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Appendix
A. Summary of Notations

Notation Description Notation Description
E a set of agents i an agent i

S a state space st a state at time t

Oi an observation space of agent i ot,i an observation of agent i at time t

A an action space at,i an action of agent i at time t

a
c
t,i a continuous action of agent i at time t a

d
t,i a discrete action of agent i at time t

āt,i a proto-action of agent i at time t a
⇤
t,i a true action agent i at time t

at a joint action at time t at,�i a joint action except agent i at time t

T a state transition probabilities ⌦i an observation transition probabilities of agent i

Rt,i a reward of agent i at time t � a temporal discounted factor
C a character space D a dynamic model
ci a character vector of agent i

B. System specification

CPU AMD Ryzen 9 3950X 16-core
GPU GeForece RTX 2080 Ti
RAM 128 GB
SSD 1T

C. Hyperparameters
C.1. Algorithm 1

Hyperparameter Value Hyperparameter Value
total episodes (K) 3500 total timesteps (T ) 3000
policy delay (d) 2 target noise variance (�̄) 0.2
replay buffer size (|B|) 4 ⇥ 106 train batch size (B) 128
discount factor (�) 0.99 soft update rate (⌧ ) 1 ⇥ 10�3

exploration variance 1 (�1) 0.1 exploration variance 2 (�2) 0.6
actor learning rate 5 ⇥ 10�4 critic learning rate 5 ⇥ 10�4

actor hidden node [64, 64] critic hidden node [64, 64]
activation function of actor hidden layer ReLU activation function of critic hidden layer ReLU
activation function of actor output layer tanh activation function of critic output layer linear

C.2. Algorithm 2

Hyperparameter Value Hyperparameter Values
optimizer Adam learning rate 10�3

the number of iterations (L) 200 the number of samples (N ) 3000
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D. Post-processor Function in (2)
To build a post-processor function g(·), we first allocate the continuous action space

A
d = [�W, W ] into |A

d
| = 2W + 1 discrete action values. In other words, a continuous number lies in the range

ā
d
t 2

h
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W+w
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i
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d
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a
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The condition can be written as the range of a
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and it can be reformulated as
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,

where min(·, W ) hinders w from being outside of action space [�W, W ]. Here, the floor function is used on the right side
of the inequality equation (5). But the ceiling function on the left side of the inequality equation (5) can be an alternative
with the max function max(·,�W ).

The post-processor function a
d
t = g(ād

t , W ) is finally formulated as follows.
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E. Derivation of (3)

ĉj = arg max
c

ln P (o1:T,j , a1:T,j |c)

= arg max
c

ln

Z
P (s1:T , o1:T,j , a1:T,j |c)ds1:T (6)

= arg max
c

ln

Z
P (s1:T |o1:T,j , at:T,j) ⇥

P (s1:T , o1:T,j , a1:T,j |c)

P (s1:T |o1:T,j , at:T,j)
ds1:T (7)

= arg max
c

Z
P (s1:T |o1:T,j , at:T,j) ⇥ ln

P (s1:T , o1:T,j , a1:T,j |c)

P (s1:T |o1:T,j , at:T,j)
ds1:T (8)

= arg max
c

Z
P (s1:T |o1:T,j , at:T,j) ⇥ ln P (s1:T , o1:T,j , a1:T,j |c)ds1:T + H(s1:T |o1:T,j , at:T,j) (9)

= arg max
c

Z
P (s1:T |o1:T,j , at:T,j) ⇥ ln P (s1:T , o1:T,j , a1:T,j |c)ds1:T (10)

The equality of (6) and (7) is because of multiplying the same value on the numerator and denominator. The inequality of
(7) and (8) is based on Jensen’s inequality, which means f(E[x]) � E[f(x)] is satisfied when f(·) is a concave function (in
our case, f(·) is ln(·)). Subsequently, we can rewrite �P (·) ln P (·) as a entropy H(·). The inequality of (9) and (10) is
because the entropy H(·) is always a positive value.

ĉj = arg max
c

Z
P (s1:T |o1:T,j , at:T,j) ⇥ ln P (s1:T , o1:T,j , a1:T,j |c)ds1:T

= arg max
c

Z
P (s1:T |o1:T,j , a1:T,j)

"
ln P (s1) +

TX

t=1

ln ⌦j(ot,j |st) +
TX

t=1

ln ⇡(at,j |ot,j ; c)

+

Z TX

t=1

ln T (st+1|st, at,j ,at,�j)da1:T,�j

#
ds1:T (11)

= arg max
c

TX

t=1

ln ⇡(at,j |ot,j ; c) ⇥

Z
P (s1:T |o1:T,j , a1:T,j)ds1:T (12)

= arg max
c

TX

t=1

ln ⇡(at,j |ot,j ; c) (13)

= arg max
c

TX

t=1

[ln ⇡(ac
t,j |ot,j ; c) + ln ⇡(ad

t,j |ot,j ; c)] (14)

