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Cefdet: Cognitive Effectiveness Network Based on Fuzzy
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ABSTRACT
Action detection and understanding provide the foundation for
the generation and interaction of multimedia content. However,
existing methods mainly focus on constructing complex relational
inference networks, overlooking the judgment of detection effec-
tiveness. Moreover, these methods frequently generate detection re-
sults with cognitive abnormalities. To solve the above problems, this
study proposes a cognitive effectiveness network based on fuzzy
inference (Cefdet), which introduces the concept of “cognition-
based detection” to simulate human cognition. First, a fuzzy-driven
cognitive effectiveness evaluation module (FCM) is established to
introduce fuzzy inference into action detection. FCM is combined
with human action features to simulate the cognition-based de-
tection process, which clearly locates the position of frames with
cognitive abnormalities. Then, a fuzzy cognitive update strategy
(FCS) is proposed based on the FCM, which utilizes fuzzy logic
to re-detect the cognition-based detection results and effectively
update the results with cognitive abnormalities. Experimental re-
sults demonstrate that Cefdet exhibits superior performance against
several mainstream algorithms on public datasets, validating its
effectiveness and superiority.

CCS CONCEPTS
• Computing methodologies→ Activity recognition and un-
derstanding.

KEYWORDS
Multimedia content; Action detection; Fuzzy inference; Visual cog-
nition; Feature fusion

1 INTRODUCTION
Multimedia is an essential branch of modern information tech-
nology, which comprehensively processes various media forms of
information such as text, images, audio, and video through comput-
ers or other electronic devices. With the improvement of computer
processing capabilities, the creation and sharing of multimedia con-
tent have been further promoted. Multimedia technology has driven
the innovation of content presentation and provided a wealth of
application scenarios for artificial intelligence research [1, 2].

Action detection is widely applied in multimedia analysis. It
focuses on identifying specific human actions or behavior patterns
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Figure 1: Detection results with cognitive abnormalities in
three consecutive frames. (a) is the false detection result of
existing methods in highly similar actions, and (b) denotes
the detection results of existingmethods that do not conform
to human action norms.

from videos and can be combined with audio signals or other types
of sensor data for multimedia analysis. In recent years, the accuracy
of action detection has significantly improved with the advent of
deep learning, particularly convolutional neural networks (CNNs)
and recurrent neural networks (RNNs). Action detection is gradually
playing a crucial role in various applications, including smart secu-
rity, health monitoring, and human-computer interactions [3, 4].

However, existing methods face challenges in determining the
effectiveness of detection results. Additionally, existing methods
constantly generate detection results with cognitive abnormali-
ties due to ineffective judgment. As shown in Figure 1 (a), actions
such as “pick” and “sit” exhibit high similarity. Existing methods
wrongly detect “pick” as “sit” while affecting the action detection
of subsequent frames. In addition, as depicted in Figure 1 (b), action
changes from “swing_baseball” to “shot_gun” do not conform to
human action norms. Existing methods detect two unrelated ac-
tions as adjacent and recognize one or several consecutive frames
as a complete action, which is inconsistent with human cognition.
These problems hinder the further application of action detection
methods.

Therefore, this study proposes a cognitive effectiveness network
based on fuzzy inference (Cefdet). It introduces the concept of
“cognition-based detection” and combines features in human ac-
tion with fuzzy inference to simulate the cognition-based detection
process. The effectiveness of the detection results is accurately de-
termined using cognition-based detection. Moreover, the detection
results are divided based on their effectiveness, and fuzzy logic is
employed to dynamically update the detection results with low-
level cognition, which repairs the detection results with cognitive
abnormalities.

The contributions of this study are summarized as follows:
1
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• This paper proposes the FCM for detecting the effectiveness
of frames. It takes the features of human actions, including
the confidence of each frame, the correlation between adja-
cent frames, and the position score of each frame, as inputs
to the fuzzy inference system. This simulates a cognition-
based detection process to obtain effectiveness, thus accu-
rately locating the position of action frames with cognitive
abnormalities.

• In this study, the FCS based on the above FCM is used to
update the results dynamically. It divides cognition-based
detection results into high and low levels. Subsequently,
the local features of the frames with low-level cognition
are weighted and fused through frames with high-level
cognition for re-detection. The frames before and after re-
detection are dynamically updated based on fuzzy logic to
obtain optimal results, effectively repairing the detection
results with cognitive abnormalities.

• Experimental results show that Cefdet performs better on
public datasets than existing methods. Furthermore, Cefdet
promotes the application of fuzzy inferences in computer
vision perception.

