budgets and score norms, we next explore how score norms of different samples correlate
with the noise level t*, hypothesizing that score norms can inform noise strengths t* tailored to
individual samples. The proofs of the following Lemma 1 and Proposition 1 are in Appendix A.

We consider a diffusion model over a measurable space X C R¢, with forward process characterized
by a Gaussian transition kernel g(x;|xo) as defined in Eq. (1).

Lemma 1. Suppose there exists a constant K > 0 such that for all t > 0 and all x; € X, the
expected norm of xq given X, satisfies: Exp(xox)[[|IX0l]] < K ||x¢|. Then, there exist constants
0 < C < 1land Ty > 0 such that for all t > Ty:

Vi log pi(x)[| > C ]| -

Lemma 1 establishes that we can find a time threshold 7§, after which the score norm maintains pro-
portional to the input norm as ¢ increases (and higher noise levels ¢* as diffusion steps accumulate).
Building on this, we now investigate how the score norm varies between different time steps t; and
to, providing a lower bound on the difference in score norms over time.

Proposition 1. Consider the diffusion model satisfying all conditions as specified in Lemma 1.
Assume that there exist constants K > 0, such that 5; < K for all t > 0. Additionally, suppose
Ix|| < M for any x € X, for some M > 0. Then, for any €, there exists a constant A = 2¢/(CK)
such that for t1,ty > 0, we have:

[ IVxlog pe, ()| = IV log pr, (X)[|| > €, with [ty — 5] > A.

Proposition 1 shows that the score norm varies with ¢, and the variation exceeds a threshold € > 0
when the time difference |to — t1] is sufficiently large. Consequently, for two noisy samples x; and
x> with different score norms, the monotonic increase of {/3; }+c[o, 7] With ¢ implies that different
score norms correspond to different noise levels, i.e., t; # to.

Recall that DBP involves Gaussian noise injection (i.e., forward process) followed by denoising in
the reverse process to remove the adversarial perturbation. As samples 1 and xo differ in score
norms, they inherently present different denoising difficulties and require different optimal noise
levels t7 # t5 accordingly. This aligns with the established intuition that score norms reflect pertur-
bation strengths and corresponding denoising requirements.

Motivated by the relationship between e, score norms, and ¢*, we propose using score norm as an
indicator of denoising difficulty to reweight the noise injection level, which transforms the globally-
shared noise level into sample-specific configurations, tailoring the denoising strength to each sam-
ple’s specific requirements. The success of this hypothesis is further empirically validated by the
purification outcomes reported in Sec. 5.

Remark 1 (Limitation). We acknowledge that Proposition 1 does not explicitly focus on the proper-
ties of adversarial attacks, which is often infeasible to analyze rigorously. To simplify the setup, we
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Figure 2: An overview of the proposed SSNI framework. Compared to existing DBP methods,
SSNI use a pre-trained score network sy to estimate the score norm ||sg(x)||. Then, SSNI applies a
reweighting function f to adaptive adjust ¢* for each sample x; based on its score norm ||sg(x;)]|,
achieving sample-specific noise injections. Notably, SSNI is designed as general framework instead
of a specific method, allowing it to be seamlessly integrated with a variety of existing DBP methods.

disregard potential compounding interactions between adversarial perturbation and injected Gaus-
sian noise in the forward pass of DBP. Instead, we leverage the properties of diffusion models and
present the analysis as a conceptual motivation to inspire the design of the proposed method, rather
than as a basis for a comprehensive theory.

4 SAMPLE-SPECIFIC SCORE-AWARE NOISE INJECTION

Motivated by Section 3, we propose Sample-specific Score-aware Noise Injection (SSNI), a flexible
framework that adaptively adjusts the noise level for each sample based on how much it deviates
from the clean data distribution, as measured by the score norm. We begin by introducing the SSNI
framework, followed by a connection with related work and the empirical realization of SSNI.

4.1 FRAMEWORK OF SSNI

Overview. SSNI builds upon existing DBP methods by reweighting the optimal noise level ¢* from
a global, sample-shared constant to a sample-specific quantity. The core idea behind SSNI is to
leverage score norms to modulate the noise injected to each sample during the diffusion process, en-
suring a more targeted denoising process tailored to each individual sample. For clarity, we provide
a visual illustration of SSNI in Figure 2, and the procedure is described in Algorithm 1.

DBP with sample-shared noise level ¢*. Existing DBP methods use an off-the-shelf diffusion
model for data purification, and a classifier responsible for label prediction. Let ) be the label space
for the classification task. Denote the forward diffusion process by D : X — X, the reverse process
by R : X — X, and the classifier by C': X — ). The overall prediction function is formulated as:

h(x) =CoRo _D(X)7 with x = xq. 4)

In this context, x; = D(xg) refers to the noisy image obtained after 7" steps of diffusion, and xg =
R(x7) represents the corresponding recovered images through the reverse process. Specifically,
these methods predetermine a constant noise level T' = t* for all samples, following a shared noise
schedule { /5t}te[0,T]- The outcome of the forward process defined in Eq. (1) can be expressed as:

X7 = \/Hj:1(1 - Bi)x+ \/1 — szl(l — fBi)e  withx = xg, Vx € X,

where x represents the original data, and € ~ N(0, I) denotes the Gaussian noise.

From sample-shared to sample-specific noise level. SSNI takes a step further by transforming the
sample-shared noise level Tsy(x) = ¢* into a sample-specific noise level Tg1(x) = t(x), which
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Algorithm 1 Diffusion-based Purification with SSNI.

Input: test samples x, a score network sy, a reweighting function f(-) and a pre-determined noise
level ¢*.

Approximate the score by sg: sg(x)

Obtain the sample-specific noise level: ¢(x) = f(||so(x)]] ,t*)

The forward diffusion process: x;(x) = \/Hf(:xl) (1—Bi)x+ \/1 - Hf(:xl) (1 — Bi)e by Eq. (6)
for t = ¢(x)...1do

The reverse diffusion process: X¢_1 = \/1177& (f{t — \/%69* (X¢, t)) + /Bte by Eq. (2)

end for
return purified samples x

A A o e

adapts the noise injection for each sample. Given a sample-shared noise level ¢*, SSNI defines ¢(x)

as

t(x) = f(llse(x)I[, %), (5)
where sy (x) represents the score of a sample x, which is estimated by the score network sg. To
avoid potential ambiguity, we have not explicitly denoted the dependency of s¢(x) on ¢t. However,
it is important to note that the calculation of sy(x) requires a set of noise levels, which differs from
the sample-shared noise level t*. To further clarify, the samples {x; }1_, in sg(x;) is associated with
a corresponding set of noise levels {¢;}7 ;. These individual noise levels {¢;}}" ; are determined
dynamically based on the specific characteristics of x;. f(-,-) is a reweighting function that adjusts
t* based on the score norm, allowing the noise level to vary depending on the sample’s deviation
from the clean data distribution. The outcome of the forward process of SSNI is:

t(x) t(x) .
Xy(x) = \/Hi_l (1-B8)x+ \/1 — Hi:l (1-p)e withx =x, Vx € X. (6)

In this way, SSNI enables an adaptive noise injection process tailored to the properties (i.e., score
norm) of each individual sample.