We can decompose (10) as (11) by the Markov property. Next, we can ignore the ⌦(·) and T (·) of (11) because these terms
are not related to c. Likewise, we can ignore the P (s1:T |o1:T,j , a1:T,j) of (12). Consequently, (13) can be decomposed as
the probabilities with respect to both continuous and discrete action as (14) because we consider the hybrid action space.
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F. Loss Function for Character Inference
If ⇡(ac

t,j |ot,j ; c) is the Gaussian distribution and ⇡(ad
t,j |ot,j ; c) is the Dirac delta distribution, each term of the equation

U(c) is defined as follows:

ln ⇡(ac
t,j |ot,j ; c) =

1

2
ln 2⇡�

2
⇡ +

|a
c
t,j � a

⇤,c
t,j |

2⇡�2
⇡

,

ln ⇡(ad
t,j |ot,j ; c) = [ad

t,j 6= a
⇤,d
t,j ](|a⇤,d

t,j � ā
d
t,j |),

where a
⇤,c
t,j and a

⇤,d
t,j mean the actual action value sampled by observing the target agent, and [·] means the indicator function.

When the estimated deterministic action a
d
t,j is different to the actual action a

⇤,d
t,j (i.e., a

d
t,j 6= a

⇤,d
t,j ), indicator function

becomes 1; Conversely, when a
d
t,j = a

⇤,d
t,j , indicator function becomes 0. If inferred character parameter ĉ is similar to the

actual character parameter c, the errors between the action produced by ĉ and the observed actual action would decrease.
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G. Experiments: Autonomous Driving
To deal with a continuous state space, a hybrid action space, and the agents’ characters, we consider the autonomous driving
simulator.

In the demonstration task, the agents, the autonomous vehicles, drive the L-lane roundabout road. The agents are randomly
deployed on the road in every episode. The agents’ goal is to drive as close to the desired velocity as possible, and the agents
should control the acceleration and lane changes to reach the goal. To address this task, we set the POMDP. Here, the state
includes the velocity and position of all vehicles, and the observation includes information about neighboring vehicles. The
action includes acceleration and lane change control in continuous and discrete space, respectively. The reward function
comprises three terms: considering the desired velocity, safety distance, and meaningless lane change. We provide the
specific POMDP model in the following subsection.

G.1. State

state st 2 S is defined as
st = [vT

t ,pT
t ,kT

t ]T .

The state st means the total information of all vehicles on the road. Here, vt = [vt,1, vt,2, · · · , vt,N ] represents the velocity
of all vehicles, pt = [pt,1, pt,2, · · · , pt,N ] denotes the positions of the vehicles, and kt = [kt,1, kt,2, · · · , kt,N ] denotes the
lane position of all vehicle at a given time t.

G.2. Observation

The observation ot 2 O comprises the partial state information that the agent can observe. We assume that an agent i can
observe the following and leading vehicles located in the same and next lanes. Thus, we set the observation ot,i as follows:

ot,i = [vt,i, �vt,i, �pt,i, kt,i]
T
,

where vt,i denotes the velocity of an agent i, �vt,i is relative velocity between the agent i and observ-
able vehicles, �pt,i is relative position, and kt,i denotes the lane number at given time t. Here, �vt,i =
[�vt,lL, �vt,lS , �vt,lR, �vt,fL, �vt,fS , �vt,fR], and �pt,i = [�pt,lL, �pt,lS , �pt,lR, �pt,fL, �pt,fS , �pt,fR], where
subscripts l and f mean leading and following vehicles, and subscripts L, S, and R signify located left, same, and right lane,
respectively.

G.3. Action

The action at,i 2 A consists of a continuous action a
c
t,i 2 A

c and a discrete action a
d
t,i 2 A

d at time t. In this framework, a
continuous action is acceleration control, and a discrete action is a lane change. Acceleration control space A

c is defined as
a space from maximum acceleration to minimum acceleration [amin, amax]; Lane change space Ad is defined as {�1, 0, 1}.
In A

d, a
d
t,i = �1 means the agent moves a lane outwards (right side), conversely a

d
t,i = 1 means the agent moves a lane

inwards (left side), and a
d
t,i = 0 means the agent keeps the same lane.

G.4. Reward

As discussed in section 3.1, the character-based reward function is defined as Rt,i = Ri(st, at,i, st+1; ci). In this experiment,
the reward function Rt,i is defined as:

Rt,i = c1R1 + c2R2 + c3R3 + rfail,

where c = {c1, c2, c3} denotes a vector of the character coefficients and {R1,R2,R3} denotes a vector of the reward terms,
and rfail means a penalty for the unfeasible actions (i.e., trial to move a non-existence lane and a lane where other vehicles
are located.).

We use rfail term for punishing unfeasible action, which is designed for safety learning purposes. By introducing this
penalty, an agent can learn about unsafe decisions without experiencing an accident. In other words, it allows the agent to
use the safety assistant system fewer times, such as the ADAS (Advanced Driver Assistance System).