2 RELATEDWORK
2.1 Video understanding
Video understanding includes identifying the activities that occur
during the editing process. Typically, the time span for editing
is a few seconds, and there is only one annotation. Most early
video comprehension methods [5, 6] utilized 2D image CNNs and
introduced long-short-term memory (LSTM) [7] to learn video time
structures. Subsequently, various 3D CNNs [8] are proposed for
video understanding because they process the entire video clip as
input rather than treat it as a frame sequence [9]. Due to the scarcity
of tagged video datasets, several researchers have relied on a model
pre-trained on ImageNet and used it as the backbone for video
feature extraction. Some studies [10, 11] decoupled 3D convolution
into 2D space and 1D time kernels to reduce the model size. Two-
stream networks [12] constitute another widely employed video
understanding method. Due to its ability to handle only a small
portion of the input frames, it achieved a superior balance between
accuracy and complexity. Cheng et al. [13] proposed a new method
to recover the intermediate features between two sparse samples
and adjacent video frames, achieving significant results.

2.2 Action detection
Action detection has received increasing attention from researchers
as an essential technology for video understanding [14]. Owing to
the potential of multiple actions within each frame, it is necessary
to detect the actions of individual entities within the current frame
rather than categorizing the entire video into a single class. Inspired
by deep CNNs for object detection [15], methods based on action
detection typically apply 2D position anchors or offline object de-
tectors to keyframes to locate human subjects. Subsequently, they
focused on improving action detection and incorporating temporal
patterns by leveraging the optical flow for additional flow fusion.
Some methods [16, 17] have applied 3D convolutional networks
to capture temporal information for identifying actions and have

achieved excellent results. Feichtenhofer et al. [14] proposed a slow
network that can better capture spatiotemporal information.

Recent research on spatiotemporal action detection has empha-
sized modeling the interaction between classified individuals and
their environment. Recent methods [18, 19] proposed explicitly
modeling the relationships between actors and objects. A dual-
mode [20] interaction structure is constructed based on human
posture, hands, and objects, effectively improving the accuracy of
action detection.

2.3 Fuzzy inference
Fuzzy inference is widely used in computer vision applications. It
is a core component of fuzzy logic and involves the application of
fuzzy sets and rules to input data to obtain fuzzy output results.
Fuzzy inference performs better in handling uncertain information
and can more reasonably describe the actual needs and achieve
intelligent control. Several studies based on fuzzy inference have
been proposed. For example, an improved fuzzy clustering-based
classifier [21] employs 𝐿2 regularization to mitigate overfitting.
This classifier demonstrated remarkable performance in various
classification tasks. Eyoh et al. [22] introduced an interval-based
intuitionistic fuzzy system with membership and non-membership
functions for identification and prediction. Multi-layer interval
Type-2 fuzzy limit machine learning (ML-IT2-FELM) [23] identify
walking activities and used wearable sensors to determine gait.
Fuzzy learning is utilized to obtain appropriate results for the ac-
tivities. Cao et al. [24] integrated interval Type-2 fuzzy sets into a
fuzzy rough neural network to forecast stock time series. In addition,
other studies [25, 26] introduced a common quadratic Lyapunov
function to analyze the stability and design controllers for fuzzy
closed-loop systems.

3 PROPOSED METHOD
3.1 Overall framework
Due to the uncertainty of daily human activities, existing algorithms
cannot effectively determine the effectiveness of their detection
results. Moreover, the lack of effective judgment frequently leads
to detection results with cognitive abnormalities in existing algo-
rithms. To solve these problems, this study introduces the concept
of "cognition-based detection" into action detection. First, fuzzy
inference is employed to simulate the cognition-based detection
process by combining human action features to accurately locate
the positions of frames with cognitive abnormalities. Then, the local
features of the frames with cognitive abnormalities are dynamically
fused based on fuzzy logic for re-detection. The effectiveness before
and after re-detection is used to repair detection results inconsistent
with cognition.

The overall framework of Cefdet is illustrated in Figure 2. Initially,
the FCM is designed after the video frames pass through a network.
It evaluates the effectiveness of each frame by considering the
confidence, correlation between adjacent frames, and position score,
dividing the frames into low and high levels. Subsequently, the
FCS is proposed to update the frames with low-level cognition.
Specifically, it constructs correlated sequences using frames with
high-level cognition. The features are then weighted based on the

2
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Figure 2: The overall framework of Cefdet for action detection. The left module is the Fuzzy-driven cognitive effectiveness
evaluation module, abbreviated as FCM, and on the right is the Fuzzy cognitive update strategy, termed FCS.

similarity between the correlated sequences and frames with low-
level cognition for fusion, which is utilized for re-detection. Finally,
the decision to update the results is made based on the effectiveness
of the action frames before and after the re-detection.