4.2 UNIFYING SAMPLE-SHARED AND SAMPLE-SPECIFIC DBP

We define a generalized purification operator encompassing both sample-shared and sample-specific
noise based DBP methods as ®(x) = R(xr(x)), Where R denotes the reverse process, X x) is the
noisy version of x after 7'(x) steps of diffusion, and 7' : X — T is a function that determines the
noise level for each input, with 7 = [0, Tiyax] being the range of possible noise levels. With this
operator, we have the following understandings (detailed justifications are in Appendix C).

Sample-shared DBP is a special case of SSNI. For a sample-shared DBP, the noise level, denoted
as Tgu(x) = t*, is a constant for Vx € X, while for SSNI: Tg1(x) = t(x) = f(||se(x)|,t*).
Clearly, any Tsy(x) can be expressed by Ts1(x), implying that any sample-shared noise level t* is
equivalently represented by SSNI with a constant reweighting function.

SSNI has higher purification flexibility. For a given DBP strategy, we further define the purifica-
tion range €2 for an input x € X', as the set Q(x) = {®(x) | ®(x) = R(X,(x)), T : X — T }, which
characterizes all possible purified outputs of the input x. This concept captures the flexibility of a
DBP strategy. We find that Qg C Qg1 holds for any x € X, and there exists at least one x € X for
which the inclusion is strict, i.e., Qs € (g1 These results show that SSNI achieves a broader pu-
rification range than sample-shared DBP, thus enabling greater flexibility in the purification process.

4.3 REALIZATION OF SSNI

In this section, we discuss the empirical realizations of SSNI in detail.

Realization of the score. In Section 4.1, The samples {x;}? ; in sp(x;) are associated with a cor-
responding set of noise levels {¢;} ;. However, a direct realization of this idea presents two chal-
lenges: (1) If each sample x; corresponds to a single noise level ¢;, the resulting score calculation
becomes highly sensitive to the choice of ¢; (Zhang et al., 2023). (2) It is difficult to pre-determine
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an optimal set of noise levels {¢;}1_, when calculating sg(x;), which still remains as an open ques-
tion. To address the above-mentioned limitations, following Zhang et al. (2023), we use expected
perturbation score (EPS) to measure how much a data point deviates from the clean distribution,
which is defined as:

EPS(x) = E¢ vy (0,77) Vx log pi (%), (7

where p;(x) is the marginal probability density and 7” is the maximum noise level for EPS.
EPS computes the expectation of the scores of perturbed images across different noise levels
t ~ U(0,7”), making it more invariant to the changes in noise levels. Notably, this 7" is differ-
ent from the optimal noise level ¢* in this paper. Following Zhang et al. (2023), we set 77 = 20. In
practice, a score Vi log,, (x) can be approximated by s (x), where sp is a score network. In this
paper, we use a pre-trained score network that has a training objective of score matching (Song &
Ermon, 2019) to achieve the estimation for the score sy (x).

Realization of the linear reweighting function. We first design a linear function to reweight ¢*:

_ EPS()]| — &uin

gmax - fmin

Jiinear (|EPS(x) ||, £*) X"+, ®)
where b is a bias term and ¢* denotes the optimal sample-shared noise level selected by Nie et al.
(2022). Specifically, we extract 5,000 validation clean examples from the training data (denoted as
x,) and we use |[EPS(x, )| as a reference to indicate the approximate EPS norm values of clean
data, which can help us reweight ¢t*. Then we define:

§min = min(|[EPSX)]|, [[EPS(x,)]); &max = max(||EPS(x)[, [[EPS(x,)]).

The key idea is to normalize ||[EPS(x)|| such that the coefficient of ¢* is within a range of [0, 1],
ensuring that the reweighted ¢* stays positive and avoids unbounded growth, thus preserving the
semantic information.

Realization of the non-linear reweighting function. We then design a non-linear function based
on the sigmoid function, which has two horizontal asymptotes:

B t*+b

L+ exp{—([EPS()[ — o) /7}”
where b is a bias term and t* denotes the optimal sample-shared noise level selected by Nie et al.
(2022) and T is a temperature coefficient that controls the sharpness of the function. We denote the

mean value of |EPS(x,)|| as . This ensures that when the difference between ||[EPS(x)|| and p is
large, the reweighted ¢* can approach to the maximum ¢* in a more smooth way, and vice versa.

fo([EPS(x)][, %) ©)

Adding a bias term to the reweighting function. One limitation of the above-mentioned reweight-
ing functions is that the reweighted t* cannot exceed the original t*, which may result in some
adversarial noise not being removed for some adversarial examples. To address this issue, we intro-
duce an extra bias term (i.e., b) to the reweighting function, which can increase the upper bound of
the reweighted ¢* so that the maximum possible reweighted ¢* can exceed original ¢*. Empirically,
we find that this can further improve the robust accuracy without compromising the clean accuracy.

5 EXPERIMENTS

In this section, we use SSNI-L to denote our method with the linear reweighting function, and use
SSNI-N to denote our method with the non-linear reweighting function.

5.1 EXPERIMENTAL SETTINGS

Datasets and model architectures. We consider two datasets for our evaluations: CIFAR-10
(Krizhevsky et al., 2009), and ImageNet-1K (Deng et al., 2009). For classificaion models, we
use the pre-trained WideResNet-28-10 and WideResNet-70-16 for CIFAR-10, and the pre-trained
ResNet-50 for ImageNet-1K. For diffusion models, we employed two off-the-shelf diffusion models
pre-trained on CIFAR-10 and ImageNet-1K (Song et al., 2021b; Dhariwal & Nichol, 2021).

Evaluation metrics. For all experiments, we consider the standard accuracy (i.e., accuracy on clean
examples) and robust accuracy (i.e., accuracy on adversarial examples) as the evaluation metrics.
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Table 1: Standard and robust accuracy of DBP methods against adaptive white-box PGD+EOT (left:
U (€ = 8/255), right: ¢3(e = 0.5)) on CIFAR-10. WideResNet-28-10 and WideResNet-70-16 are
used as classifiers. We compare the result of DBP methods with and without SSNI-N. We report
mean and standard deviation over three runs. We show the most successful defense in bold. The
performance improvements and degradation are reported in green and red.

