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Abstract

Understanding the language of the genome re-
mains a key challenge in biology, with pre-trained
models such as DNABERT-2 achieving substan-
tial advancement. These models leverage massive
nucleotide sequences through a self-supervised
learning paradigm, yet they often overlook the
rich, structured knowledge already curated by
human experts. Inspired by the knowledge-
enhanced foundation models in other biological
molecules (e.g., proteins and drugs), we intro-
duce Knowledge Graph-Augmented DNABERT
(KGA-DNABERT), augmenting the objective of
masked language modeling with knowledge graph
(KG) modeling. Specifically, we construct KGs
by extracting factual triplets from GenomicKB, a
comprehensive human genome database. In addi-
tion to DNABERT-2’s MLM, we incorporate six
popular KG embedding methods to model the cu-
rated KG beyond sequence-level representations.
We did not observe substantial benefits from incor-
porating KGs into DNA representation learning
with the KGs tested here and attribute this to the
insufficient coverage of the constructed KGs, as
they represent only an excerpt of GenomicKB.
This motivates us to explore further a better inte-
gration of KG for DNA representation learning.

1. Introduction

Foundation models (Devlin et al., 2019; Radford et al.,
2019), with millions to billions of parameters, exhibit a
strong ability to capture complex relationships and de-
pendencies among biological molecules. Notably, DNA-
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Figure 1: Illustration of KGA-DNABERT, which includes
both classical mask language modeling and KG modeling
as pertaining objectives.

specific foundation models (Ji et al., 2021; Zhou et al., 2024;
Dalla-Torre et al., 2025) pre-trained on genomic sequences
enable effective nucleotide representations for downstream
tasks such as transcription factor and promoter detection.

While self-supervised paradigms in DNA foundation models
effectively leverage large-scale nucleotide sequence datasets
like the human genome (Mudge et al., 2025), they often
overlook the structured human knowledge accumulated over
decades through expert curation and research. In bioinfor-
matics, one of the most prevalent forms of structured knowl-
edge is the knowledge graph (KG). Integrating KGs has
demonstrated notable improvements in molecular represen-
tation and downstream biological tasks. OntoProtein (Zhang
et al., 2022) leverages Gene Ontology (GO) to enhance pro-
tein representation learning, improving the predictive per-
formance on various protein properties and protein-protein
interactions. Additionally, Hoang et al. (2024) construct
a multimodal KG from diverse sources to refine drug and
protein representations, thereby supporting more accurate
drug—protein interaction prediction.

Inspired by their success, this work investigates the potential
of bridging this gap in DNA representation learning by in-
corporating structured external knowledge. Focusing on the
human genome, we extract structured knowledge from the
Genomic Knowledgebase (GenomicKB, Feng et al. 2023),
a large KG for the human genome. Specifically, we extract
up to 95, 416 sequence-to-sequence relations to extend the
pre-training. Building on DNABERT-2 (Zhou et al., 2024)
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as the base model, we systematically investigate the inte-
gration of KG embedding methods—spanning translational,
bi-linear, and geometric approaches—into DNA represen-
tation learning, jointly optimized with masked language
modeling objectives (see Figure 1). Following DNABERT’s
setup, we further fine-tune the KG-augmented models on
downstream tasks, including transcription factor binding pre-
diction and promoter detection, selected from the Genome
Understanding Evaluation Benchmark (Zhou et al., 2024).
Although KG-augmented pre-training has not yielded sub-
stantial gains so far, we have discovered multiple potential
directions for improving our approach.

2. Methods
2.1. KG Construction

A KG is a set of factual triples (h,r,t), where h,t € £
are head and tail entities, and » € R is a relation. The
GenomicKB (Feng et al., 2023) combines data from di-
verse data sources such as GENCODE (Harrow et al., 2012),
EnhancerAtlas (Gao & Qian, 2020), and RNACentral (RNA-
central Consortium, 2021), and by this provides rich anno-
tation of the human genome as well as of the relationships
between annotated elements. Besides sequence annotations
like coding, non-coding, promoter, protein or enhancer, the
GenomicKB integrates information on properties like tis-
sue and cell lines or epigenomic features. We differentiate
these by separating the entities £ into those with a sequence
representation (€,) and those without (&,). This induces a
subdivision of the set of relations, where we focus on R_,,
the set of sequence-to-sequence relations (i.e. h,t € &).

