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A APPENDIX: PROOF OF THEOREM 1

Firstly, we recall some definitions. Denote xr , xg as the real training and generated samples, respectively. x are
the population of all data, and xr are sampled from p(x). yg represents the initial labels for the generator G,
while ỹ indicates the labels perturbed by C̃ from yg . The class-prior πi meets πi = P (yg = i) = P (O(xr) =
i). For a rigorous proof of Theorem 1, we elaborate it again in the appendix.

Theorem 1 We assume that the following three mild assumptions can be met: (a) PU classifier is not over-
fitting on the training data, (b) P (PUθ(xg)|O(xg), yg) = P (PUθ(xg)|O(xg)), (c) the conditional sample
space is disjoint from each other class. Then,

(1) P g is a permutation matrix if the generator G in CNI-CGAN is optimal, with the permutation, compared
with an identity matrix, only happens on rows r where corresponding πr, r ∈ r are equal.

(2) If P g is an identity matrix and the generator G in CNI-CGAN is optimal, then pr(x, y) = pg(x, y) where
pr(x, y) and pg(x, y) are the real and generating joint distribution, respectively.

A.1 PROOF OF (1)

Proof. For a general setting, the oracle class of xg given by label yg is not necessarily equal to PUθ(xg). Thus,
we consider the oracle class of xg , i.e., O(xg) in the proof.

Optimal G. In CNI-CGAN, G is optimal if and only if
pr(xr, PUθ(xr)) = pg(xg, ỹ). (10)

The equivalence of joint probability distribution can further derive the equivalence of marginal distribution, i.e.,
pr(xr) = pg(xg). We define a probability matrix C where Cij = P (PUθ(x) = j|O(x) = i) where x are the
population data. According to (c), we can apply O(·) on both xr and xg in Eq. 10. Then we have:

P (O(xr) = i, PUθ(xr) = j)
(c)
= P (O(xg) = i, ỹ = j)

P (O(xr) = i)P (PUθ(xr) = j|O(xr) = i) =

K+1∑
k=1

P (yg = k,O(xg) = i)P (ỹ = j|yg = k,O(xg) = i)

πiCij
(a)
=

K+1∑
k=1

P (O(xg) = i|yg = k)P (yg = k)P (ỹ = j|yg = k)

πiCij =

K+1∑
k=1

P g>ik πkC̃kj ,

(11)
where assumption (a) indicates that PUθ(xr) is close to PUθ(x) so that P (PUθ(xr) = j|O(xr) = i) =
P (PUθ(x) = j|O(x) = i). Then the corresponding matrix form follows as

ΠC = P g>ΠC̃ (12)

Definition. According to the definition of C̃ and Law of Total Probability, we have:

P (yg = i)P (PUθ(xg) = j|yg = i) = πi

K+1∑
k=1

P (O(xg) = k|yg = i)P (PUθ(xg) = j|O(xg) = k, yg = i)

πiC̃ij
(b)
= πi

K+1∑
k=1

P gikP (PUθ(xg) = j|O(xg) = k)

πiC̃ij = πi

K+1∑
k=1

P gikCkj ,

(13)
where the last equation is met as p(xg) is close to p(x) whenG is optimal, and thus P (PUθ(xg) = j|O(xg) =
k) = P (PUθ(x) = j|O(x) = k). Then we consider the corresponding matrix form as follows

ΠC̃ = ΠP gC (14)

where Π is the diagonal matrix of prior vector π. Combining Eq. 14 and 12, we have P g>ΠP g = Π, which
indicates P g is a general orthogonal matrix. In addition, the element of P g is non-negative and the sum of each
row is 1. Therefore, we have P g is a permutation matrix with permutation compared with the identity matrix
only happens on rows r where corresponding πr, r ∈ r are equal. Particularly, if all πi are different from
each other, then permutation operation will not happen, indicating the optimal conditional of P g is the identity
matrix.
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A.2 PROOF OF (2)

We additionally denote yr as the real label of real sample xr , i.e., yr = O(xr). According to the optimal
condition ofG in Eq. 10, we have pr(xr) = pg(xg). Since we have P g is an identity matrix, thenO(xg) = yg
a.e. Thus, we have pg(xg|yg = i) = pg(xg|O(xg) = i),∀i = 1, ..,K + 1. According the assumption (c) and
Eq. 10, we have pr(xr|O(xr) = i) = pg(xg|O(xg) = i). In addition, we know that pr(xr|O(xr) = i) =
pr(xr|yr = i), thus we have pr(xr|yr = i) = pg(xg|yg = i). Further, we consider the identical class-prior
πi. Finally, we have

pr(xr|yr = i)πi = pg(xg|yg = i)πi

pr(xr|yr = i)p(O(xr) = i) = pg(xg|yg = i)p(yg = i)

pr(xr|yr = i)p(yr = i) = pg(xg|yg = i)p(yg = i)

pr(xr, yr) = pg(xg, yg).

