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1 SUPPLEMENTARY EXPERIMENTS
1.1 Evaluation Metric Details
We assessed the automatic white balance (AWB) and temporal

automatic white balance (TAWB) methods’ performances in two

dimensions: illumination estimation accuracy and stability.

For illumination estimation accuracy, we employed the estab-

lished metrics - recovery angular error (AE) [3] - for evaluation,

which computes angular error between predict illumination 𝐸 and

ground truth 𝐺 :

𝐴𝐸 (𝐸,𝐺) = 𝑎𝑟𝑐𝑐𝑜𝑠 ( 𝐸 ·𝐺
∥𝐸∥∥𝐺 ∥ ), (1)

where · is the dot product, and ∥ · ∥ is the Euclidean norm. A lower

value of AE means better illumination estimation accuracy.

To gauge the temporal stability of estimated illuminations, fol-

lowing [5], we utilized the maximum illumination change (MIC)

and the illumination distribution scatter (STD).

MIC identifies abrupt illumination shifts in a sequence by quan-

tifying the largest change in the estimated illuminations between

consecutive frames:

𝑀𝐼𝐶 (𝑆) =𝑚𝑎𝑥 (𝐴𝐸 (𝐸𝑆𝑖 , 𝐸𝑆𝑖+1 )), 𝐼 = 1...𝑁𝑆 − 1, (2)

where 𝐸𝑆𝑖 and 𝐸𝑆𝑖+1 represent the estimated illuminations of 𝑖𝑡ℎ

and (𝑖 + 1)𝑡ℎ frames within the sequence 𝑆 , and 𝑁𝑆 denotes the

frame numbers of 𝑆 .

To identify sequences spanning a large range of illuminantions,

we employed STD for scatteredness. In detail, the estimated il-

luminations of the sequence 𝑆 are first converted into an Angle-

Retaining Chromaticity diagram [4], a bi-dimensional representa-

tion where Euclidean distances correspond to angular distances in

Eq.1. Then, STD is computed:

𝑆𝑇𝐷 (𝑆) =

√√√
𝑁𝑆∑︁
𝑖=1

(𝑥𝑆𝑖 − 𝑥𝑆 )2
𝑁𝑆

+
𝑁𝑆∑︁
𝑖=1

(𝑦𝑆𝑖 − 𝑦𝑆 )2
𝑁𝑆

, (3)

where (𝑥𝑆𝑖 , 𝑦𝑆𝑖 ) are the ARC coordinates of the 𝑖𝑡ℎ estimated il-

luminations in sequence 𝑆 , and (𝑥𝑆 , 𝑦𝑆 ) represents the average of

each coordinate for the sequence. The lower values of MIC and

STD mean better illumination estimation stability.

1.2 Additional Training Details
We trained and tested all compared baseline models on 3090ti. For

all compared methods, we followed the optimal settings in their

papers [12, 8, 2, 11, 9, 10]. Throughout the training and testing

phases of all methods, the color checker is masked out in each

frame to avoid bias.

Unlike AWB methods, RCCNet, TCCNet and our CTANet esti-

mated a single illumination color vector from consecutive frames.

This approach can introduce inconsistency in experiments when

the number of input frames varies. To maintain experimental con-

sistency, we chose two neighboring frames, along with the target

frame, as inputs for RCCNet, TCCNet and our CTANet.The trained
models are in the Models fold of the supplementary material.

1.3 Validation of Spatial-temporal Attention
Spatial-temporal (ST) attention is the key element of our CTANet,

which aims to extract the temporal features that can represent the

shared information of input frames. Directly, this will facilitate sta-

ble estimation of illumination in our CTANet. Ablation experiments

of spatial-temporal (ST) attention are in Table.3 and Table.4 of the

main text. Here, we additionally provided the visualizations of the

temporal features highlighted by ST attention to validate its effect.

As in Fig.1(a), when the input frames contain similar content

(two art paintings) but the illumination changes, to achieve a stable

effect, the model should extract the features representing the shared

content to estimate the illumination color of the target frame. In

Fig.1(b), our ST attention achieves the above goal by identifying

similar spatial features from adjacent frames. Specifically, when the

spatial features of the target frame represent art printings located in

the center and left, our ST attention recognizes similar information

in adjacent frames (first and second lines). Even when the features

of the target frame do not represent the information very clearly,

our ST attention highlights the shared information in different

frames through inter-frame similarity (third row), thus ensuring

the effectiveness and stability of target illumination estimation. By

the above mechanism, in Fig.1(c), the target illumination color esti-

mated by our CTANet is extremely similar to the real illumination

color (Ground Truth, GT), and the AE error between the corrected

target frame and the real target frame (GT) is only 0.437.

1.4 Comparison of Visualization Effect Under
Different Illuminations

Fig.2 presents qualitative comparisons between RCCNet [10], TCC-

Net [9], and our CTANet on the sequences with multiple and dark

illuminations (on page 3). Under artificial dark illuminations such

as Seq.1 and Seq.2, sequences corrected by RCCNet and TCCNet

tend to have a cooler tone, whereas CTANet produces outputs that

are more aesthetically pleasing. For artificial multiple illuminations

(e.g., Seq.3 and Seq.4), RCCNet and TCCNet show a noticeable color

bias towards red or blue tones, whereas CTANet introduces more

natural tones. CTANet also performs well in handling natural dark

and multiple illuminations, demonstrating improved single-frame

color correction and temporal color consistency as seen in Seq.5 and

Seq.6. Additionally, in scenes with dynamic illumination changes

between frames (e.g., Seq.7 and Seq.8), frames corrected by RCC-

Net and TCCNet exhibit less temporal consistency compared to

CTANet’s color-corrected frames, which show smoother continuity.