3.2 Fuzzy-driven cognitive effectiveness
evaluation module (FCM)

Due to the lack of effective judgment of detection results, existing
action detection algorithms frequently obtain detection results with
cognitive abnormalities in complex scenes. The use of confidence
scores to evaluate the effectiveness of an action frame is not com-
prehensive, and more factors should be considered. Therefore, this
study proposes the FCM that cooperatively judges each frame’s
effectiveness by combining each frame’s confidence, the correla-
tion between adjacent frames, and the position score of each frame
with a fuzzy inference system. Fuzzy logic is employed to simu-
late the cognition-based detection process to accurately determine
the effectiveness of each frame and locate the positions of frames
with cognitive abnormalities. FCM is a fuzzy inference engine with
four components: feature quantization, fuzzification, fuzzy infer-
ence, and defuzzification. Brief descriptions of each component are
provided below.
Feature quantification. The objective of fuzzy inference is to
assess the effectiveness of the frames after detection. Therefore, it
is essential to construct feature vectors of the frames as inputs for
fuzzy inference. For the input video sequence 𝐼𝑖 , the feature vector

consists of diverse feature values, including the confidence of each
frame 𝐶𝑖 , correlation between adjacent frames 𝑁𝑖 , and position
score of each frame 𝐺𝑖 .

1. Confidence. As an important evaluation criterion, the confi-
dence of the action detection network is expressed in the following
formula.

𝐶𝑖 = 𝜑 (𝐼𝑖 ) , (1)

where 𝜑 (∗) refers to the action detection network in [20], which is
tasked to predict the true value from 𝐼𝑖 .

2. Correlation between adjacent frames. In video sequences, ac-
tion sequences with short intervals have rich correlations, and the
evolution from one action to another is a gradual process. It is possi-
ble to determine whether the subsequent action is reasonable based
on a previous action. Therefore, the positions of action frames that
do not conform to human action norms are accurately located using
this correlation. This study employs normalized pointwise mutual
information (NPMI) to measure the correlation between actions.
NPMI is defined as follows:

𝑁𝑖 =

(
𝑙𝑛

𝑃
(
𝐾𝐼𝑖−1 , 𝐾𝐼𝑖

)
𝑃
(
𝐾𝐼𝑖−1

)
𝑝
(
𝐾𝐼𝑖

) ) /(−ln 𝑃 (
𝐾𝐼𝑖−1 , 𝐾𝐼𝑖

) )
, (2)

where 𝐾𝐼𝑖 refers to the action category of the i-th frame; 𝑃
(
𝐾𝐼𝑖

)
is the probability of 𝐾𝐼𝑖 ; and 𝑃

(
𝐾𝐼𝑖−1 , 𝐾𝐼𝑖

)
denotes the probability

of a joint distribution between actions. The value of 𝑁𝑖 is in the
range [-1, 1], where 𝑁𝑖 = 1 represents a high degree of correlation
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Figure 3: The correlation between different actions. The cor-
relations between all actions are normalized to be between
[-1, 1], with darker colors indicating lower correlations.

between the two actions, 𝑁𝑖 = 0 indicates independence between
the two actions, and 𝑁𝑖 = −1 denotes that the two actions have
never appeared simultaneously. Figure 3 shows the correlation
between the different actions calculated by the NPMI.

3. Position score. Action detection is the process of observa-
tion and refinement with a clear time boundary between the be-
ginning and end of an action. The position of the current action
frame is noted. If the frame is at the center of the current ac-
tion, it is considered highly reliable. By contrast, if the frame is
at the boundary position of the current action, the reliability of
the frame requires further detection. In this study, the reliability
of a frame is determined by comparing its corresponding posi-
tion within a complete action. For action category 𝐾𝐼𝑡 at frame
𝑡 , if 𝐾𝐼𝑡−1 ≠ 𝐾𝐼𝑡 , 𝐾𝐼𝑡 = 𝐾𝐼𝑡+1 = · · · = 𝐾𝐼𝑡+𝑛 and 𝐾𝐼𝑡 ≠ 𝐾𝐼𝑡+𝑛+1 , then
[𝐼𝑡 , · · · , 𝐼𝑡+𝑛] can be considered as a complete action. The reliability
of this frame is defined as follows:

𝐺𝑖 =
1

𝜎
√
2𝜋
𝑒−

1
2𝑧

2
, (3)

𝑧 =
𝑖 − 𝜇
𝜎

, 𝑖 ∈ [𝑡, 𝑡 + 𝑛], (4)

where𝐺𝑖 is the position score of the i-th frame; 𝜇 and 𝜎 are themean
and standard deviation of the Gaussian distribution, respectively;