(15)

B APPENDIX: RELATED WORKS

Positive-Unlabeled (PU) Learning. Positive and Unlabeled (PU) Learning is the setting where a learner
only has access to positive examples and unlabeled data. Early work (Bekker & Davis, 2018) did a survey
around this. Non-Negative Risk Estimator (Kiryo et al., 2017) has been proposed to alleviate the overfitting,
and thus it allows to utilize very flexible model, such as deep neural networks. Similarly, Hou et al. (2017)
employed GANs (Goodfellow et al., 2014) to recover both positive and negative data distribution to step away
from overfitting. Kato et al. (Kato et al., 2018) focused on remedy the selection bias in the PU learning,
and Besides, Multi-Positive and Unlabeled Learning (Xu et al., 2017) extended the binary PU setting to the
multi-class version, therefore adapting to more practical applications. Our Multi-Positive Unlabeled method,
by contrast, is more intuitive and tailored for the deep neural networks optimization.

CGAN on Few Labels Data. To attain high-quality images with both fidelity and diversity, the training
of generative models requires a large dataset. To reduce the need of huge amount of data, the vast majority
of methods (Noguchi & Harada, 2019; Yamaguchi et al., 2019; Zhao et al., 2020) attempted to transfer prior
knowledge of the pre-trained generator. Another branch (Lucic et al., 2019) is to leverage self- and supervised
learning to add pseudo labels on the in-distribution unlabeled data in order to expand labeled dataset. Compared
with this approach, our strategy can be viewed to automatically “pick” useful in-distribution data from total
unknown unlabeled data via PU learning framework, and then constructs robust CGANs to generate clean data
distribution out of predicted label noise.

Robust GANs. Existing Robust GANs can be mainly categorised into two types: ones robust to noisy labels
and the others robust to noisy inputs. Robust Conditional GANs (Thekumparampil et al., 2018; Kaneko et al.,
2019) were proposed to class-dependent noisy labels. The main idea of these approaches is to corrupt the label
of generated sample before feeding to the adversarial discriminator, forcing the generator to produce sample
with clean labels. As supplementary investigation, Koshy Thekumparampil et al. (2019) explored the scenario
when CGANs get exposed to missing or ambiguous labels, while Chrysos et al. (2018) leveraged structure in
the target space of the model to address this issue. Moreover, Noise RCGAN (Kaneko & Harada, 2019) focused
on the robust generation against noisy inputs. Different from these works, the noise in our model mainly stems
from the prediction error of existing PU classifier. We employ the imperfect classifier to estimate the label
confusion noise, yielding a new branch of Robust CGANs against “classifier” noise.

Semi-Supervised Learning (SSL). There is a recent wave of approaches for semi-supervised learn-
ing, e.g., Virtual Adversarial Training (VAT) (Miyato et al., 2018) and its variants (Yu et al., 2019), Mix-
Match (Berthelot et al., 2019) and its variant (Sun et al., 2019). One crucial issue in SSL is how to tackle with
the mismatch of unlabeled and labeled data. Augmented Distribution Alignment (Wang et al., 2019) was pro-
posed to leverage adversarial training to alleviate the bias, but they focus on the empirical distribution mismatch
owing to the limited number of labeled data. Further, Yanbei Chen (2019) concentrated on this under-studied
problem and designed a Uncertainty Aware Self-Distillation to guarantee the effectiveness of learning. In con-
trast, our approach leverage PU learning to construct the “open world” classification, which can be further
investigated to cope with this issue in the future.

Out-Of-Distribution (OOD) Detection OOD Detection is one classical but always vibrant machine
learning problem. PU learning can be used for the detection of outliers in an unlabeled dataset with knowledge
only from a collection of inlier data (Hido et al., 2008; Smola et al., 2009). Another interesting and related
work is Outlier Exposure (Hendrycks et al., 2018), an approach that leveraged an auxiliary dataset to enhance
the anomaly detector based on existing limited data. This problem is similar to our generation task, the goal of
which is to take better advantage of extra dataset, especially out-of-distribution data, to boost the generation.
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Learning from Noisy Labels Rotational-Decoupling Consistency Regularization (RDCR) (Tsung
Wei Tsai, 2019) was designed to integrate the consistency-based methods with the self-supervised rotation
task to learn noise-tolerant representations. Ge et al. (2020) proposed Mutual Mean-Teaching that averages the
parameters of two neural networks to refine the soft labels on person re-identification task. In addition, the data
with noisy labels can also be viewed as bad data. Guo et al. (2019) provided a worst-case learning formulation
from bad data, and designed a data-generation scheme in an adversarial manner, augmenting data to improve
the current classifier.

