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1 SUPPLEMENTARY EXPERIMENTS

1.1 Evaluation Metric Details

We assessed the automatic white balance (AWB) and temporal
automatic white balance (TAWB) methods’ performances in two
dimensions: illumination estimation accuracy and stability.

For illumination estimation accuracy, we employed the estab-
lished metrics - recovery angular error (AE) [3] - for evaluation,
which computes angular error between predict illumination E and
ground truth G:

E-G
AE(E,G) = arccos( e ), (1)
where - is the dot product, and || - || is the Euclidean norm. A lower
value of AE means better illumination estimation accuracy.

To gauge the temporal stability of estimated illuminations, fol-
lowing [5], we utilized the maximum illumination change (MIC)
and the illumination distribution scatter (STD).

MIC identifies abrupt illumination shifts in a sequence by quan-
tifying the largest change in the estimated illuminations between
consecutive frames:

MIC(S) = max(AE(Es,, Es,, )),1 = 1..Ns — 1, @)

where Eg, and Eg,,, represent the estimated illuminations of ith

i+1
and (i + 1)th frames within the sequence S, and Ng denotes the
frame numbers of S.

To identify sequences spanning a large range of illuminantions,
we employed STD for scatteredness. In detail, the estimated il-
luminations of the sequence S are first converted into an Angle-
Retaining Chromaticity diagram [4], a bi-dimensional representa-
tion where Euclidean distances correspond to angular distances in
Eq.1. Then, STD is computed:

Ng —\2 Ns —\2
(xs, = Xs) (ys; = Ys)

STD(S) = E d + E : R
© i=1 Ns i=1 Ns

®)

where (xs,, ys,) are the ARC coordinates of the ith estimated il-
luminations in sequence S, and (xg, ys) represents the average of
each coordinate for the sequence. The lower values of MIC and
STD mean better illumination estimation stability.

1.2 Additional Training Details

We trained and tested all compared baseline models on 3090ti. For
all compared methods, we followed the optimal settings in their
papers [12, 8, 2, 11, 9, 10]. Throughout the training and testing
phases of all methods, the color checker is masked out in each
frame to avoid bias.

Unlike AWB methods, RCCNet, TCCNet and our CTANet esti-
mated a single illumination color vector from consecutive frames.
This approach can introduce inconsistency in experiments when
the number of input frames varies. To maintain experimental con-
sistency, we chose two neighboring frames, along with the target

frame, as inputs for RCCNet, TCCNet and our CTANet. The trained
models are in the Models fold of the supplementary material.

1.3 Validation of Spatial-temporal Attention

Spatial-temporal (ST) attention is the key element of our CTANet,
which aims to extract the temporal features that can represent the
shared information of input frames. Directly, this will facilitate sta-
ble estimation of illumination in our CTANet. Ablation experiments
of spatial-temporal (ST) attention are in Table.3 and Table.4 of the
main text. Here, we additionally provided the visualizations of the
temporal features highlighted by ST attention to validate its effect.

As in Fig.1(a), when the input frames contain similar content
(two art paintings) but the illumination changes, to achieve a stable
effect, the model should extract the features representing the shared
content to estimate the illumination color of the target frame. In
Fig.1(b), our ST attention achieves the above goal by identifying
similar spatial features from adjacent frames. Specifically, when the
spatial features of the target frame represent art printings located in
the center and left, our ST attention recognizes similar information
in adjacent frames (first and second lines). Even when the features
of the target frame do not represent the information very clearly,
our ST attention highlights the shared information in different
frames through inter-frame similarity (third row), thus ensuring
the effectiveness and stability of target illumination estimation. By
the above mechanism, in Fig.1(c), the target illumination color esti-
mated by our CTANet is extremely similar to the real illumination
color (Ground Truth, GT), and the AE error between the corrected
target frame and the real target frame (GT) is only 0.437.

1.4 Comparison of Visualization Effect Under
Different Illuminations

Fig.2 presents qualitative comparisons between RCCNet [10], TCC-
Net [9], and our CTANet on the sequences with multiple and dark
illuminations (on page 3). Under artificial dark illuminations such
as Seq.1 and Seq.2, sequences corrected by RCCNet and TCCNet
tend to have a cooler tone, whereas CTANet produces outputs that
are more aesthetically pleasing. For artificial multiple illuminations
(e.g., Seq.3 and Seq.4), RCCNet and TCCNet show a noticeable color
bias towards red or blue tones, whereas CTANet introduces more
natural tones. CTANet also performs well in handling natural dark
and multiple illuminations, demonstrating improved single-frame
color correction and temporal color consistency as seen in Seq.5 and
Seq.6. Additionally, in scenes with dynamic illumination changes
between frames (e.g., Seq.7 and Seq.8), frames corrected by RCC-
Net and TCCNet exhibit less temporal consistency compared to
CTANet’s color-corrected frames, which show smoother continuity.
For more details, please refer to the Visualization Comparison
folder of the supplementary material.
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Figure 1: Visualizations of the temporal features high-
lighted by spatial-temporal (ST) attention in our CTANet
(GT: Ground Truth).

