
Appendix394

A DrQ-v2: Improved Data-Augmented Reinforcement Learning395

Algorithm 1 DrQ-v2: Improved data-augmented RL.
Inputs:

f⇠, ⇡�, Q✓1 , Q✓2 : parametric networks for encoder, policy, and Q-functions respectively.
aug: random shifts image augmentation.
�(t): scheduled standard deviation for the exploration noise defined in Equation (3).
T , B, ↵, ⌧ , c: training steps, mini-batch size, learning rate, target update rate, clip value.
Training routine:

for each timestep t = 1..T do

�t �(t) . Compute stddev for the exploration noise
at ⇡�(f⇠(xt)) + ✏ and ✏ ⇠ N (0,�2

t) . Add noise to the deterministic action
xt+1 ⇠ P (·|xt,at) . Run transition function for one step
D D [(xt,at, R(xt,at),xt+1) . Add a transition to the replay buffer
UPDATECRITIC(D,�t)
UPDATEACTOR(D,�t)

end for

procedure UPDATECRITIC(D,�)
{(xt,at, rt:t+n�1,xt+n)} ⇠ D . Sample a mini batch of B transitions
ht,ht+n f⇠(aug(xt)), f⇠(aug(xt+n)) . Apply data augmentation and encode
at+n ⇡�(ht+n) + ✏ and ✏ ⇠ clip(N (0,�2)) . Sample action
Compute L✓1,⇠ and L✓2,⇠ using Equation (1) . Compute critic losses
⇠ ⇠ � ↵r⇠(L✓1,⇠ + L✓2,⇠) . Update encoder weights
✓k ✓k � ↵r✓kL✓k,⇠ 8k 2 {1, 2} . Update critic weights
✓̄k (1� ⌧)✓̄k + ⌧✓k 8k 2 {1, 2} . Update critic target weights

end procedure

procedure UPDATEACTOR(D,�)
{(xt)} ⇠ D . Sample a mini batch of B observations
ht f⇠(aug(xt)) . Apply data augmentation and encode
at ⇡�(ht) + ✏ and ✏ ⇠ clip(N (0,�2)) . Sample action
Compute L� using Equation (2) . Compute actor loss
� �� ↵r�L� . Update actor’s weights only

end procedure

13

B Benchmarks396

We classify a set of 24 continuous control tasks from DMC [Tassa et al., 2018] into easy, medium,397

and hard benchmarks and provide a summary for each task in Table 1.398

Task Traits Difficulty Allowed Steps dim(S) dim(A)
Cartpole Balance balance, dense easy 1⇥ 106 4 1
Cartpole Balance Sparse balance, sparse easy 1⇥ 106 4 1
Cartpole Swingup swing dense 1⇥ 106 4 1
Cup Catch swing, catch, sparse easy 1⇥ 106 8 2
Finger Spin rotate, dense easy 1⇥ 106 6 2
Hopper Stand stand, dense easy 1⇥ 106 14 4
Pendulum Swingup swing, sparse easy 1⇥ 106 2 1
Walker Stand stand, dense easy 1⇥ 106 18 6
Walker Walk walk, dense easy 1⇥ 106 18 6
Acrobot Swingup diff. balance, dense medium 3⇥ 106 4 1
Cartpole Swingup Sparse swing, sparse medium 3⇥ 106 4 1
Cheetah Run run, dense medium 3⇥ 106 18 6
Finger Turn Easy turn, sparse medium 3⇥ 106 6 2
Finger Turn Hard turn, sparse medium 3⇥ 106 6 2
Hopper Hop move, dense medium 3⇥ 106 14 4
Quadruped Run run, dense medium 3⇥ 106 56 12
Quadruped Walk walk, dense medium 3⇥ 106 56 12
Reach Duplo manipulation, sparse medium 3⇥ 106 55 9
Reacher Easy reach, dense medium 3⇥ 106 4 2
Reacher Hard reach, dense medium 3⇥ 106 4 2
Walker Run run, dense medium 3⇥ 106 18 6
Humanoid Stand stand, dense hard 30⇥ 106 54 21
Humanoid Walk walk, dense hard 30⇥ 106 54 21
Humanoid Run run, dense hard 30⇥ 106 54 21

Table 1: A detailed description of each tasks in our easy, medium, and hard benchmarks.

