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Abstract

Offline reinforcement learning is used to train policies in situations where it is expensive or infeasible to access
the environment during training. An agent trained under such a scenario does not get corrective feedback once
the learned policy starts diverging and may fall prey to the overestimation bias commonly seen in this setting.
This increases the chances of the agent choosing unsafe/risky actions, especially in states with sparse to no
representation in the training dataset. In this paper, we propose to leverage a safety expert to discourage the
offline RL agent from choosing unsafe actions in under-represented states in the dataset. The proposed framework
in this paper transfers the safety expert’s knowledge in an offline setting for states with high uncertainty to
prevent catastrophic failures from occurring in safety-critical domains. We use a simple but effective approach to
quantify the state uncertainty based on how frequently they appear in a training dataset. In states with high
uncertainty, the offline RL agent mimics the safety expert while maximizing the long-term reward. We modify
TD3+BC, an existing offline RL algorithm, as a part of the proposed approach. We demonstrate empirically that
our approach performs better than TD3+BC on some control tasks and comparably on others across two sets of
benchmark datasets while reducing the chance of taking unsafe actions in sparse regions of the state space.

1 Introduction
Reinforcement Learning (RL) has seen advancement and achieved great success in solving complex tasks with high
dimensional state and action spaces, including games [1, 2, 3, 4], and some tasks from robotics [5]. An RL agent
trained in an online setting takes an action a in state s and interacts with the environment to observe a reward r.
It then updates its policy based on the observed reward. However, it may be risky or costly to interact with the
environment repeatedly in real-world situations. It may be infeasible in the cases where a high quality simulator is
not available or cannot be built.

In offline RL (also known as batch RL), the agent is not allowed to interact with the environment. It has access to
a fixed-sized dataset collected by any arbitrary policy which may or may not be known [6]. Real-world applications
can benefit from this setting because access to the environment may be limited, challenging or not possible. Such
applications which are already deployed can also generate datasets to learn from. Offline RL enables the use of such
logged datasets for learning and can even allow us to leverage an expert in the form of a human operator, rule-based
systems or a policy trained with a similar objective. Some approaches such as [7] show that dataset collected by an
expert during learning in an online setting can also be used, however, using the expert itself to facilitate learning in
offline RL eliminates the need for data collection and is helpful in settings where data privacy needs to be enforced.

Overestimation of the values of out-of-distribution actions is a fundamental challenge in offline RL. This also
applies to certain actions which can be deemed as "unsafe" in safety-critical applications such as autonomous driving,
robotic learning, healthcare, etc. For robotic learning, the conditions for a safety breach during an episode are easier
to define (e.g. recording how many times the robot has fallen, or a grasped object has been dropped). The challenge
in this domain is to learn an optimal policy for a task while minimizing the frequency of above-mentioned instances
of catastrophic failures during training.

In this paper, we study how to utilize a safety expert in an offline RL setting for states with high uncertainty
to minimize failures during training. This safety expert isn’t necessarily optimal and can be learned or defined by
a rule-based system for each task without reference to the underlying task reward. We use a simple but effective
approach to quantify the uncertainty of the states based on how frequent the visited states are in a given training
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dataset. This information is used to conservatively modify the critic target, therefore propagating it to the value
function estimation. We believe that incorporating a safety expert in the form of a pre-trained teacher policy along
with quantifying state uncertainty can be effective in this setting. It reduces the chances of the offline RL agent
engaging in potentially risky exploratory behavior, thus enabling robotic learning from massive datasets. We show
that it can allow the agent to learn safe behavior without explicitly defining constraints on actions, which can be
hard to do in an offline setting.

Our goal is to selectively utilize a safe teacher policy to reduce the chances of risky/unsafe behavior encountered
during the deployment of a learned offline RL policy while still maintaining high performance. Our main contributions
are summarized below:

• We propose a framework called Guided Offline RL (GORL) that trains an agent to learn efficiently from
an offline dataset while leveraging a safety expert in regions of high uncertainty.

• We evaluate our approach on a set of datasets from the D4RL benchmark of continuous control tasks [8] and
show that the proposed framework either performs better or comparably to TD3+BC [9], a popular SOTA
offline RL algorithm on most of the tasks.