PGD+EOT £, (€ = 8/255) PGD+EOT £5 (e = 0.5)

DBP Method Standard Robust DBP Method Standard Robust
Nie et al. (2022) 89.7140.72 47.9840.64 Nie et al. (2022) 91.80+0.84 82.81+0.97
o +SSNIN 93.2940.37 (+3.58)  48.631:0.56 (+0.65) o  +SSNIN 93.954+0.70 (+2.15)  82.7541.01 (-0.06)
& Wangetal. (2022) 92.45+0.64 36.7241.05 & Wangetal (2022) 92.4540.64 82.2940.82
Z  +SSNEN 94.08:£0.33 (+1.63)  40.9510.65(+4.23)  Z  +SSNIN 94.084+0.33 (+1.63)  82.4940.75 (+0.20)
5 Lee & Kim (2023) 90.1040.18 56.05+1.11 = Lee & Kim (2023) 90.10+0.18 83.66+0.46
+SSNI-N 93.5540.55 (+2.66)  56.454-0.28 (+0.40) + SSNI-N 93.554+0.55 (+3.45)  84.05+0.33 (+0.39)
Nie et al. (2022) 90.89+1.13 52.154:0.30 Nie et al. (2022) 92.904-0.40 82.9441.13
o +SSNI-N 94474051 (+3.58) 52474066 (+0.32) o  +SSNIN 95.1240.58 (+2.22)  84.38+0.58 (+1.44)
8 Wangetal (2022) 93.1040.51 43.55+0.58 8  Wangetal. (2022) 93.1040.51 85.03+0.49
Z  +SSNIN 95574024 (+2.47)  4603+133(+248) & +SSNIN 95.574+0.24 (+2.47)  84.6410.51 (-0.39)
# T lee& Kim (2023) 89.39+1.12 56.9740.33 F e & Kim (2023) 89.39+1.12 84.5140.37
+ SSNI-N 93.824+0.24 (+4.44)  57.031+0.28 (+0.06) + SSNI-N 93.824+0.24 (+4.43)  84.8310.33 (+0.32)

Baseline settings. We use three well-known DBP methods as our baselines: DiffPure (Nie et al.,
2022), GDMP (Wang et al., 2022) and GNS (Lee & Kim, 2023). The detailed configurations of
baseline methods can be found in Appendix D. For the reverse process within diffusion models, we
consider DDPM sampling method (Ho et al., 2020) in the DBP methods.

Evaluation settings for DBP baselines. Following Lee & Kim (2023), we use a fixed subset of
512 randomly sampled images for all evaluations due to high computational cost of applying adap-
tive white-box attacks to DBP methods. Lee & Kim (2023) provide a robust evaluation framework
for existing DBP methods and demonstrate that PGD+EOT is the golden standard for DBP evalua-
tions. Therefore, following Lee & Kim (2023), we mainly use adaptive white-box PGD+EOT attack
with 200 PGD iterations for CIFAR-10 and 20 PGD iterations for ImageNet-1K. We use 20 EOT
iterations for all experiments to mitigate the stochasticity introduced by the diffusion models. As
PGD is a gradient-based attack, we compute the gradients of the entire process from a surrogate
process (Lee & Kim, 2023). The details of the surrogate process is explained in Appendix E. We
also evaluate DBP methods under adaptive BPDA+EOT attack, which leverages an identity function
to approximate the direct gradient rather than direct computing the gradient of the defense system.

Evaluation settings for SSNI. Since SSNI introduces an extra reweighting process than DBP base-
lines, we implicitly design two adaptive white-box attacks by considering the entire defense mech-
anism of SSNI (i.e., adaptive white-box PGD+EQOT attack and adaptive white-box BPDA+EOT
attack). To make a fair comparison, we evaluate SSNI on adaptive white-box attacks with the
same configurations mentioned above. The algorithmic descriptions for the adaptive white-box
PGD+EQT attack and adaptive white-box BPDA+EOT attack is provided in Appendix F and G.

5.2 DEFENDING AGAINST ADAPTIVE WHITE-BOX PGD+EOT

‘We mainly present and analyze the evaluation results of SSNI-N in this section and the experimental
results of SSNI-L can be found in Appendix H.

Result analysis on CIFAR-10. Table | shows the standard and robust accuracy against PGD+EOT
Lo (€ = 8/255) and ¢5(e = 0.5) threat models on CIFAR-10, respectively. Notably, SSNI-N effec-
tively improves the accuracy-robustness trade-off on PGD+EOT /(e = 8/255) compared to DBP
baselines. Specifically, SSNI-N improves standard accuracy of DiffPure by 3.58% on WideResNet-
28-10 and WideResNet-70-16 without compromising robust accuracy. For GDMP, the standard
accuracy grows by 1.63% on WideResNet-28-10 and by 2.47% on WideResNet-70-16, respectively.
Notably, SSNI-N improves the robust accuracy of GDMP by 4.23% on WideResNet-28-10 and by
2.48% on WideResNet-70-16. For GNS, both the standard accuracy and robust accuracy are im-
proved by a notable margin. We can observe a similar trend in PGD+EOT /(e = 0.5). Despite
some decreases in robust accuracy (e.g., 0.06% on DiffPure and 0.39% on GDMP), SSNI-N can
improve standard accuracy by a notable margin, and thus improving accuracy-robustness trade-off.
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Table 2: Standard and robust accuracy (%) Table 3: Standard and robust accuracy (%)
against adaptive white-box PGD+EOT /(¢ = against adaptive white-box BPDA+EOT /(e =

4/255) on ImageNet-IK. 8/255) attack on CIFAR-10.
PGD+EOT £ (€ = 4/255) BPDA+EOT 4o (e = 8/255)
DBP Method Standard Robust DBP Method Standard Robust
Nie et al. (2022) 68.231+0.92 30.3440.72 Nie et al. (2022) 89.7140.72 81.9040.49
+ SSNI-N 70.254+0.56 (+2.02) 33.66+1.04 (+3.32) = + SSNI-N 93.2940.37 (+3.58) 82.10+1.15 (+0.20)
"o.‘ Wang et al. (2022) 74.2240.12 0.39+0.03 ﬁ Wang et al. (2022) 92.454-0.64 79.884-0.89
§ + SSNI-N 75.071+0.18 (+0.85) 5.2110.24 (+4.82) E + SSNI-N 94.08+0.33 (+1.63) 80.99+1.09 (+1.11)
Lee & Kim (2023) 70.1840.60 42.4540.92 = Lee & Kim (2023) 90.104-0.18 88.401-0.88
+ SSNI-N 72.69+0.80 (+2.51) 43.48+0.25 (+1.03) + SSNI-N 93.5540.55 (+3.45) 87.30£0.42 (-1.10)

Result analysis on ImageNet-1K. Table 2 presents the evaluation results against adaptive white-box
PGD+EOT /(e = 4/255) on ImageNet-1K. SSNI-N outperforms all baseline methods by notably
improving both the standard and robust accuracy, which demonstrates the effectiveness of SSNI-N
in defending against strong white-box adaptive attack and indicates the strong scalability of SSNI
on large-scale datasets such as ImageNet-1K.

5.3 DEFENDING AGAINST ADAPTIVE WHITE-BOX BPDA+EOT

We mainly present and analyze the evaluation results of SSNI-N in this section and the experimental
results of SSNI-L can be found in Appendix H.

We further evaluate the performance of SSNI-N against adaptive white-box BPDA+EOT /(¢ =
8/255), which is an adaptive attack specifically designed for DBP methods (Tramér et al., 2020;
Hill et al., 2021), as demonstrated in Table 6. Specifically, incorporating SSNI-N with DiffPure can
further improve the standard accuracy by 3.58% without compromising robust accuracy. Notably,
incorporating SSNI-N with GDMP can improve the standard and robust accuracy simultaneously by
a large margin. Despite some decreases in robust accuracy when incorporating SSNI-N with GNS
(i.e., 1.10%), SSNI-N can improve standard accuracy significantly (i.e., 3.45%), and thus improving
the accuracy-robustness trade-off by a notable margin.