C APPENDIX: DETAILS ABOUT ALGORITHM 1

Similar in (Kiryo et al., 2017), we utilize the sigmoid loss `sig(t, y) = 1/(1 + exp(ty)) in the implementation
of the PU learning. Besides, we denote ri = R̂−u

(
g;X iu

)
− πpR̂

−
p

(
g;X ip

)
in the i-th mini-batch. Instructed

by the algorithm in (Kiryo et al., 2017), if ri < 0 we turn to optimize −∇θri in order to make this mini-batch
less overfitting, which is slightly different from Eq. 4.

D APPENDIX: DETAILS ABOUT EXPERIMENTS

PU classifier and GAN architecture For the PU classifier, we employ 6 convolutional layers with dif-
ferent number of filters on MNIST, Fashion-MNIST and CIFAR 10, respectively. For the GAN architecture,
we leverage the architecture of generator and discriminator in the tradition conditional GANs (Mirza & Osin-
dero, 2014). To guarantee the convergence of RCGAN-U, we replace Batch Normalization with Instance Batch
Normalization. The latent space dimensions of generator are 128, 128, 256 for the three datasets, respectively.
As for the optimization of GAN, we deploy the avenue same as WGAN-GP (Gulrajani et al., 2017) to pursue
desirable generation quality. Specifically, we set update step of discriminator as 1.

Choice of Hyper-parameters We choose κ as 0.75, β as 5.0 and λ = 0.99 across all the approaches.
The learning rates of PU classifier and CGAN are 0.001 and 0.0001, respectively. In the alternate minimization
process, we set the update step as 1 for PU classifier after updating the CGAN, and L0 as 5 in Algorithm 1.

Further Evaluation of CGAN-P and Ours from the Aspect of Inception Score To better verify
our approach can generate more pleasant images than CGAN-P, we additionally compare the Inception Score
these two methods attain. Specifically, we trained a (almost) perfect classifier with 99.21 % and 91.33% accu-
racy for MNIST and Fashion-MNIST respectively. Then we generate 50,000 samples from the two approaches
to compute Inception Score, the results of which are exhibited in Table 2. It turns out that our method attain
the consistent superiority against CGAN-P on the Inception Score for MNIST, even though the generator label
accuracy of these two approaches are comparable. Note that the two method obtains the similar Inception Score
on Fashion-MNIST, but our strategy outperforms CGAN-P significantly from the perspective of generator label
accuracy. Overall, we can claim that our method is better than CGAN-P.

Table 2: Further evaluation of CGAN-P and Ours from the perspective of Inception Score on MNIST
and Fashion-MNIST datasets.

Positive Rates 0.75% 1.0% 3.0% 5.0% 10.0%
Inception Score (± Standard Deviation)

MNIST CGAN-P 5.08±0.02 5.10±0.03 5.09±0.02 5.14±0.03 5.10±0.04
Ours 5.60±0.01 5.59±0.02 5.65±0.02 5.52±0.01 5.63±0.02

Fashion-MNIST CGAN-P 4.95±0.03 5.01± 0.03 5.04± 0.04 5.02±0.04 5.00 ±0.03
Ours 4.99± 0.02 5.01± 0.02 5.03±0.01 5.07± 0.02 5.04± 0.02

E APPENDIX: MORE IMAGES

We additionally show some generated images on other datasets generated by baselines and CNI-CGAN, shown
in Figure 6. Note that we highlight the erroneously generated images with red boxes. Specifically, on Fashion-
MNIST our approach can generated images with more accurate labels compared with CGAN-A and RCGAN-
U. Additionally, the quality of generated images from our approach are much better than those from CGAN-P
that only leverages limited supervised data, as shown in Figure 7 on CIFAR-10.
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Fashion-MNIST: Positive Rate 0.3%, Initial PU: 85.41%

Generator Label Accuracy
81.17%                           94.95%                             95.13% 

CGAN-A                    RCGAN-U                   CNI-CGAN                        

Figure 6: Visualization of generated samples from several baselines and ours on Fashion-MNIST.

CIFAR-10: Positive Rate 0.3%, Initial PU: 79.46%

CGAN-P                                               CNI-CGAN                        

Figure 7: Visualization of generated samples from CGAN-P and ours on CIFAR-10.
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