Subsequently, detailed equations of the reward terms are as follows.
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The first reward term is defined as follows:
R1 = 1 �

����
vt+1,i � v

⇤
i

v
⇤
i

���� ,

where v
⇤
i denotes the target velocity of the agent i. We consider that the agent can drive close to the target velocity. When

vt,i = v
⇤
i , the reward term is maximized as the highest value 1; when vt,i 6= v

⇤
i the reward term is lower than 1.

Next, the second reward term is defined as follows:

R2(�pt+1,fS) = min

"
0, 1 �

✓
s

⇤

�pt+1,fS

◆2
#

,

where s
⇤ denotes the safety distance between the vehicles, and we design this reward term to induce the agent to drive with

the following vehicle in mind when the agent changes the lane. In this reward term, s
⇤ is defined as follows.

s
⇤ = s0 + max

"
0, vt+1,fS

 
t
⇤ +

�vt+1,fS

2
p

|Amin ⇥ Amax|

!#
,

where s0 denotes the minimum gap between vehicles, t
⇤ denotes the minimum time headway, the minimum time gap

between two sequential vehicles required to arrive at the same location. This safety distance is based on the Intelligent
Driving Model (IDM) controller, which is one of the adaptive vehicular control systems [1]. If s

⇤
 �pt+1,fS (i.e., the

agent keeps the safety distance with a following vehicle when moving the lane), R2 becomes the 0; on the other hand, R2

becomes the negative value.

The third term is defined as follows:

R3 = |a
d
t,i|�pt,lS ⇥ min[0, �pt+1,lS � �pt,lS ].

This reward term is related to unnecessary lane changes, which is a movement to lanes with less driving space than the
current lane. When the agent changes the lane |a

d
t,i| = 1 and �pt,lS < �pt+1,lS or keeps the lane |a

d
t,i| = 0, this penalty

term can be neglected (i.e., R3 = 0). Conversely, when the agent changes the lane |a
d
t,i| = 1 and �pt,lS � �pt+1,lS , this

penalty term becomes the negative value.
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H. Behavioral Pattern over Character Coefficients

A

B

A

BA-1 A-2 B

A B C

Figure 7. Behavioral pattern of the agent over character coefficient cn. A: Tendency of the average velocity of the agent over character
c1 (c2 = c3 = 0). B: Tendency of the relative distance to the following vehicle over character c2 (c1 = c3 = 0). C: Tendency of
lane-changing frequency over c3 increases(c1 = c2 = 0).

To confirm behavioral differences over the character coefficient, we perform ablation studies on reward function by isolating
the independent effect of each character coefficient. It can provide insight into how these characters impact the resulting
trajectories. The behavioral differences resulting from character coefficients’ changes are illustrated in Figure 7. The
markers and shaded areas represent the average value and confidence interval with two standard deviations, respectively.

As described in Appendix G, the reward function is defined as Rt,i = c1R1 + c2R2 + c3R3 + rfail, where R1, R2, and R3

is related to desired velocity, safe distance and, lane-changing, respectively. Therefore, changes in each character coefficient
affect average velocity, relative distance, and the number of lane changes.

Figure 7A shows the average velocity of the agent as increasing c1. This result verifies that the autonomous vehicle drives
closer to the desired velocity (v⇤

i = 3.5m/s). Furthermore, the lower c1 widens the dispersion area of velocity.

Figure 7B represents the relative distance between the autonomous vehicle and the surrounding vehicle over c2. The result
confirms that the relative distance increases as c2 grows. This character coefficient is straightforwardly related to a safe
distance. The agent would pursue safe driving by securing a larger driving space as c2 grows.

Figure 7C shows the number of lane changes as c3 increases. In the reward function, c3 puts weights on the unnecessary
lane-changing penalty. The unnecessary lane-changing implies movement to lanes with less driving space than the current
lane. As c3 decreases, the agent performs lane-chaining action more frequently.
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I. Performance of Character Inference

Figure 8. A. The converging trajectories of the character parameters. A black diamond indicates the initial points, a red diamond indicates
the estimated points, and a yellow star means the true point. B. The estimated character parameters of the agent versus true character
parameters. The orange line represents the identity line meaning perfect estimation, the blue circles depict the estimated values, and the
blue line presents the confidence interval for three standard deviations.

Figure 8A presents the contour plots of the log-likelihood function for the combination of character parameters cj,k, where
k 2 [1, 2, 3]. It shows that the true value is well inferred no matter where the initial value is located. The yellow star, red and
black diamonds in these diagrams represent the true, estimated, and initial points, respectively; the curve line presents the
character inference trajectory from an initial point to an estimated point.

Figure 8B shows the estimated character value by the agent i versus the true character value of the target j. Each blue point
and bar is the average value and the three-standard deviation considering ten experiments. The orange line indicates that the
estimated and true values are identical. It represents that the character inference is successful without a large error between
the estimated and true value, and in particular, cj,1 and cj,3 are overall accurate with a small standard deviation. Conversely,
the inference about cj,2 becomes inaccurate when cj,2 � 1.2. We conclude that the character inference module generally
infers the agent’s characters well over the observation-action trajectory of the target agent.
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