𝜇 = 𝑡 + 𝑛2 , and 𝜎 =

√︃∑𝑡+𝑛
𝑖=𝑡 (𝑖−𝜇 )2

𝑛 . Figure 4 shows the position scores
of the frames in the complete action sequence.
Fuzzification. The five-level fuzzification rule 𝑘 =

{𝑁𝐵, 𝑁𝑆, 𝑍𝑂, 𝑃𝑆, 𝑃𝐵} is employed to determine the degree
of membership of the feature vector to a fuzzy set: negative
big (𝑁𝐵), negative small (𝑁𝑆), zero (𝑍𝑂), positive small (𝑃𝑆), or
positive big (𝑃𝐵). ℎ𝑖 = {𝐶𝑖 , 𝑁𝑖 ,𝐺𝑖 ,𝑈𝑖 } is the training set of fuzzy
inference, where𝑈𝑖 = 𝜇1𝐶𝑖 + 𝜇2𝑁𝑖 + (1 − 𝜇1 − 𝜇2)𝐺𝑖 , the universe
is defined as 𝑃 = {𝑃 (ℎ𝑖 )}, 𝜇𝑘𝑃 (ℎ𝑖 ) indicates the membership
degree of ℎ𝑖 to the set 𝑘𝑃 , and 𝐹ℎ𝑖 =

{
𝜇𝑘𝑃 (ℎ𝑖 )

}
reports that ℎ𝑖

belongs to the fuzzy set of universe 𝑃 , as illustrated below:

𝐹ℎ𝑖 =

{
𝜇𝑘𝑃 (ℎ𝑖 )

(ℎ𝑖 )
ℎ𝑖

}
. (5)

Figure 4: Position score of frames in action sequences. In a
complete action sequence, the closer to the center the frame
is, the more reliable it is.

Table 1: Examples of partial fuzzy rules.

Rule 𝐶 𝑁 𝐺 𝑈

𝑅1 𝑁𝐵 𝑃𝐵 𝑁𝐵 𝑃𝐵

𝑅2 𝑁𝐵 𝑍𝑂 𝑁𝑆 𝑃𝑆

𝑅3 𝑁𝑆 𝑁𝑆 𝑍𝑂 𝑍𝑂

𝑅4 𝑃𝑆 𝑁𝐵 𝑃𝐵 𝑁𝑆

𝑅5 𝑁𝑆 𝑍𝑂 𝑍𝑂 𝑃𝑆

𝑅6 𝑁𝑆 𝑁𝑆 𝑁𝐵 𝑍𝑂

𝑅7 𝑃𝐵 𝑁𝐵 𝑃𝐵 𝑁𝑆

𝑅8 𝑁𝑆 𝑁𝑆 𝑍𝑂 𝑁𝐵

Thus, the fuzzy control rule is obtained by extracting the front
parts 𝐹𝐶𝑖

, 𝐹𝑁𝑖
, and 𝐹𝐺𝑖

and the rear part 𝐹𝑈𝑖
.

Fuzzy inference. Because the fuzzy inference system had three
input variables, driving 125 fuzzy rules. Table 1 shows examples
of fuzzy rules. The fuzzy set generated by each fuzzy rule 𝜔𝑖, 𝑗 is
obtained by performing the combination of membership degrees on
the front parts of each rule, where 𝑗 ∈ [1, 2, · · · ,𝑤] is the number
of active rules. Subsequently, the conclusion of fuzzy inference𝑈𝑖 is
obtained through a disjunction operation. The formula is as follows:

𝜔𝑖, 𝑗 = 𝑖 𝑓
(
𝐶𝑖 𝑖𝑠 𝐹𝐶𝑖

)
𝑎𝑛𝑑

(
𝑁𝑖 𝑖𝑠 𝐹𝑁𝑖

)
𝑎𝑛𝑑

(
𝐺𝑖 𝑖𝑠 𝐹𝐺𝑖

)
𝑡ℎ𝑒𝑛

(
𝑈
𝑗
𝑖
𝑖𝑠 𝐹

𝑗

𝑈𝑖

)
,

(6)

𝑈𝑖 =

𝑤∨
𝑗=1

𝜔𝑖, 𝑗 , (7)

where 𝑈 𝑗
𝑖
is the j-th element in the output universe 𝑃 (𝑈𝑖 ), and

𝐹
𝑗

𝑈𝑖
∈ 𝑘𝑃 (𝑈𝑖 ) denotes any fuzzy set on 𝑃 (𝑈𝑖 ).