To evaluate the effect of integrating the knowledge graph
into the pre-training of a DNA representation model, we
derive two distinct datasets from R ,_, ;. These datasets are
D,, which is the Enhancer-Graph, and D-, the Diversified-
Graph. D includes all sequence-to-sequence relations with
the head being of type enhancer. Furthermore, all sequences
included have at least 50 and at most 500 nucleotides, which
matches the usual sequence lengths of DNA representa-
tion learning and respects the length constraint of our base
model. We chose enhancer sequences as they increase the
expression of the associated gene upon binding of a gene-
activatory protein, a so-called transcription factor (Alberts
et al.). As such, they are related to all downstream tasks
either directly or via their interaction with promoters. The
Enhancer-Graph (Dy) consists of 53, 219 unique sequences
in 87, 583 relation triples with the unique relation regulate.

To also provide a dataset with more diverse sequence and
relation types, we create the Diversified-Graph (Ds). After
selecting 100 seed entities of type enhancer, for the reasons
outlined above, the graph is created by traversing the Ge-
nomicKB (independent of the relation’s direction) along all

sequence-to-sequence relations starting at the seed entities.
As before, the length constraint applies. Do, the Diversified-
Graph, features 64, 509 unique sequences in 95,416 rela-
tion triples with four relations: regulate, transcribe_into,
correlated_with, and eQTL of .

2.2. KG Modeling

Various KG embedding models aim to map entities and rela-
tions into a continuous vector space to preserve the structure
of the KG. KG embedding (KGE) models aim to learn map-
ping functions that assign each entity h, ¢ € £ and relation
r € R a vector representation (h,t and r), such that the
plausibility of a triple (h, 7, t) can be measured by a scoring
function f(h,r,t). These models vary in how they define
f(+) to capture structural patterns such as symmetry, inver-
sion, and composition. Below, we summarize representative
KGE models categorized by their scoring mechanisms.

Translation-based models represent relations as transla-
tions in a continuous vector space. Let h,t € R¢ denote
the embeddings of the head and tail entities, and r € R? the
embedding of the relation. For models employing relation-
specific projection matrices, each relation 7 has its own pro-
jection M, € R4*?, transforming entity vectors h,t € R?
into the relation space R? Representative translation-based
models include:

¢ TransE (Bordes et al., 2013) models relations as trans-
lations between head and tail entities: f(h,r,t) =
—|lh+r—t.

e TransH (Wang et al., 2014) projects entities onto
a relation-specific hyperplane before translation:
f(h,r,t) = —||hy +r—t,|,wheree, =e—w,e-
w,. is the projection of entity e onto the hyperplane
with normal vector w, € R?.

e TransR (Lin et al., 2015) projects entities into
relation-specific spaces using projection matrix M,.:
f(hyrt) = —||M,h+r — Mt

e TransD (Ji et al., 2015) uses dynamic projection ma-
trices dependent on entities and relations: f(h,r,t) =
[ Mh +x— M, |

Bi-linear models use multiplicative interactions for relation
modeling. One of the representatives is DistMult (Yang
et al., 2015), which uses element-wise multiplication of
embeddings: f(h,r,t) = (h,r,t), where h,r,t € R? are
the embeddings of the head, relation, and tail.

Geometric models encode relations as spatial transforma-
tions; a prominent example is RotatE (Sun et al., 2019),
which represents each entity and relation as a complex vec-
tor h,r,t € C¢ (equivalently, R?? when splitting into real



Knowledge Graph-Augmented DNA Representation Learning

and imaginary parts) and treats each relation as an element-
wise rotation (unit-modulus complex numbers), yielding the
scoring function f(h,r,t) = —||hor —t||, where o denotes
the Hadamard (element-wise) product.

KG Modeling Loss
- _ 3N
tive triplet pairs {(hi, ri,ti), (hi,ri, tl)}

1=

~ > 0, the margin-ranking loss Lx is defined as:

Given a batch of N positive and nega-

, and a margin
1

N
Lr= o S a0, — [fhirt) — fhiordo)]).
=1

KG-augmented Pre-training Loss To include the KG
modeling into the training procedure, the combined loss £
is computed as

L=Ly+ Nk,

where ) denotes the weight coefficient.