2 Related Work
Offline RL. The existing offline RL methods mainly use some approach that allows the learned policy to stay close
to the data collection policy. There are various ways of implementing this. One way is to estimate the behavior policy
and then learning a parameterized policy [10, 11]. Another line of works uses divergence regularization [12, 13, 14]
to keep the two policies close to each other. Some other works suggest the use of a weighted version of behavior
cloning to encourage choosing actions with high advantage [15, 16] or use uncertainty as weight of a state-action
pair before making updates[17]. Some methods incorporate the notion of safety and modify the set actions that can
be chosen based on their counts [18]. promising direction of literature looks at using pessimism and implementing
divergence regularization as a part of value estimation [19, 20]. The goal of this work is different from these works
which focus on developing RL alorithms specifically for an offline setting. We study knowledge transfer from a safety
expert to an agent learning in the offline setting.
Reinforcement Learning from Demonstration. RL literature has many examples of learning from teacher
policies or demonstrations in an online setting, especially in hard exploration environments. There are policy
distillation techniques [21, 22] for training student networks such that their outputs (e.g., Q-values) are similar to
those of teacher networks. Learning from demonstrations is another promising area. A replay buffer in an off-policy
RL setting can be used to hold teacher demonstrations, which can be combined with samples generated by a student
agent during training. DQfD [23] and Ape-X DQfD [24] are some of the examples of such methods for a discrete
setting while methods suggested by [25, 26] work for continuous control tasks.

3 Proposed Approach
In offline RL, the problem of extrapolation error [10] is prevalent which means that the agent is unable to evaluate
out-of-distribution actions properly. Our focus is on designing a framework to discourage the agent from selecting
unsafe OOD actions while trying to learn an optimal policy from the dataset. We present such a framework that
requires minimal modifications to a pre-existing offline RL algorithm. Our framework builds on top of TD3+BC [9].
We modify the critic target term to include state uncertainty. We also include a regularization term to push the
offline policy towards the safety expert in states with poor confidence. The safety expert can be defined by any
rule-based system or a pre-trained policy. We denote the agent’s confidence w.r.t a state as conf(s) ∈ [0, 1], where
the confidence is computed by using SimHash algorithm [27]. SimHash uses Locality-Sensitive Hashing (LSH) to
convert continuous, high-dimensional data to discrete hash codes. LSH preserves the distances among data points,
such that those with similar hashes are close to each other. We use SimHash which is a computationally efficient
LSH technique and it measures the similarity of the states contained in the training dataset D by angular distance.
Here, we can use any technique which can transform the high-dimensional continuous state space into discrete bins
based on their closeness. The following equation shows how hash codes are computed:

µ(s) = sgn(Ag(s)) ∈ [−1, 1]k. (1)
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where A ∈ Rk×d is a matrix with each entry drawn i.i.d. from a standard Gaussian and g : S −→ RD is a preprocessing
function. The dimension of binary codes is k and it controls the granularity of the state space discretization. This
algorithm was originally used as an exploration method but we use it to bin the states contained in the dataset D
into hash codes of size k. We use k = 50 for all the tasks after careful experimentation with multiple tasks. We
populate the hashtable by recording the counts of states mapped to each hash code, before training an agent. We
normalize the state count values by using max-min normalization. Further, we query the hashtable to retrieve these
counts during training and use the values as conf(s) in the below critic target update equation:

Q(s, a) = r + γ ∗max
a′

Q(s′, a′) − (1− conf(s)) ∗ (a− πT (s))
2︸ ︷︷ ︸

uncertainty weighted learning from the safety expert

. (2)

where πT (s) is a teacher policy used as the safety expert. It is trained in an online setting using a continuous con-
trol algorithm known as TD3 [28]. More details on training the policy πT (s) to be safe are provided in the next section.

Note that the value of conf(s) is lower for under-represented states in the given dataset D and the lower the
confidence, the higher will be the push towards the safety expert, πT (s). Also, the modified update equation reduces
the values of all the (s, a) pairs in the dataset except the ones with the action suggested by the safety expert.
This discourages the agent from picking unsafe action values in regions of high uncertainty. This completes the
description of our framework called Guided Offline RL (GORL) which involves making a few small, but effective,
modifications to TD3+BC.