For more details, please refer to the Visualization Comparison
folder of the supplementary material.
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Figure 1: Visualizations of the temporal features high-
lighted by spatial-temporal (ST) attention in our CTANet
(GT: Ground Truth).

2 SUPPLEMENTARY INFORMATION OF CTA
DATASET

2.1 Reference White of Mobile Cameras
According to the Imaging Model[7], the illumination color labels

(ground truths) are specific to cameras. Thus, directly comparing

illumination color distributions is not practical. To address this,

we employed the reference whites to transform diverse camera-

specific illuminations into the camera-independent color space, i.e.
Angle-Retaining Chromaticity diagram[4], facilitating a meaningful

comparison of illumination distributions (Fig.2(c) of the main text).

Referring to [6], we opted for direct sunlight as our reference

white. This choice is based on its simplicity in identifying images

taken under these conditions. Adhering to this definition, we care-

fully selected the most representative image for each mobile camera

and computed the reference white for our CTA dataset. The details

are in Table. 1.

2.2 Dataset Processing
We positioned the ColorChecker in all frames to record the spa-

tial and temporal illumination colors. To obtain the illumination

color of a single frame, we manually computed the denoised RGB

response from grey patches #20, #21, #22, #23 in the ColorChecker.

We excluded the brightest grey patch #19, the darkest grey patch

Mobile Camera R/G B/G

Huawei P30 Pro 0.3545 0.4507

Huawei Mate30 0.3323 0.4292

IPhone 14 Pro Max 0.9785 1.0024

Xiaomi 11 Pro 1.2308 0.7691

Xiaomi 13 0.4962 0.5589

Vivo iqoo neo5 0.5599 0.5219

Table 1: Reference white (D55-like) for the different mobile
cameras of our CTA dataset.

#24, and any additional saturated patches [1]. After capturing, we

processed all sequences to obtain pure raw versions with Dcraw,

including demosaic, black-level subtraction, and saturation point

stretching. The corresponding codes are in the Data Processing
folder of the supplementary material.

2.3 Dataset Stastistics
Sec.3.1 of the main text detailed the methodology for capturing

various natural and artificial illuminations. Natural illumination

varies with weather conditions and time of day, while artificial

illumination depends on the scene type. These factors are illus-

trated in Fig.5 of the main text. Comprehensive statistics regarding

these conditions are provided in Table. 2 and Table. 3 on page 3,

documenting the diversity of illumination environments captured.

Dataset is in the Dataset fold of the supplementary material.
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Figure 2: Visual comparisons of Our CTANet and state-of-the-art TAWBmethods for the sequences with complex illuminations.
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Scene Type Location Object Count

Indoor

Room

browndoor 6

orangegreysofa 6

whitefurniture 8

whitewall 6

woodenfloor 11

Staircase

stairs 10

whitewall 6

Undergroundparking

car 5

greenwall 4

Corridor

stair 7

elevator 4

greyfloor 5

whitewall 6

Lobby greyfloor 4

Classroom

blackboard 6

greyfloor 5

woodendesk 11

woodenseat 8

Train greytrunk 1

Library

book 13

greydoor 6

woodendesk 4

Supermarket painting 14

Artgallery painting 14

Market vegetables 1

Parkinglot

greyfloor 4

whitewall 4

Mall

colorfulclothes 2

floortile 3

Outdoor

City

building 114

car 37

greenery 108

greyfloor 15

lawn 17

people 18

street 116

trail 32

tree 138

Wild

greenery 23

greyfloor 11

lake 6

mountain 7

redterrace 8

stonebridge 5

trail 28

tree 43

In&Outdoor -

brickwall 5

building 9

elevator 5

greenery 9

greyfloor 21

stair 7

street 9

whitewall 5

Table 3: Statistics of scenes with locations and objects (Count:
the number of captured frames).

Illumination Type Weather Time of Day CT Count

Natural

illumination

(Outdoor)

Cloudy

p.m.

cool 17

neutral 30

warm 31

dynamic 26

a.m. neutral 1

Rainy

p.m.

warm 4

dynamic 5

neutral 7

a.m. neutral 5

Sunny

p.m.

cool 4

neutral 48

warm 31

dynamic 61

a.m.

cool 5

neutral 18

warm 2

dynamic 10

Dynamic

illumination

(In&outdoor)

Cloudy

p.m.

cool 2

neutral 8

dynamic 7

a.m.

neutral 1

dynamic 3

Rainy p.m.

neutral 1

warm 1

dynamic 1

Sunny

p.m.

neutral 5

warm 3

dynamic 15

a.m.

neutral 2

dynamic 1

Artificial

illumination

(Indoor)

Room -

cool 22

neutral 4

warm 17

dynamic 16

Artgallery -

cool 10

neutral 4

dynamic 1

Classroom -

neutral 11

warm 1

dynamic 7

Corridor -

cool 4

neutral 7

warm 4

Library -

cool 4

neutral 7

warm 4

dynamic 4

Lobby -

cool 1

neutral 3

warm 2

dynamic 3

Mall -

cool 7

neutral 3

dynamic 2

Market - neutral 1

Parkinglot - neutral 1

Staircase -

cool 1

neutral 2

dynamic 1

Supermarket -

cool 2

neutral 2

dynamic 1

Train - cool 1

Undergroundparking -

neutral 4

warm 2

dynamic 3

Table 2: Statistics of illumination with scene, weather, time
and color temperature (CT) (Count: the number of captured
frames).
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