3. Experiments
3.1. Evaluation Benchmarks

To assess how well knowledge-augmented DNA language
models generalise to fundamental regulatory tasks, we adopt
the GENOME UNDERSTANDING EVALUATION (GUE,
Zhou et al. 2024) suite introduced by DNABERT-2. The
GUE benchmark includes three human genome regulatory
tasks. Promoter detection identifies proximal promoter
regions using 300 bp sequences spanning —249 to +50 bp
around transcription start sites (TSS), with datasets split by
TATA presence: prom_300_tata, prom_300_notata,
and a combined set prom_300_all. Core promoter de-
tection focuses on a narrower region closer to the TSS,
using 70 bp sequences centered from —34 to +35 bp, mak-
ing it more challenging. It includes prom_core_tata,
prom_core_notata, and prom_core_all. TF bind-
ing site prediction aims to identify transcription factor
binding sites using 101 bp sequences centered at ChIP-seq
peaks from the ENCODE database (Consortium et al., 2012).
From 690 candidate datasets, five datasets (TF_0 to TF_4)
were selected based on task difficulty to ensure a balanced
benchmark. With sequence lengths of 70 to 300 nucleotides,
these tasks span both short and medium-length contexts,
providing diverse and discriminative challenges for DNA
language models. The details are given in Table 1.

3.2. Experimental Setups

The training pipeline consists of three stages: Pre-training
with MLM, KG-augmented pre-training, and task-specific
fine-tuning.

Task # Datasets # Classes Seq. length (bp)
Promoter detection 3 2 300
Core promoter detection 3 2 70
TF binding site prediction 5 2 100

Table 1: Human genome language model evaluation bench-
marks applied in this work.

Pre-training We follow the pre-training protocol of
DNABERT-2 (Zhou et al., 2024), using the same training
corpus comprising 32.49 billion nucleotide bases over 6
epochs. We apply the pre-trained tokenizer', which is de-
signed based on Byte Pair Encoding (Sennrich et al., 2015)
instead of k-mer tokenization (Ji et al., 2021). We perform
pre-training for around 1.5 million steps using four A100
40GB GPUs, which takes approximately six days. For more
detailed configurations, please refer to Appendix A.1.

KG-Augmented Pre-training Based on the model check-
point in the pre-training phase, we use the combined ob-
jective of MLM and KG modeling to continually pre-train
the model for 10 epochs. For the scoring function f(h,r,t)
in Section 2.2, we use the output vector of DNABERT-2
corresponding to the [CLS] token as the representation
of the head and tail entities, h and ¢, respectively. Their
dimension is 768. For Enhancer-Graph D1 and Diversified-
Graph Ds, there are in total 13,679 and 14,910 training
steps, respectively. The scheduler starts with a 2,000-step
warm-up phase, after which the learning rate decays lin-
early. We select the weighing coefficient A as 1.0. Other
setups are identical to pre-training. For brevity, we denote
the KG-augmented pre-trained models on Enhancer-Graph
and Diversified-Graph as My and Mo, respectively.

Fine-tuning We fine-tune different pre-trained models
on task-specific data, adjusting the input length and train-
ing schedule accordingly. Specifically, training uses FP16
mixed precision with a global batch size of 32. We evalu-
ate checkpoints every 200 - 400 steps and select the best-
performing checkpoint on the dev set for final testing. More
details are in Appendix A.2.

3.3. Experimental Results

Our Constructed KGs Cannot Help DNA Modeling Ta-
ble 2 reports Ms’s F1 scores of the downstream classifi-
cation tasks selected from the GUE benchmark. Except
tf_0 and prom_300_notata, M fails to outperform
the original DNABERT-2. For the task of transcription fac-
tor prediction, the performances of M are close to the
vanilla model. However, in promoter detection, the perfor-

lhttps ://huggingface.co/zhihan1996/
DNABERT-2-117M
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Model TF binding site prediction Core promoter detection Promoter detection

TF.0 TF.1 TF2 TF3 TF4 all notata tata all notata tata
Vanilla 785 8.6 772 721 831 78.0 80.1 81.7 895 926 784
DistMult 799 77.1 735 6477 805 745 782 73.8 87.8 92.7 69.1
RotatE 789 776 738 333 804 748 769 71.8 87.2 927 558
TransD 769 80.1 746 63.0 773 754 780 73.5 883 923 714
TransE 776 804 7277 6277 802 76.6 79.2 73.7 87.7 927 618
TransH 750 806 725 578 792 750 77.6 72.4 88.7 92,7 732
TransR 795 799 724 646 780 76.1 713 75.4 88.6 91.0 735