4 Experiments
We evaluate our proposed approach on the D4RL benchmark of OpenAI gym MuJoCo tasks [8]. We use the TD3+BC
algorithm trained on MuJoCo tasks (Hopper-v2 and Walker2d-v2) as the baseline. We train a teacher policy πT to
be used as the safety expert using TD3 for 1M online steps. For the policy to be safe, we add a step penalty of
the form ctrl_cost_weight ∗ sum(action2) which is simply a cost for penalizing the agent if it takes actions that
are too large. We observe that by doing so, we can discourage the agent from applying high values of torques to
various joints of a MuJoCo robot and hence prevent it from making jittery moves. We choose ctrl_cost_weight as
0.1 and 0.01 for Hopper-v2 and Walker2d-v2, respectively, after tuning. These environments have in-built rewards
which penalise the agent when it falls or when the height of the top (along the z-axis) becomes too high or too low.
Further, we train the offline RL agent on various environment-dataset pairs using the safety expert policy πT as a
part of the framework described in the previous section.

Dataset Environment TD3+BC Guided Offline RL

Random
Hopper-v2 8.53±0.23 6.03±2.03
Walker2d-v2 0.95±0.33 2.83±3.57

Medium
Hopper-v2 60.12±1.35 57.77± 3.07
Walker2d-v2 86.17±0.3 83.78±2.91

Medium-Replay
Hopper-v2 56.71±19.16 85.61±5.14
Walker2d-v2 73.56±11.19 84.67±0.77

Medium-Expert
Hopper-v2 95.16±9.85 106.11±5.92
Walker2d-v2 110.26±0.65 110.6±0.21

Expert
Hopper-v2 110.97± 1.45 111.62±0.37
Walker2d-v2 110.12± 0.47 109.91±0.13

Total 712.55±44.98 758.93±24.12

Table 1: Average normalized score using the D4RL -v2 datasets. The highest performing scores are highlighted. ± captures
the standard deviation over seeds. TD3+BC algorithm is re-run using author-provided implementation. The results are after
averaging over the final 10 evaluations and 3 seeds. No additional hyperparameter tuning was performed. TD3+BC and
Guided TD3+BC achieve comparable performance.
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Figure 1: Percent difference of performance of Guided Offline RL w.r.t baseline TD3+BC algorithm. Here, h = Hopper-v2, w
= Walker2d-v2, r = random, m = medium, mr = medium-replay, me = medium-expert, e = expert. The proposed approach
works better in reducing the number of falls in Walker2d environment as compared to Hopper (left). The reduction of the
cumulative sum of the actions is more pronounced for Hopper (right).

We use the author-provided implementations for both TD3 and TD3+BC. We use the same base hyperparameters
as the respective authors for these algorithms and train the baseline and the offline RL agent for three random seeds.
In all experiments, the offline agent and the baseline agent do 10 evaluation episodes after every 5000 offline training
steps till they reach 1M training steps. We use the normalized score from D4RL for evaluation and we average
the scores of all seeds for each environment. We report the final performance results in Table 1. In Figure 1, we
report the percentage difference between Guided Offline RL and TD3+BC w.r.t. the total number of times the
agent falls or its agent’s height crosses the safe range (Walker2d-v2) during all the evaluation episodes occurring
within 1M training steps. We also report the percentage difference between the cumulative sum of the actions across
all evaluation steps for each dataset-environment pair.

Our results show that including a safe teacher policy can help in reducing the number of falls that an agent has.
We also show that the approach can keep the sum of actions low in most cases, as compared to the baseline. The
proposed approach works better in reducing the number of falls in Walker2d environment as compared to Hopper
(left). Here, our approach works better for the dataset-environment pairs for which the dataset collection policy
is less similar to the safe teacher policy. The reduction of the cumulative sum of the actions is more pronounced
for Hopper. We believe that if πT is trained using a constrained method to keep the sum of the actions low, the
results could be better. We find our approach only marginally increases the training time as compared to that of the
baseline. All run time experiments were run with a single GeForce GTX 1080 Ti GPU and an Intel(R) Xeon(R)
CPU E5-2640 v4.

5 Conclusion
In this paper, we present Guided Offline RL framework which relies on state uncertainty estimation and safety expert
knowledge to discourage an offline RL agent from choosing risky/unsafe actions. We have shown that an existing
offline RL algorithm called TD3+BC can be easily modified to design the proposed framework. Our experiments
show that our approach performs comparably or better on multiple MuJoCo tasks from D4RL benchmark while
trying to minimize unsafe incidents during evaluation. We believe that our framework can be used as an add-on to
help to achieve better results while adhering to safety. As future work, we consider using other forms of the safety
expert such as human interventions, heuristics etc. and evaluate them on a diverse set of safety tasks. We also plan
on studying the effectiveness of the framework when coupled with other SOTA offline RL algorithms.
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