2 SUPPLEMENTARY INFORMATION OF CTA
DATASET

2.1 Reference White of Mobile Cameras

According to the Imaging Model[7], the illumination color labels
(ground truths) are specific to cameras. Thus, directly comparing
illumination color distributions is not practical. To address this,
we employed the reference whites to transform diverse camera-
specific illuminations into the camera-independent color space, i.e.
Angle-Retaining Chromaticity diagram[4], facilitating a meaningful
comparison of illumination distributions (Fig.2(c) of the main text).

Referring to [6], we opted for direct sunlight as our reference
white. This choice is based on its simplicity in identifying images
taken under these conditions. Adhering to this definition, we care-
fully selected the most representative image for each mobile camera
and computed the reference white for our CTA dataset. The details
are in Table. 1.

2.2 Dataset Processing

We positioned the ColorChecker in all frames to record the spa-
tial and temporal illumination colors. To obtain the illumination
color of a single frame, we manually computed the denoised RGB
response from grey patches #20, #21, #22, #23 in the ColorChecker.
We excluded the brightest grey patch #19, the darkest grey patch

Anonymous Authors

Mobile Camera R/G B/G

Huawei P30 Pro 0.3545 | 0.4507
Huawei Mate30 0.3323 | 0.4292
IPhone 14 Pro Max | 0.9785 | 1.0024
Xiaomi 11 Pro 1.2308 | 0.7691
Xiaomi 13 0.4962 | 0.5589
Vivo iqoo neo5 0.5599 | 0.5219

Table 1: Reference white (D55-like) for the different mobile
cameras of our CTA dataset.

#24, and any additional saturated patches [1]. After capturing, we
processed all sequences to obtain pure raw versions with Dcraw,
including demosaic, black-level subtraction, and saturation point
stretching. The corresponding codes are in the Data Processing
folder of the supplementary material.

2.3 Dataset Stastistics

Sec.3.1 of the main text detailed the methodology for capturing
various natural and artificial illuminations. Natural illumination
varies with weather conditions and time of day, while artificial
illumination depends on the scene type. These factors are illus-
trated in Fig.5 of the main text. Comprehensive statistics regarding
these conditions are provided in Table. 2 and Table. 3 on page 3,
documenting the diversity of illumination environments captured.
Dataset is in the Dataset fold of the supplementary material.
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Scene Type Location Object Count
browndoor 6
orangegreysofa 6
Room whitefurniture 8
whitewall 6
woodenfloor 11
Staircase stairs 10
whitewall 6
. car 5
Undergroundparking areenwall 7}
stair 7
Corridor elevator 4
greyfloor 5
whitewall 6
Lobby greyfloor 4
Indoor blackboard 6
greyfloor 5
Classroom woodendesk 11
woodenseat 8
Train greytrunk 1
book 13
Library greydoor 6
woodendesk 4
Supermarket painting 14
Artgallery painting 14
Market vegetables 1
. reyfloor 4
Parkinglot \ihi)t,ewall 4
colorfulclothes 2
Mall floortile 3
building 114
car 37
greenery 108
greyfloor 15
. lawn 17
City people 18
street 116
trail 32
Outdoor tree 138
greenery 23
greyfloor 11
lake 6
. mountain 7
Wwild redterrace 8
stonebridge 5
trail 28
tree 43
brickwall 5
building 9
elevator 5
In&Outdoor - sreenery o
greyfloor 21
stair 7
street 9
whitewall 5

Table 3: Statistics of scenes with locations and objects (Count:
the number of captured frames).

Anonymous Authors

Ilumination Type Weather | Time of Day CT Count
cool 17
neutral 30
Cloudy pm. warm 31
dynamic 26
am. neutral 1
warm 4
. .m. dynamic 5
Natural Rainy b r?eutral 7
illumination am. neutral 5
(Outdoor) cool 4
neutral 48
p-m warm 31
dynamic 61
Sunny cool 5
neutral 18
axm. warm 2
dynamic 10
cool 2
pm. neutral 8
Cloudy dynamic 7
neutral 1
am. dynamic 3
Dynamic neutral 1
illumination Rainy pm. warm 1
(In&outdoor) dynamic 1
neutral 5
p-m. warm 3
Sunny dynamic 15
neutral 2
am dynamic 1
cool 22
neutral 4
Room -
warm 17
dynamic 16
cool 10
Artgallery - neutral 4
dynamic 1
neutral 11
Classroom - warm 1
dynamic 7
cool 4
Corridor - neutral 7
warm 4
cool 4
. neutral 7
Library - warm ry
Artificial dynamic 4
. - cool 1
illumination eutral 3
(Indoor) Lobby - warm 3
dynamic 3
cool 7
Mall - neutral 3
dynamic 2
Market - neutral 1
Parkinglot - neutral 1
cool 1
Staircase - neutral 2
dynamic 1
cool 2
Supermarket - neutral 2
dynamic 1
Train - cool 1
neutral 4
Undergroundparking - warm 2
dynamic 3

Table 2: Statistics of illumination with scene, weather, time
and color temperature (CT) (Count: the number of captured

frames).
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