Table 2: Performance (F1 score, %) of KGA-DNABERT M, with different KGE methods on the GUE benchmark for the
human genome. During KG-augmented pre-training the models M, are additionally trained on Dy (Diversified-Graph).
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Figure 2: Knowledge graph analysis. A: Distribution of the sequence length of entities of type enhancer in GenomicKB
(GKB, blue) and Enhancer-Graph (D1, red). The considered sequences span only a subrange of the enhancer sequences
included in GenomicKB. B: High-level representation of the entity types and relations included in Diversified-Graph (D).
C: Overview on entity type representation as head (blue) or tail (orange) in Diversified-Graph (Ds). While the relation
heads are quite diverse with respect to the sequence entity, the types as well as the number of distinct tail entities are limited

(56, 716 vs. 12,023 unique sequences).

mance gap between the vanilla model and M is signifi-
cantly larger on the TATA split (tata) compared to the
non-TATA split (notata), indicating the shift of model
performance caused by KG-augmented pre-training. This
pattern is also observed on M7, as shown in Table 3 in the
Appendix.

4. Potential Improvements

Although KG modeling did not yield substantial improve-
ment during DNA pre-training, we identify several possible
reasons from both data and training perspectives.

4.1. Data-Related Factors

Our analysis suggests that the current selection of maxi-
mum sequence length of the KG may limit comprehensive
genome-wide representation in GenomicKB (Feng et al.,
2023), thereby impeding the effective integration of ge-
nomic knowledge into DNA sequence representations.

Sequence Length Constraints Limit KG Expressiveness
Reconsidering the KG creation, the decision to extract only
a subset of the GenomicKB with respect to sequence length
and diversity of entity types is of particular importance.
While the sequence length constraint aligns with the down-
stream tasks, many of the sequences included in the Ge-
nomicKB exceed this constraint and are therefore not con-
sidered (see Figure 2A and Figure 4 in the Appendix). Ulti-
mately, the architecture of the deep learning model imposes
a constraint on the maximum sequence length, which, how-
ever, can vary in dependence on the input encoding used. A
strategy that combines the representations of sub-sequences
or an alternative method is needed to account for long se-
quences that exceed this constraint.

KG Construction is Essential for Complexity and Diver-
sity Although Ds is derived from connected subgraphs
of GenomicKB, the final graph remains highly fragmented,
mainly due to sequence length constraints, as discussed
below. Greater connectivity may reduce representational
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degrees of freedom per entity, encouraging convergence
toward more representative embeddings.

The same applies to diversity in entity and relation types.
Our focus on enhancer entities proofed beneficial in the
cases of t £ _0, prom_core_tata, and prom_core_all,
while the other tasks likely reflect the low diversity of the
relations and entity types present (see Figures 2B and C).
Other downstream tasks may benefit from different entity
or relation types or a more diverse representation. This is
likely to have a positive effect on the number of distinct
relation types included, which is again beneficial for DNA
representation learning. Also, we only consider the relation
type (e.g. regulate) for KG construction, instead of the
specific property of the relation in GenomicKB (e.g., score).

As a preliminary analysis, we increase the maximum se-
quence length during D5 construction to 1, 000, 1, 500, and
2,000, as shown in Figure 3. To assess graph connectivity,
we compute the size of the largest connected component
(LLC) and its ratio to the total number of nodes as a nor-
malized metric. We observe that extending the length con-
straints to 2, 000 will significantly boost the ratio. In terms
of diversity, increasing the cutoff to 1, 000 already captures
most entity and relation types, with only marginal gains
thereafter. These observations provide practical guidance
for constructing a more comprehensive and diverse KG.
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Figure 3: Effects of maximum sequence length (500, 1, 000,
1,500, 2,000) on connectivity and diversity. Connectivity
(Top): both largest component size and coverage increase
sharply with longer sequences. Diversity (Bottom): most
entity and relation types are captured by 1, 000, with mini-
mal gains beyond.