Defuzzification. During defuzzification, the centroid method is
selected to obtain the output. The abscissa value corresponding to
the membership function curve of the fuzzy set and the center of
the area surrounded by it is the effectiveness of frame 𝑢𝑖 , which
can be defined as follows:

4
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𝑢𝑖 =

∑𝑤
𝑗=1𝑈

𝑗
𝑖
𝜇𝑘𝑃 (𝑈𝑖 )

(
𝑈
𝑗
𝑖

)
∑𝑤
𝑗=1 𝜇𝑘𝑃 (𝑈𝑖 )

(
𝑈
𝑗
𝑖

) , (8)

where 𝜇𝑘𝑃 (𝑈𝑖 )

(
𝑈
𝑗
𝑖

)
is the membership degree of 𝑈 𝑗

𝑖
to set 𝑘𝑃 (𝑈𝑖 ) ,

and 𝑃 (𝑈𝑖 ) =
{
𝑈 1
𝑖
,𝑈 2
𝑖
, · · · ,𝑈 𝑗

𝑖

}
.

Figure 5 shows the overall framework of FCM. First, the corre-
sponding feature vectors are extracted from the action detection
and are fuzzified into membership degrees of different sets in the
respective universe. Fuzzy logic is then employed to aggregate the
active fuzzy rules. Finally, the effectiveness of the frame is obtained
through defuzzification.

The FCM evaluates the effectiveness of each frame by incorpo-
rating multiple perspectives. This aids in the accurate localization
of the detection results with cognitive abnormalities and facilitates
the subsequent stages of further detection.

3.3 Fuzzy cognitive update strategy (FCS)
The detection performance for each frame in a video sequence
depends on the effectiveness of the surrounding action frames. The
poor effectiveness of the surrounding action frames often leads to
noise interference in detecting the target frame. Therefore, frames
are divided into low and high levels based on their effectiveness.
Frameswith high-level cognition are considered reliable predictions,
whereas the remaining frames require further detection as follows:

𝐷𝐴 ←
⋃
{𝐼𝑖 |𝑢𝑖 ≥ 𝛿}, 𝐷𝑁 ← 𝐼 − 𝐷𝐴 . (9)

Subsequently, a storage space is constructed to store correlated
sequences composed of frames with high-level cognition, and the
features of the correlated sequences are combined to re-detect
frames with low-level cognition. Subsequently, the results before
and after re-detection are dynamically updated based on fuzzy logic,
improving action detection performance. Specifically, this study
proposes a fuzzy cognitive update strategy that includes three main
parts: constructing correlated sequences, re-detecting frames with
low-level cognition, and updating frames with low-level cognition.
The construction of correlated sequences. Frames with high-
level cognition are used to construct correlated sequences that are
applied in subsequent re-detection processes. As action detection
continues, the size of the correlated sequences gradually increases.
The matching of the frame with low-level cognition and all the
frames with high-level cognition significantly affected the detection
speed. Therefore, for a specific frame with low-level cognition 𝐼𝑖 ,
only video frames within a certain neighboring range are employed
to construct the correlated sequence 𝑇𝑖 .

𝑇𝑖 ←
⋃{

𝐼 𝑗
��𝐼 𝑗 ∈ 𝐷𝐴 , 𝑗 ∈ (𝑖 − 𝜆, 𝑖 + 𝜆)} , (10)

where 𝜆 is a hyperparameter used to determine the number of
correlated sequences around frames with low-level cognition.
Re-detection of frames with low-level cognition. The corre-
lated sequences provide rich contextual clues to determine the
category of the current frame. It also contains noise that affects the
determination of subsequent frame categories. Therefore, the core
idea of re-detection is to simulate local evolution by dynamically

Figure 5: Illustration of the FCM, which consists of four com-
ponents: feature quantification, fuzzification, fuzzy inference
and defuzzification.

aggregating the features of frames with low-level cognition and
their related sequences.

Specifically, we extract features based on the backbone network
in [27]. For the extracted feature 𝑓𝑗 of the j-th frame image in the
correlated sequence𝑇𝑖 , 𝑓𝑗 is converted into the key and value spaces,
where the former is responsible for comparing similarities, and the
latter can be utilized for feature aggregation. It is expressed as:

𝑓 𝑘𝑗 = Φ𝑘
(
𝑓𝑗
)
, 𝑓 𝑣𝑗 = Φ𝑣

(
𝑓𝑗
)
, (11)

where Φ𝑘 and Φ𝑣 denote the key mapping convolutional layer and
value mapping convolutional layer in the re-detection network,
respectively.