5.4 ABLATION STUDY

Ablation study on 7 in SSNI-N. We investigate how the temperature coefficient 7 in Eq. (9) af-
fects the performance of SSNI-N against adaptive white-box PGD+EOT /(e = 8/255) attack on
CIFAR-10 in Figure 3. The temperature coefficient 7 controls the sharpness of the curve of the
non-linear reweighting function. A higher 7 leads to a more smooth transition between the low
and high values of the reweighting function, resulting in less sensitivity to the changes of the input.
From Figure 3, the standard accuracy remains stable across different 7s, while the robust accuracy
increases to the climax when 7 = 20. Therefore, we choose 7* = 20 for the non-linear reweighting
function to optimize the accuracy-robustness trade-off for DBP methods.

Ablation study on sampling methods. DiffPure originally used an adjoint method to efficiently
compute the gradients of the system, but Lee & Kim (2023) and Chen et al. (2024) suggest to replace
adjoint solver with sdeint solver for the purpose of computing full gradients more accurately (Li
et al., 2020; Kidger et al., 2021). Therefore, we investigate whether using different sampling meth-
ods affect the performance of DBP methods (here we use DiffPure as the baseline method). We
further compare the results with DDIM sampling method (Song et al., 2021a), which is a faster
sampling method than DDPM (Ho et al., 2020). From Table 4, DDPM achieves the best accuracy-
robustness trade-off among the three sampling methods, and thus we select DDPM as the sampling
method for all baseline methods in this paper.

Ablation study on score norms. We investigate the effect of using single score norm (i.e.,
[|Vxlogpi(x)]]) for SSNI in Appendix I. We find that although single score norm can notably
improve the standard accuracy, it suffers from the degradation in robust accuracy. This might be
attributed to the fact that single score norm is sensitive to the purification noise levels.
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Table 4: Ablation study on different sampling =
methods during the reverse diffusion process. We

e Standard Accuracy

measure the standard and robust accuracy (%) (ZZ A EEE—
against PGD+EOT /.. (e = 8/255) on CIFAR- = . . . . . .
10. We use DiffPure as the baseline method and Temperatre Coeffiient

we set t* = 100. WideResNet-28-10 is used as _”
the classifier. We report mean and the standard

== Robust Accuracy

Accuracy (%
s @ @
g

deviations over three runs. s E—
Sampling Method Standard Robust emperare Gocticen
sdeint solver 89.06+0.48 47.72+0.24  Figure 3: Top: standard accuracy (%) vs. 7; Bot-
DDPM 89.71£0.72  47.9840.64  tom: robust accuracy (%) vs. 7. We report mean
DDIM 91.54+0.72  37.5£0.80  and the standard deviations over three runs.

Ablation study on bias terms b. We investigate the effect of the bias term b in reweighting functions
to the performance of our framework in Appendix J. We find that the selection of bias term will not
significantly impact the performance of our framework under CIFAR-10 and ImageNet-1K. Note
that when bias increases, there is a general observation that the clean accuracy drops and the robust
accuracy increases. This perfectly aligns with the understanding of optimal noise level selections in
existing DBP methods, where large noise level would lead to drop of both clean and robust accuracy
and small noise level cannot remove the adversarial perturbation effectively.

5.5 INFERENCE TIME OF SSNI

The inference time (in seconds) for incorporating SSNI modules into existing DBP methods on
CIFAR-10 and ImageNet-1K are reported in Appendix K. The inference time is measured as the
time it takes for a single test image to complete the purification process. Specifically, SSNI is
approximately 0.5 seconds slower than baseline methods on CIFAR-10 and 5 seconds slower than
baseline methods on ImageNet-1K. Thus, compared with DBP baseline methods, this reweighting
process is lightweight, ensuring that SSNI is computationally feasible and can be applied in practice
with minimal overhead. The details of computing resources can also be found in Appendix K.

6 LIMITATION

The design of reweighting functions. The proposed reweighting functions (i.e., the linear and non-
linear reweighting functions) may not be the optimal ones for SSNI. However, designing an effective
reweighting function is an open question, and we leave it as future work.

Extra computational cost. The integration of an extra reweighting process will inevitably bring
some extra cost. Luckily, we find that this reweighting process is lightweight, making SSNI compu-
tationally feasible compared to existing DBP methods (see Section 5.5).

7 CONCLUSION

In this paper, we find that an optimal ¢* indeed could be different at sample-level. Motivated by this
finding, we propose a new framework called Sample-specific Score-aware Noise Injection (SSNI).
SSNI sample-wisely reweight t* for each sample based on its score norm, which generally injects
less noise to clean samples and sufficient noise to adversarial samples, leading to a notable improve-
ment in accuracy-robustness trade-off. We hope this simple yet effective framework could open up
a new perspective in DBP methods and lay the groundwork for sample specific noise injections.

ETHICS STATEMENT

This study on adversarial defense mechanisms raises important ethical considerations that we have
carefully addressed. We have taken steps to ensure our adversarial defense method is fair. We use
widely accepted public benchmark datasets to ensure comparability of our results. Our evaluation
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encompasses a wide range of attack types and strengths to provide a comprehensive assessment of
our defense mechanism.

We have also carefully considered the broader impacts of our work. The proposed defense algorithm
contributes to the development of more robust machine learning models, potentially improving the
reliability of Al systems in various applications. We will actively engage with the research commu-
nity to promote responsible development and use of adversarial defenses.

REPRODUCIBILITY STATEMENT

Appendix A include justifications of the theoretical results in Section 3. To replicate the experimen-
tal results presented in Section 5, we have included a link to our anonymous downloadable source
code in the abstract. We include additional implementation details required to reproduce the reported
results in Appendix D and E.
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A DETAILED PROOFS

Definition 1 (Marginal Probability Density). Let X be the image sample space, p(xg) be the nat-
ural data distribution over X, and the diffusion process kernel defined in Eq. (1). The marginal
probability density p; : X — R, attime 0 < ¢ < T can be expressed as:

20 = [ alolxa o) dxo (10)
x
where g(x|x() describes how a natural sample x evolves under the forward process to x at time ¢.

Before proceeding with the proof of Lemma | and Proposition 1, we start by presenting two lemmas
to facilitate the proof.

Lemma 2. Let pi(x) denote the marginal probability density of x at time t. For any x € X and
0 <t < T, the score function V log p;(x) at time t can be expressed as:

vx log Pt (X) = IEp(x0|x) [Vx IOg Q(X|XO)] ;
where p(x¢|x) is the posterior given by Bayes’ Rule:

q(x|x0)p(x0)

Xo|X) = .
POOR) = T e i)
Proof.
Vx log pi(x) = Vxlog / q(x|x0)p(x0)dxo (by Def. 1)
= fo q(x[x0)p(x0)dxo (chain rule)
J a(x|x0)p(x0)dxo
x d oo
= f qu((ﬁijl(j()(;)(pé;()il)xjo (Leibniz integral rule)
J G el p(xo) xg | o
= T a(x0)p(x0) %o (manipulate g(x|x¢))
_ [ (Vxlogaxixo) alxlxo)p(x0)iixo i e
J a(x[x0)p(x0)dxo
= Vi« log g(x|x Xo|x)dx xg|x) £ 9(x[x0)p(x0)
[ Febozatxlxoptabeing o) £ IR
This ends up with the expectation over the posterior p(xo|x) as Ep,x, x) [Vx log ¢(x[xo)]. O

Lemma 2 establishes a relationship between the marginal density and the forward process, where
we can express the behavior of Vi log p;(x) in terms of the well-defined ¢(x|x).