14

C Hyper-parameters399

The full list of hyper-parameters is presented in Table 2. While we tried to keep the settings identical400

for each of the task, there are a few specific deviations for some tasks.401

Walker Stand/Walk/Run For all three tasks we use mini-batch size of 512 and n-step return of 1.402

Cartpole Swingup Sparse stddev. schedule is set to 1.0 to facilitate stronger exploration in the403

sparse reward setting.404

Quadruper Run We set the replay buffer size to 105.405

Humanoid Stand/Walk/Run We set learning rate to 8⇥ 10�5 and increase features dim. to 100.406

Table 2: A default set of hyper-parameters used in our experiments.
Parameter Setting
Replay buffer capacity 106

Action repeat 2
Seed frames 4000
Exploration steps 2000
n-step returns 3
Mini-batch size 256
Discount � 0.99
Optimizer Adam
Learning rate 10�4

Agent update frequency 2
Critic Q-function soft-update rate ⌧ 0.01
Features dim. 50
Hidden dim. 1024
Exploration stddev. clip 0.3

Exploration stddev. schedule
easy: linear(1.0, 0.1, 100000)

medium: linear(1.0, 0.1, 500000)
hard: linear(1.0, 0.1, 2000000)

15

D Comparison to Model-Free Methods407

Figure 7: The easy benchmark consists of 9 tasks, where performance gains have been largely
saturated by prior work. Still, DrQ-v2 is able to match sample complexity of the baselines. We note,
that evaluation on these tasks is done for completeness reasons only, and encourage RL practitioners
to refrain from using them for benchmarking purposes in future research.

16

E Comparison to Model-Based Methods408

Baseline To see how DrQ-v2 stacks up against model-based methods, which tend to achieve better409

sample complexity in expense of a larger computational footprint, we also compare to recent and410

unpublished2 improvements to Dreamer-v2 [Hafner et al., 2020], a leading model-based approach411

for visual continuous control. The recent update shows that the model-based approach can solve412

the DMC humanoid tasks directly from pixel inputs. The open-source implementation of Dreamer-413

v2 (https://github.com/danijar/dreamerv2) only provides learning curves for Humanoid414

Walk. For this reason we run their code to obtain results on other DMC tasks. To limit hardware415

requirements of compute-expensive Dreamer-v2, we only run it on a subset of 12 out of 24 considered416

tasks. This subset, however, overlaps with all the three (i.e. easy, medium, and hard) benchmarks.417

Sample Efficiency Axis Our empirical study in Figure 8 reveals that in many cases, DrQ-v2,418

despite being a model-free method, can rival sample efficiency of state-of-the-art model-based419

Dreamer-v2. We note, however, that on several tasks (for example Acrobot Swingup and Finger Turn420

Hard) Dreamer-v2 outperforms DrQ-v2. We leave investigation of such discrepancy for future work.421

Compute Efficiency Axis A different picture emerges if comparison is done with respect to wall-422

clock training time. Dreamer-v2, being a model-based method, performs significantly more floating423

point operations to reach its sample efficiency. In our benchmarks, Dreamer-v2 records a throughput424

of 24 FPS, which is 4⇥ less than DrQ-v2’s throughput of 96 FPS, measured on the same hardware.425

In Figure 9 we plot learning curves against wall-clock time and observe that DrQ-v2 takes less time426

to solve the tasks.427

2ArXiv v3 revision from May 3, 2021 introduces a new result on the Humanoid Walk task in Appendix A.

17

https://github.com/danijar/dreamerv2

Figure 8: In many cases model-free DrQ-v2 can rival model-based Dreamer-v2 in sample efficiency.
There are several tasks, however, where Dreamer-v2 performs better.

18

Figure 9: Model-based Dreamer-v2 performs more computations than model-free DrQ-v2. This
allows DrQ-v2 to train faster in terms of wall-clock time and outperform Dreamer-v2 in this aspect.

19