Then, the cosine similarity is calculated to measure the similarity
between the feature of the correlated sequence 𝑓 𝑘

𝑗
and the feature

of the frame with low-level cognition 𝑓 𝑘
𝑖
, as follows:

𝜀 𝑗,𝑖 =
𝑓 𝑘
𝑗
· 𝑓 𝑘
𝑖


𝑓 𝑘𝑗 


 · 


𝑓 𝑘𝑖 


 , (12)

where 𝜀 𝑗,𝑖 refers to the similarity between the j-th frame of the
correlated sequence 𝑓 𝑘

𝑗
and 𝑓 𝑘

𝑖
. The similarity set

[
𝜀1,𝑖 , · · · , 𝜀 𝑗,𝑖

]
is obtained from above, 𝑗 ∈ (1, 2, · · · , 𝑧) is the number of frames
in the correlated sequence, and softmax is employed to normalize
and obtain the attention mask {𝜀}. The feature values in the cor-
related sequence are aggregated to obtain features with high-level
cognition 𝑓𝑖 :

𝑓𝑖 =

𝑧∑︁
𝑗=1

𝜀 𝑗,𝑖 · 𝑓 𝑣𝑗 . (13)

Then, the features of the frames with low-level cognition 𝑓 𝑣
𝑖
and

high-level cognition 𝑓𝑖 are used to obtain the predicted classification
score 𝐻𝑖 after re-detection.

𝐻𝑖 = Ω(𝑓𝑖 , 𝑓 𝑣𝑖 ), (14)
where Ω(·, ·) is the classifier of the re-detection network, 𝐻𝑖 =(
𝐶𝐾1 , · · · ,𝐶𝐾ℎ

)
indicates the set of classification scores after re-

detection, and𝐶𝐾ℎ represents the predicted score of𝐾ℎ . The infinite
norm of the classification is considered the confidence 𝐶𝑖 of the
re-detection.
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Figure 6: Illustration of the FCS. FCS measures the similarity
between features in correlated sequences and frames with
low-level cognitive abilities, and fuses the features to obtain
features with high-level cognitive abilities.

𝐶𝑖 = ∥𝐻𝑖 ∥∞ . (15)

Update frames with low-level cognition. From the above steps,
confidence𝐶𝑖 after re-detection is obtained. However, updating the
results is unreliable when only confidence is used after re-detection.
Therefore, it is necessary to replace𝐶𝑖 with𝐶𝑖 as the input for fuzzy
inference and use Equations (5)-(8) to obtain the effectiveness 𝑢𝑖
after the re-detection. The result is dynamically updated based on
the effectiveness before and after re-detection.

𝑢𝑖𝑜𝑝𝑡 = max (𝑢𝑖 , 𝑢𝑖 + 𝜏) , (16)

where 𝑢𝑖 is the effectiveness of the initial frame and 𝑢𝑖 refers to the
effectiveness of the frame after re-detection. 𝜏 denotes a predefined
threshold. Because the initial frame is the foundation of the detec-
tion process, the result’s update occurs only when the combined
effectiveness of the initial frame and the predefined threshold is
lower than the effectiveness obtained after re-detection.

Figure 6 shows the overall process of the FCS. First, the corre-
lated sequences of frames with high-level cognition are constructed
for further detection. The similarity between the features in the
correlated sequence and frames with low-level cognition is then
measured, and the features are fused to obtain features with high-
level cognition. The features of frames with low-level cognition
and correlated sequences are jointly considered for re-detection.
Fuzzy logic is then employed to dynamically update the detection
results with low-level cognition before and after re-detection.

4 EXPERIMENTAL RESULTS AND ANALYSIS
To evaluate the superiority of Cefdet for action detection, experi-
ments are conducted using JHMDB [28] and UCF101-24 [29]. The
following introduces the JHMDB and UCF101-24 datasets and de-
scribes their implementation details. The experimental results of

Cefdet are then quantitatively and qualitatively discussed to demon-
strate its effectiveness.

4.1 Datasets
JHMDB [28] is a benchmark dataset for action detection. It consists
of a video composed of 928 temporary clips from 21 different action
categories. The dataset involves fine-grained actions and subtle
temporal cues, requiring precise temporal localization for accurate
detection.
UCF101-24 [29] is derived from the UCF101 dataset and focuses on
24 action categories consisting of 3207 videos representing various
human activities such as walking, jogging, basketball, and dancing.
The videos exhibited variations in viewpoint, scale, background
clutter, and lighting conditions, posing challenges for accurate ac-
tion detection.