Lemma 3. Consider the forward process q(x;|Xo) is defined with noise schedule { S }c[o,r), where
B € (0,1) forall0 <t < T. Then, forany x € X and 0 < t < T, the score function V log p;(x)
can be decomposed as:

Vx Ingt(x) = —g(t)X + IE:p(xg|x) [g(t)\/ax()] P

where g(t) = 1/(1 — a;) and a; = [[;_, (1 — B;).

Proof. Denote the score function s;(x) = Vy log p:(x) for convenience. By applying the results
from Lemma 2, we write:

St(x) = Ep(x0|x) [Q(X|XO)] .

13
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Provided that ¢(x|x¢) = N (x; /@xo, (1 — @ )I), we compute the gradient of the log-probability
of the forward process as:

Vx log q(x[x0) = VN (x5 vV@xo, (1 — a)I)
=V —ﬁ(x — @xo)T(x —Vagxg) + C
- (x— V),

].—Olt

where C is a constant term independent of x. Substitute the result back into s;(x), we have:

St(x) = IEp(xo\x) [Q(X|XO)]

1
= ~T=a Ertxole) [x — V/auxo]

1—a
1 Vay
S E
1_ dtx + 1—a p(x0|x) [XO]

—g(t)X—FE (x0]x) [ ( )\/7X0}

The Lemma is completed by substituting g(t) =

O

17&

Lemma 3 expresses the score function by the noisy data x with noise level ¢ and the clean data xg.
We next examine how the score norm evolves to further understand its behavior as time increases.

Lemma 4 (¢f. Lemma 1). Suppose there exists a constant K > 0 such that for all t > 0 and all
X; € X, the expected norm of the clean data given X; satisfies: Ex, p(x,|x)[[|X0ll] < K [|x¢||. Then,
there exist constants 0 < C' < 1 and Ty > 0 such that for all t > Tj:

1
|Vxlogp (ol _

Proof. Again, denote s;(x) = Vx log p(x). From Lemma 3, we have:

st(x) = —g(t)x + Ep(xolx) [9(6)Vaxo] -
Applying the triangle inequality to it, we have:
st GOl = g(8) 1%/ = [ Epieo ) [9(8)v/aex0] |
9(@) Il = 9(t)VaEy(xo ) [1%oll]

where the second inequality comes from applying Jensen’s inequality: f(E[X]) < E[f(X)] for
convex function f and random variable X, which leads to:

[Epieolx) [908)Vaxo] || < Epxol [[|9(t)vaxol]
- g(t)\/O_Tt]Ep(xo\x) [”XOH] .

As we have assumed the existence of K > 0 that makes Ey . (x,|x) [[|Xol]] < K ||x¢]| holds for all
x € X, we have:
ls: Gl = g(0) lIx]] = g(t) v K [|x|
= 9(8) [Ix[[ (1 = Kv/ay).

We then turn to look into the asymptotic behavior of g(¢). We have a; = H’;Zl(l — Bs). Since
0 < 1— s < 1forall s, and the sequence is decreasing (as 3 is increasing), it is easy to check that

t—o0

and

tlggog( ) = lim =1.

—>oo]_—dt

This can then be formalized as, for any € > 0, there exists a 7, such that for all ¢ > T¢:

lg(t) — 1| < ¢, and V&, < e.

14
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Then, for t > T., we have
ls:(x)[l = g (@) [Ix[| (1 — Kva)
> (1= [Ix][ (1 - Ke),
=(1—e—Ke+ Ké) ||x||
=(1—(K+1e+ Ké?)|x].
To establish the desired inequality ||s:(x)|| > C'||x|| for constants C' > 0, we next investigate
whether this quatratic inequality Ke? + (K + 1)e + (1 — C) > 0 can be solved. Denote the
discriminant D = (K + 1)? — 4K (1 — C), we have
D= (K+1)>-4K(1-C)
=K’ -2K +14+4KC
= (K -1 +4KC
>0  (since (K —1)? > 0and K > 0).
Then, let €; < €3 be two real roots of K2+ (K +1)e+ (1 —C) = 0, as the parabola opens upwards,
i.e., K > 0, note that ¢ > 0, we further need to ensure the smaller root € = K%;(\/ﬁ > (), such that

K+1>(K+1)2—-4K(1-0)
(K+1)2> (K —1)> +4KC
4K > 4KC
1>C.

Putting them together, we have ¢ € (0,¢1) U (€3, 00) that makes ||s¢(x)|| > C ||x|| hold, given a
constant 0 < C' < 1 in relation to K and e. Setting Ty = T completes the proof. O

Proposition 2 (cf. Proposition 1). Consider the diffusion model satisfying all conditions as specified
in Lemma 1. Assume that there exist constants K > 0, such that B; < K for allt > 0. Additionally,
suppose ||x|| < M for any x € X, for some M > 0. Then, for any e, there exists a constant
A = 2¢/(CK) such that for t1,ta > 0, we have:

|1V 1og pey (O = |V log pra ()| | > €, with [t1 — ta] > A.

Proof. Denote s;(x) = Vx log p;(x). Recall that we can express the score function as

5t(x) = Ep(xopx) [(x[%0)]

1 _
B k- vam)
1 NGT
= -— E
—a T 1=q, Pk [xo}

Let g(t) = ||s:(x)]*. We compute 8%7(;) using the chain rule and the product rule:

o9(t) _ 2 <St(x>’ 8<9t(x)>

0 (.1 Va
=9 <St(x>7 E <_ 1_ &tX + 1_ O_gtEp(x0|x)[X0])>

Recall that &; = []'_,(1 — B:), we next derive the derivative of @;. We consider the continuous
approximation of ¢, where the product is approximated as an exponential of the integral

Oy = exp (/Ot log(1 — Bi)dz) .

As [, is typically assumed to be small (which is an implicit common practice (Ho et al., 2020)), we
further simplify log(1 — 3;) with its first-order Taylor approximation, i.e., log(1— ;) ~ —/3;, which
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thus leads to the approximated a; ~ exp ( — fg ﬂldz) This way we compute the derivative of a; as
t
%at = %exp <—/0 ﬂidi>
= exp (— /tﬁdz’) g (— /tﬂdz)
o ) ot o
t
—oxp (- [ ) (50

= —Bou
We can then compute the derivatives of the coefficients:

0 1 -1 0 B
ot (1—at> - (1—&,5)2&(1_‘“)
e
(1 —ay)?
3( Vay > _ 21— ay) — Var g (1 — )
ot\1—a,) (1—ay)?
(é@t 1/28at) (1 _at) + \/>8at
(1 —Oét)Q
1-—1/2 - _ = _
(30 (=Bian)) (1 = &) + Vi (—Bretr)
(1 —ay)?
—1pa (1= ay) - pai”
(1 —ay)?
_1/2 2(1 — ) + &y
(1 —ay)?
1+aoy
2(1 — ay)?