4.2. Training-Related Factors

We also anticipate that optimizing the training procedure
could enable more effective fusion of the KG into DNA
representations, although this lies beyond the scope of the
current work due to computational constraints. One poten-
tial improvement is to jointly train KG modeling together
with MLM, rather than modeling the KG only after MLM
pre-training, as done in our current setup. While we con-
tinue MLM during KG-based continued pre-training, the
integration of KG may disrupt the original representations
learned via MM, an issue commonly attributed to catas-
trophic forgetting (Wang et al., 2024). Another promising
direction is to pre-train the KG component independently
before joint training, as adopted in OntoProtein (Zhang et al.,
2022). This allows the KG representations to be more robust
before integration into the sequential model. However, the
choice of modality for representing the KG remains an open
challenge; for instance, OntoProtein encodes the KG using
text-based sequential inputs.

5. Conclusion

In this work, we take a first step toward incorporating KG
modeling into DNA representation learning. Specifically,
we construct human genomic KGs by extracting structured
knowledge from GenomicKB, a large-scale database of the
human genome and its annotations. We integrate various
KG modeling techniques into the pre-training process along-
side classical masked language modeling and evaluate their
impact on downstream genome understanding tasks such
as promoter detection. While we have not yet observed
substantial improvements, our analysis recognized several
viable paths for future research.
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A. Experimental Details
A.1. Pre-training

We pre-train DNABERT-2 across four GPUs, using a per-device batch size of 16 with gradient accumulation over four steps
to simulate a larger effective batch. The model is optimized with AdamW at a learning rate of be — 5, governed by a linear
scheduler throughout training, and employs masked language modeling with 15% of tokens randomly masked each step.

A.2. Fine-tuning

We fine-tune the pre-trained models on a range of tasks from the GUE benchmark using a unified and extensible train-
ing pipeline. Each dataset is formatted into three files: train.csv, dev.csv, and test.csv, each consisting of
sequence, label pairs. Training is conducted with FP16 mixed precision and a global batch size of 32, achieved by set-
ting per_device_train batch_size=8 and gradient_accumulation_steps=1 across A100 GPUs clusters.

Task-specific configurations are tailored to reflect the sequence characteristics and difficulty. For instance, we set
model max_length to 20 for core promoter detection, 70 for proximal promoter task. The number of training epochs
varies from 3 to 10, depending on the dataset. Model checkpoints are evaluated every 200 or 400 steps, and the checkpoint
with the best development set performance is selected for final evaluation. Our training framework is fully modular, allowing
seamless adaptation to new tasks with minimal configuration changes.

B. Results

Model TF binding site prediction ‘ Core promoter detection ‘ Promoter detection
TFO TF.1 TF2 TF3 TF4 | all notata  tata | all notata tata

Vanilla 785 8.6 772 721 83.1 | 780 80.1 81.7 895 926 784
DistMult 780 787 736 648 800 | 87.6 915 71.2 75.1 785 74.1
RotatE 795 794 743 642 80.7 | 88.1 924 72.0 7577 779  72.0
TransD 759 79.0 747 463 79.2 | 7577 784 71.2 884 914  73.1
TransE 794 799 720 655 78.0 | 87.6 91.1 70.7 76.0 755 71.5
TransH 7777 788 7377 614 80.7 | 87.0 91.1 70.1 76.8 762 734
TransR 792 799 738 625 803 | 87.7 914 65.2 76.77 715 72.4

Table 3: Performance (F1 score, %) of various M; models on GUE benchmark tasks. The AM; models are additionally
trained on D; (Enhancer-Graph) during pre-training.

C. GenomicKB and Knowledge Graph Generation

The Genomic Knowledgebase (GenomicKB) (Feng et al., 2023) joins various data sources on the human genome and
organizes them in a graph database. The entities in this graph database can refer to sequences and their annotations as well as
ontology information, for example, structuring the relations between different tissues. The relations connecting the entities
describe the type of relationship, like for example regulates, which expresses that the head entity regulates the tail entity.

In Figure 4, an overview on the sequence length distributions of a subset of entity types in the GenomicKB is given. As one
observes, some entity types span only a very small range of possible sequence lengths (here promoter and proximal_enhancer),
while others span multiple orders of magnitude. A particularity of GenomicKB is, that the actual DNA sequence of an
entity is not stored with the entity itself but within the entities of type chr_chain and associated via the locate_on_chain
relation to prevent redundancy from overlapping entities. In addition, the human genome is splitted up in parts of length
200 nucleotides. For the dataset generation, we retrieve the actual DNA sequence of an entity by extracting it from the
corresponding chr_chain entities and joining the sequence chunks.
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Figure 4: The distribution of sequence lengths for different entity types included in the GenomicKB.
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