4.2 Implementation details
Object detector: The experiment extracted keyframes from each
video in the JHMDB and UCF101-24 datasets and used the char-
acter bounding boxes detected in [30] for inference. The target
detector adopted a Faster RCNN [31] in the ResNet-50-FPN back-
bone. The model is pretrained on ImageNet [32] and fine-tuned on
MSCOCO [33].
Backbone: SlowFast [14] is the video backbone. The experiment
is instantiated using SlowFast and ResNet-50 pretrained on Kinet-
ics700 [34].
Training and evaluation: The model is trained for 7k iterations
on the JHMDB dataset, where the first 700 iterations are for linear
preheating. SGD is used as the optimizer with a batch size of 8.
Similarly, there are 50k iterations of training on the UCF101-24
dataset, with linear preheating applied in the first 1k iterations. The
learning rate is 0.0002, which is 10 times less in iterations of 25k
and 35k. The hyperparameters 𝜇1, 𝜇2, and 𝜇3 are 0.6, 0.2, and 0.2,
respectively.

4.3 Quantitative analysis
To verify the effectiveness of Cefdet in action detection, we com-
pared it with state-of-the-art (SOTA) methods using the JHMDB
and UCF101-24 datasets. The frame mean Average Precision (mAP)
with an intersection over union (IoU) threshold of 0.5 is used as
the evaluation metric, and the experimental results are shown in
Table 2 and 3.

The mAP of SOTA reached 82.9% and 84.8% for the JHMDB and
UCF101-24 datasets, respectively. Although the SOTA algorithm
exhibited advanced performance on the JHMDB and UCF101-24
datasets, its detection accuracy for high-similarity actions remained
poor. Moreover, it is difficult for a detector to explore the relation-
ship between continuous actions, resulting in detection results that
do not conform to human action norms. Repairing these detection
results with cognitive abnormalities is a challenge in action de-
tection because of the lack of effective judgment of the detection
results.

However, Cefdet achieved mAP values of 84.0% and 85.0% on
the JHMDB and UCF101-24 datasets, respectively, which provided
gains of 1.1% and 0.2%, respectively, compared with SOTA. Cefdet
utilizes fuzzy inference to simulate a cognition-based detection
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Table 2: Experimental results using the JHMDB dataset based
on mAP. Cefdet exhibits excellent performance on both
frame mAP and video mAP.

Model Input f@0.5 v@0.2 v@0.5

MOC(2020)[35] V+F 70.8 77.3 77.2
AVA(2018)[16] V+F 73.3 - 78.6
PCSC(2019)[36] V+F 74.8 82.6 82.2
HISAN(2019)[37] V+F 76.7 85.9 84.0
ACRN(2018)[17] V+F 77.9 - 80.0
CA-RCNN(2020)[38] V 79.2 - -
WOO(2021)[39] V 80.5 - -
TubeR(2022)[40] V+F - 87.4 82.3
SE-STAD(2023)[41] V 82.5 - -
MCA-SVMM(2023)[42] V 74.9 82.1 81.8
HIT(2023)[20] V 82.9 88.5 87.2

Ours V 84.0 90.4 89.3

Table 3: Experimental results on the UCF101-24 dataset based
on mAP. Cefdet surpasses SOTA methods.

Model Input f@0.5 v@0.2 v@0.5

HISAN(2019)[37] V+F 73.7 80.4 49.5
MOC(2020)[35] V+F 78.0 82.8 53.8
AVA(2018)[16] V 76.3 - -
AIA(2020)[18] V 78.8 - -
PCSC(2019)[36] V+F 79.2 84.3 61.0
TubeR(2022)[40] V+F 83.2 83.3 58.4
ACAR(2021)[19] V 84.3 - -
CycleACR(2023)[43] V 84.7 - -
MCA-SVMM(2023)[42] V 79.3 83.4 54.6
HIT(2023)[20] V 84.8 88.8 74.3

Ours V 85.1 89.3 75.1

Table 4: Experimental results of representative actions in the
JHMDB dataset (mAP).

Action HIT(%) Ours(%) Gap(%)

Shoot_ball 71.2 83.4 +12.2
Sit 52.3 56.5 +4.2
Stand 26.1 33.3 +7.2
Walk 78.6 89.1 +10.5
Climb_stairs 89.2 91.3 +2.1
Throw 75.5 78.1 +2.6

process, effectively determining the effectiveness of frames and
accurately locating frames with cognitive abnormalities. Further-
more, each frame is divided into frames with high and low-level
cognition based on their effectiveness. The features of the frames
with high-level cognition are refined to assist in the re-detection
of frames with low-level cognition. Fuzzy logic is then employed

Table 5: The ablation experiment in the JHMDB dataset.

FCM FCS mAP

82.9
! 83.8

! 83.2
! ! 84.0

Table 6: Results of fuzzy cognitive update under different
thresholds using confidence and effectiveness as evaluation
criteria in the JHMDB dataset (mAP).