= —bray
= —ﬁt\/&T

Using the computed derivatives:

ds4(x) _ Brou
ot (1—ay)?
Substituting these back, we get:

1+ o

X — 5t@mﬂ‘:p(xo\x) [x0].

% =2 <_1 _1th + 1@ Ep (o) [Xol; (1&6;1) ﬁt\ﬁ%&)(xax) [Xo]>
2Bw‘_{t<st(x)x1+Oét [X]>
(= o \ 1027 g Bt
Next, under Cauchy-Schwarz inequality: | (a, b) | < ||al| ||b]|, we have
dg 2310 14+ oy
156 < ﬁ” se(x)| - ||x = eV Ep o ) [%0]

Then, by the triangle inequality for vectors a and b:
la—bl = [la+ (=b)| < [la] + bl = [[al| + [Ib]],
and the assumption ||x|| < M, we know that || E,(x,x)[%0]|| < M almost surely. Thus,

25150% 1+Oét
) < 2 - = o Byl
< ot sl ([ + | Bl )

< B sl (0 + ).
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Let C1 = sup;> (ﬁ%)z and C = sup,> ;*\/—% As0 < ay < 1,itis easy to check the maximum

1+a
2o’

sup (13%)2 is reached. Thus, (1 + ;Jr—\/g%) M < (1+ C2)M = C3M for some constants C3 < 2,

since Cy — 1 when a; — 1. As a result, we have a constant C' > 0 leading to the upper bound as

value of

i.e., Cy is achieved when & gets close to 1. This also aligns with the condition where

0 .
'a%' < OB ||se(x)||, with C = C - (C3M).

Mean Value Theorem states that: for any ¢1, to, there exists a £ between ¢ and ¢, such that: |g(t2) —
o)

g(t)] = 15[tz — t1] < CBellse(x)][[t2 — ta].

Applying this to g(t), for any ¢1, to, there exists a £ between t; and ¢, such that:

0
l9(t2) = g(t)| = 15, ©)llt2 — ta]
< O |ls¢(x)] |12 — ]
< CK |[s¢(x)|[ [tz —t1|  (by assumption 3; < K)

Then, we can express

[ lse2 GI* = llse, ()1 |
(s, G + llse, (%))
CK |lse(o)|l [t2 = ta]

AR EACI]

From Lemma 1, we have: there exists C’ > 0 and Tj > 0 such that for all ¢ > Tp: ||s.(x)|| >
C'||x||. Applying this to t1, t2, and £ with § > 0, we find that there exists a C’ such that:

s, ()1 > C" x|l
Ise, ()| > C" |||
IseGll > C” [Ix|

Hise, G = llse, GOl | =

Substituting these back, we have:

CEC" x| [t2 — ta

[lse. GO = llse, G | = 507X
CK>
= to — t1].
5 Itz — tu]
For any € > 0, let A = 02;(2. Then for |ty — 1| > A, we have: | ||s¢, (X)|| — ||s¢, (X)]] | > €. This
completes the proof. O
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B RELATIONSHIP BETWEEN SCORE NORMS AND PERTURBATION BUDGETS
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Figure 4: Relationship between score norms and perturbation budgets. We use one batch of clean
data from CIFAR-10 and employ PGD+EOT /(¢ = 8/255) as the attack.

In Figure 4, we use an orange line to represent the score norm of clean data, while the score norms of
adversarial data with varying perturbation budgets are shown using a gradient of blue lines. Specifi-
cally, we compute the score norm of different samples undergoing PGD+EOT /¢, (¢ = 8/255) with
perturbation budgets varying between 0 and 8/255 on CIFAR-10. The results consistently reveal
that the cleaner (i.e., lower €) a sample is, the smaller its score norm tends to be, and vise versa.
This further justifies the rationale of using score norms for reweighting ¢*.

C JUSTIFICATION OF SECTION 4.2
Sampled-shared DBP is a special case of SSNI.

Proof. Let &gy be a sample-shared purification operator with constant noise level ¢*. We can ex-
press $gg as a sample-specific purification operator ®g; by defining the reweighting function f as

flz,t") =t VzeR,t €0, Tmax]-
Then, for any x € X, we have
Ds1(x) = R(x7(x))
(Xf(llse Get)17)
(xt

SSNI has a Higher Purification Capacity.
Statement 1 [Comparison of Purification Range]: For any x € X, we have Qg (x) C Qg1(x).
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Proof. Lety € Qgu(x). Then 3t* € [0, Tyax] such that y = R(x+). Define f(z,t*) = t* for all
zand t*, then t(x) = f(|[so(x,t")||,t*) = t*. Therefore, y = R(xs) = R(Xy(x)) € Ps1(x). This
completes the proof of Qgp(x) C Qg1(x). O

Statement 2 [Strict Inclusion]: There exists x € X, we have Qgp(x) C Qg1(x).

Proof. Consider a non-constant score function sy (x, t) and a non-trivial reweighting function f. We
can choose x such that ¢(x) # ¢* for any fixed t*. Then R(x;(x)) € Ps1(x) but R(xy(x)) # Psn.
This completes the proof of Qs (x) C Qs1(x). O

D DEFENSE METHODS CONFIGURATIONS

For all chosen DBP methods, we utilize surrogate process to obtain gradients of the defense system
during white-box adaptive attack, but we directly compute the full gradients during defense evalu-
ation. Furthermore, we consistently apply DDPM sampling method to the selected DBP methods,
which means we replace the numeric SDE solver (sdeint) with DDPM sampling method in Diff-
Pure (Nie et al., 2022) and GDMP (Wang et al., 2022). The reason is that the SDE solver does not
support sample-specific timestep input. For DDPM sampling, we can easily manipulate sample-
specific timestep input by using matrix operation.

D.1 DIFFPURE

Existing DBP methods generally follow the algorithm of DiffPure (Nie et al., 2022). DiffPure con-
ducts evaluation on AutoAttack (Croce & Hein, 2020) and BPDA+EOT adaptive attack (Athalye
et al., 2018) to measure model robustness. DiffPure chooses optimal t* = 100 and t* = 75 on
CIFAR-10 against threat models ¢, (e = 8/255) and ¢2(e = 0.5), respectively. It also tests on high-
resolution dataset like ImageNet-1K with ¢* = 150 against threat models /(e = 4/255). Calcu-
lating exact full gradients of the defense system of DiffPure is impossible since one attack iteration
requires 100 function calls (with t* = 100 and a step size of 1). DiffPure originally uses numerical
SDE solver for calculating gradients. However, the adjoint method is insufficient to measure the
model robustness since it relies on the performance of the underlying SDE solver (Zhuang et al.,
2020; Lee & Kim, 2023; Chen et al., 2024). Therefore, we apply surrogate process to efficiently
compute gradients of direct back-propagation in our evaluation. To overcome memory constraint is-
sue, we align the step size settings of denoising process in adversarial attack to 5 with the evaluation
settings in (Lee & Kim, 2023) and keep the timestep ¢* consistent with DiffPure. For ImageNet-1K
evaluation, we can only afford a maximum of 10 function calls for one attack iteration.

D.2 GDMP

GDMP basically follows the purification algorithm proposed in DiffPure (Nie et al., 2022; Wang
et al., 2022), but their method further introduces a novel guidance and use multiple purification
steps sequentially. GDMP proposes to use gradients of a distance between an initial input and a
target being processed to preserve semantic information, shown in Eq. (12).

Xt—1 "~ N([Lg — sEQthD(xt, dev)’ 29), (12)

Given a DDPM (g (x:), X9(x:)), a gradient scale of guidance s. x; is the data being purified, and
xt,, is the adversarial example at t. Also, GDMP empirically finds that multiple purification steps
can improve the robustness. In the original evaluation of GDMP, the defense against the PGD attack
consists of four purification steps, with each step including 36 forward steps and 36 denoising steps.
For BPDA+EOT adaptive attack, GDMP uses two purification steps, each consisting of 50 forward
steps and 50 denoising steps.

Lee & Kim (2023) evaluated GDMP with three types of guidance and concluded that No-Guidance
provides the best robustness performance when using the surrogate process to compute the full
gradient through direct backpropagation. In our evaluation, we incorporate the surrogate process
with No-Guidance to evaluate GDMP. Since it is impossible to calculate the gradients of the full
defense system, we use a surrogate process consisting of same number of purification steps but with
larger step size in the attack (with 6 denoising steps and 10 denoising steps for PGD+EOT and
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BPDA+EOT attack, respectively). Notably, GDMP only uses one purification run with 45 forward
steps to evaluate on ImageNet-1K, which we keep consistent with this setting.

D.3 GNS

Lee & Kim (2023) emphasizes the importance of selecting optimal hyperparameters in DBP meth-
ods for achieving better robust performance. Hence, Lee & Kim (2023) proposed Gradual Noise-
Scheduling (GNS) for multi-step purification, which is based on the idea of choosing the best hy-
perparameters for multiple purification steps. It is basically the same architecture as GDMP (no
guidance), but with different purification steps, forward steps and denoising steps. Specifically,
GNS sets different forward and reverse diffusion steps and gradually increases the noise level at
each subsequent purification step. We just keep the same hyperparameter settings and also use an
ensemble of 10 runs to evaluate the method.

E SURROGATE PROCESS OF GRADIENT COMPUTATION

The surrogate process is an efficient approach for computing approximate gradients through back-
propagation, as proposed by (Lee & Kim, 2023). White-box adaptive attacks, such as PGD+EQOT,
involve an iterative optimization process that requires computing the exact full gradients of the entire
system, result in high memory usage and increased computational time. DBP methods often include
a diffusion model as an add-on purifier, which the model requires extensive function calls during
reverse generative process. Hence, it is hard to compute the exact full gradient of DBP systems ef-
ficiently. The surrogate process takes advantage of the fact that, given a fixed total amount of noise,
we can denoise it using fewer denoising steps (Song et al., 2021a), but the gradients obtained from
the surrogate process slightly differ from the exact gradients. Instead of using the full denoising
steps, we approximate the original denoising process with fewer function calls, which allows us to
compute gradients by directly back-propagating through the forward and reverse processes.

There are other gradient computation methods such as adjoint method in DiffPure (Li et al., 2020;
Nie et al., 2022). It leverages an underlying numerical SDE solver to solve the reverse-time SDE.
The adjoint method can theoretically compute exact full gradient, but in practice, it relies on the
performance of the numerical solver, which is insufficient to measure the model robustness (Zhuang
et al., 2020; Lee & Kim, 2023; Chen et al., 2024). Lee & Kim (2023) conducted a comprehensive
evaluation of both gradient computation methods and concluded that utilizing the surrogate pro-
cess for gradient computation poses a greater threat to model robustness. Hence, we use gradients
obtained from a surrogate process in all our experiments.

F ADAPTIVE WHITE-BOX PGD+EOT ATTACK FOR SSNI

Algorithm 2 Adaptive white-box PGD+EOT attack for SSNI.

Require: clean data-label pairs (x,y); purifier f,; classifier f.; a noise level T'; a score network
sg(x,T); objective function £; perturbation budget ¢; step size «; PGD iterations K; EOT
iterations V.
Initialize xgdv — X
fork=0,...,K —1do

Computing sample-specific noise levels: ¢(x3%") « f(||so(x3%,T)||,T)

Average the gradients over EOT: gj, + 4 Zf\il Vaar £ (fo(fp(x3%, t(x3))), y)

Update adversarial examples: x3%, < I x) (X3 + a - sign(gy))

end for

adv __ adv
return X" = X'

A A R o
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G ADAPTIVE WHITE-BOX BPDA+EOT ATTACK FOR SSNI

Algorithm 3 Adaptive white-box BPDA+EOT attack.

Require: clean data-label pairs (x, y); purifier f,; classifier f.; approximation function f,,x; a noise
level T'; a score network sg(x, T"); objective function £; perturbation budget e; step size a;; PGD
iterations K'; EOT iterations V.
Initialize x3" « x
for k< 0to K —1do
Computing sample-specific ¢: t(x3%) < f(||so(xi, )|, T)
Average the gradient over EOT samples: gj, + Zfil Vaav £ ((fe fapx (fo(2M)))), v)
Update adversarial examples: xidll «— Ilp, (x) (x’;‘cdv + « - sign( gk))
end for
return x4 = xf}g"

A SR o T

H PERFORMANCE EVALUATION OF SSNI-L

We also incorporate SSNI-L reweighting framework with existing DBP methods for accuracy-
robustness evaluation. In Table 5, we report the results against PGD+EOT ¢ (e = 8/255) and
l5(e = 0.5) threat models on CIFAR-10, respectively. We can see that SSNI-L can still support
DBP methods to better trade-off between standard accuracy and robust accuracy. Also, we report
the results against BPDA+EOT /(e = 8/255) threat model on CIFAR-10 in Table 6. Overall,
SSNI-L slightly decreases the robustness of DBP methods against PGD+EOT attack and maintain
the robustness of DBP methods against BPDA+EOT attack, but there is a notable improvement in
standard accuracy.

Table 5: Standard and robust accuracy of DBP methods against adaptive white-box PGD+EOT (left:
U (€ = 8/255), right: £3(e = 0.5)) on CIFAR-10. WideResNet-28-10 and WideResNet-70-16 are
used as classifiers. We compare the result of DBP methods with and without SSNI-L. We report
mean and standard deviation over three runs. We show the most successful defense in bold.