Threshold 0.1 0.2 0.3 0.35 0.4 0.5

Confidence 83.03 83.13 83.22 83.20 83.16 83.11
Effectiveness 83.37 83.56 83.79 83.97 83.85 83.76

to dynamically update the detection results with low-level cogni-
tion before and after re-detection. This reduced the impact of noise
and misjudgment, effectively repaired the detection results with
cognitive abnormalities, and improved the robustness of the model.

The results in Table 4 indicate that the detection accuracy of
action categories such as “shoot_ball”, “walk”, and “stand” is poor
on the JHMDB dataset. This indicates that it is difficult to distin-
guish between similar actions using existing methods. However,
Cefdet exhibited excellent performance in these action categories,
with improvements of 12.2%, 10.5%, and 7.2%, respectively, com-
pared with the SOTA algorithm. This improvement is attributed to
evaluating the effectiveness of the fuzzy inference system. It simu-
lates a cognition-based detection process and accurately identifies
the location of the detection results with cognitive abnormalities.
Subsequently, the detection results are divided into frames with
high and low-level cognition based on their effectiveness. Frames
with low-level cognition are re-detected by similarity-weighted fu-
sion of local features, and frames with higher-level cognition select
the results before and after re-detection. This effectively repairs
detection results with cognitive abnormalities.

The above experimental results demonstrate that Cefdet achieves
SOTA performance on the JHMDB and UCF101-24 datasets. This
fully reflects Cefdet’s superiority and robustness.

4.4 Ablation studies
In this section, ablation experiments are conducted on JHMDB to
investigate the effectiveness of FCM and FCS. The frame mAP with
an IoU threshold of 0.5 is used as an evaluation metric, and the
experimental results are shown in Table 5 and 6.

Notably, when FCM is removed, the confidence score for action
detection is selected as the evaluation criterion. The obtained mAP
is 83.2%, which is a reduction of 0.8%, indicating that effectiveness
had a more significant effect than confidence. Table 6 presents
the results of using confidence and effectiveness as the evaluation
criteria. The effectiveness results as the evaluation criterion are
consistently higher than those of using confidence under different
thresholds, and the highest mAP of 83.97 is achieved at a thresh-
old of 0.35, demonstrating the superiority of FCM and indicating
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Figure 7: Visualization results of Cefdet on the JHMDB and UCF101-24 datasets. In the images, yellow indicates the true
annotation, while red andwhite represent the detection results of holistic interaction transformer (HIT) and Cefdet, respectively.
All detection boxes are shown in blue.

that cognition-based detection achieves accurate localization of the
positions of the detection results with cognitive abnormalities.

The experimental results are updated based on confidence before
and after re-detection after removing the FCS. The result is a 0.2%
decrease, demonstrating that using only confidence scores to update
the experimental results is unreasonable. Cognition-based detection
exhibits excellent performance in handling nonlinear, time-varying,
and unclear information, effectively improving the accuracy of
detecting cognitive abnormalities.

The results demonstrated that both the FCM and FCS effectively
enhanced the accuracy of action detection in complex scenarios.

4.5 Visualization
Figure 7 illustrates the visual results of Cefdet on the JHMDB and
UCF101-24 datasets, which reflects the superiority of Cefdet in
repairing the detection results with cognitive abnormalities. This
improvement is attributed to the combination of human action fea-
tures and fuzzy inference to simulate a cognition-based detection
process. It accurately localizes the detection results of cognitive
abnormalities. Furthermore, fuzzy logic is utilized to aggregate the
local features of frames with low-level cognition for re-detection,
and the detection results are dynamically updated based on the
effectiveness of the frames before and after re-detection. This effec-
tively repairs the detection results with cognitive abnormalities.

These results indicate that Cefdet performs superiorly in these
challenging situations and is more suitable for action detection.

5 CONCLUSION AND FUTUREWORK
This study proposed Cefdet, which introduced the concept of
“cognition-based detection” into action detection to simulate human
cognition. First, the FCM is designed to evaluate the effectiveness of
the frames. It extracts various action features from video sequences
and inputs them into fuzzy inference. The cognition-based detection
process is simulated using a fuzzy system to obtain effectiveness,
which accurately locates the position of action frames with cogni-
tive abnormalities. Then, the FCS is proposed based on the FCM to
update the results dynamically. It constructs related sequences by
frames with high-level cognition and performs a weighted fusion
of features by fuzzy inference for re-detection. Subsequently, the re-
sults before and after re-detection are dynamically updated, which
effectively repairs the detection results with cognitive abnormali-
ties. Experiments on public datasets proved that Cefdet achieves
superior performance and promotes the further application of fuzzy
inference in action detection.

In future work, our objective will be to incorporate interval
type-2 fuzzy set theory into developing a robust and real-time
action detection framework and further facilitate the application
and advancement of fuzzy theory in action detection.
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