PGD+EOT £, (¢ = 8/255) PGD+EOT £5 (e = 0.5)

DBP Method Standard Robust DBP Method Standard Robust

Nie et al. (2022) 89.7140.72 47.98+0.64 Nie et al. (2022) 91.8040.84 82.814+0.97
= + SSNI-L 92.97+0.42 46.35+0.72 = + SSNI-L 93.8240.37 81.1240.80
gj Wang et al. (2022) 92.45+0.64  36.721+1.05 gj Wang et al. (2022) 92.45+0.64  82.2910.82
é + SSNI-L 93.62+0.49  36.59+1.29 é + SSNI-L 93.62+0.49  80.66+1.31
= Lee & Kim (2023) 90.1£0.18 56.05+1.11 = Lee & Kim (2023) 90.1040.18 83.66+0.46

+ SSNI-L 93.49+0.33 53.714+0.48 + SSNI-L 93.4940.33 85.2940.24

Nie et al. (2022) 90.89+1.13 52.154+2.30 Nie et al. (2022) 92.9040.40 82.94+1.13
© + SSNI-L 93.82+0.49 49.9440.33 © + SSNI-L 94.99+0.24 84.4410.56
&  Wangetal 2022)  93.10£0.51  43.5540.58 &  Wangetal (2022)  93.10£0.51  85.03+0.49
E + SSNI-L 93.88+0.49 43.0340.60 E + SSNI-L 93.88+0.49 82.88+0.79
= Lee & Kim (2023) 89.3941.12 56.97+0.33 = Lee & Kim (2023) 89.39+1.12 84.51£0.37

+ SSNI-L 92.64+0.40 52.86+0.46 + SSNI-L 92.6410.40 84.90+0.09
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Table 6: Standard and robust accuracy (%) against adaptive white-box BPDA+EOT /(e = 8/255)
attack on CIFAR-10. We compare the result of DBP methods with and without SSNI-L. We report
mean and standard deviation over three runs. We show the most successful defense in bold.

BPDA+EOT £, (¢ = 8/255)

DBP Method Standard Robust

Nie et al. (2022) 89.71+0.72  81.90+0.49
o  +SSNI-L 92974042  80.08+0.96
g; Wang et al. (2022) 92.454+0.64  79.88+0.89
E + SSNI-L 93.62+0.49  79.95+1.12
B Lee &Kim (2023)  90.10£0.18  88.40+0.88

+ SSNI-L 93.49+0.33  88.411+0.09

I ABLATION STUDY ON SCORE NORM

We further provide experiments with single score norm as reweighting metric instead of EPS norm.
Yoon et al. (2021) shows score norm Vlog p;(x) is a valid measurement for adversarial detection.
Incorporating single score norm with our SSNI-N framework, it still achieves notable improvement
on standard accuracy, but the robustness of the DBP methods is exhausted. The single score norm
is highly sensitive to the noise levels, which makes it insufficient to completely distinguish between
natural and adversarial examples.

Table 7: Standard and robust accuracy (%) against adaptive white-box PGD+EOT /(e = 8/255)
attack on CIFAR-10. We use single score norms (i.e., | Vxlog p(x)||). We report mean and standard
deviation over three runs. We show the most successful defense in bold.

PGD+EOT £, (e = 8/255)

DBP Method Standard Robust

Nie et al. (2022) 89.71+0.72  47.98+0.64
o +SSNI-N 92.84+0.18  47.20+1.22
?\? Wang et al. (2022) 92.45+0.64  36.721+1.05
CZA + SSNI-N 93.421+0.60 34244145
= Lee & Kim (2023)  90.1040.18  56.05+1.11

+ SSNI-N 93.55+0.42  55.47+1.15

J ABLATION STUDY ON BIAS TERM

Table 8: Ablation study on the bias term b. We report the standard and robust accuracy of DBP meth-
ods against adaptive white-box PGD+EOT on CIFAR-10. WideResNet-28-10 and WideResNet-70-
16 are used as classifiers. We report mean and standard deviation over three runs. We show the most
successful defense in bold.

PGD+EOT £, (¢ = 8/255)
Bias 0 5 10 15 20 25 30
WRN-28-10

Standard ~ 94.34 £1.43 9395+ 1.17 93.17+1.05 9238+ 129 92384129 9210+ 1.03 9297 £0.37
Robust 5527+£075 5723+1.62 57.03+054 57.64+0.89 57.644+0.89 5824+122 59.18 £ 1.65

WRN-70-16

Standard ~ 94.34 £045 9382+ 156 9473 +134 9279+0.89 9279 +£0.89 9258 £0.67  92.77 £ 0.94
Robust 5645+£122 57.03+£078 5810024 5879+ 148 5957 £1.19 5859 +052 5859 +£0.52
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5

Table 9: Ablation study on the bias term b. We re
against adaptive white-box PGD+EOT on Imag

port standard and robust accuracy of DBP methods
eNet-1K. ResNet-50 is used as the classifier. We

report mean and standard deviation over three runs. We show the most successful defense in bold.

PGD+EOT £, (¢ = 4/255)
Bias 0 25 50 75 100 125 150
RN-50
Standard 7168+ 112 71734+ 149 7196+ 0.13 6880 +0.74 6841 +£059 67.63+ 108 6645+ 1.53
Robust 3933034 40284028 43.88:£022 4145+038 43024041 4087092  40.05 + 0.67

K COMPUTE RESOURCES

Table 10: Inference time of the DBP methods
with and without SSNI for a single image run-
ning on one A100 GPU on CIFAR-10. We use
WideResNet-28-10 as the classifier.

DBP Method Reweighting Method ~ Time (s)
- 3.934
Nie et al. (2022) SSNI-L 4473
SSNI-N 4.474
- 5.174
Wang et al. (2022) SSNI-L 5.793
SSNI-N 5.829
- 14.902
Lee & Kim (2023) SSNI-L 15.624
SSNI-N 15.534

We implemented our code on Python version 3.8

Table 11: Inference time of the DBP methods
with and without SSNI for a single image run-
ning on one A100 GPU on ImageNet-1K. We use
ResNet-50 as the classifier.

DBP Method Reweighting Method ~ Time (s)

- 8.980

Nie et al. (2022) SSNI-L 14.515
SSNI-N 14.437

- 11.271

Wang et al. (2022) SSNI-L 16.657
SSNI-N 16.747

- 35.091

Lee & Kim (2023) SSNI-L 40.526
SSNI-N 40.633

, CUDA version 12.2.0, and PyTorch version 2.0.1

with Slurm Workload Manager. We conduct each of the experiments on up to 4 x NVIDIA A100
GPUs. Source code for this work is available at: https://anonymous.4open.science/r/

SSNI-F746.
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L VISUALIZATIONS FOR PURIFICATION RESULTS

(a) Adversarial Images (b) DiffPure (c) DiffPure + SSNI-L (d) DiffPure + SSNI-N

Figure 5: More results on purification effects.

(a) Adversarial Images (b) DiffPure (c) DiffPure + SSNI-L (d) DiffPure + SSNI-N

Figure 6: More results on purification effects.

(a) Natural Images (b) DiffPure (¢) DiffPure + SSNI-L (d) DiffPure + SSNI-N

Figure 7: More results on purification effects.

(a) Natural Images (b) DiffPure (c) DiffPure + SSNI-L (d) DiffPure + SSNI-N

Figure 8: More results on purification effects.
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