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A INCOHERENCE

To give a precise description of the relevant RKHSs, we need to introduce some measures to
characterize the dependence between the spacesHm. The correlation of RKHSs inside the indices
I ⊂ {1, ...,M} can be depicted by the parameter κ(I) as

κ(I) := sup

{
k ≥ 0 | k ≤

∥
∑

m∈I fm∥2L2(Π)∑
m∈I ∥fm∥2L2(Π)

,∀fm ∈ Hm(m ∈ I)
}
.

Similarly, to describe the correlation of RKHSs between the relevant part I and the irrelevant part Ic,
we introduce ρ(I) as

ρ(I) := sup

{ ⟨fI , gIc⟩L2(Π)

∥fI∥L2(Π)∥gIc∥L2(Π)
| fIt ∈ HI , gIc ∈ HIc , fI ̸= 0, gIc ̸= 0

}
.

We denote the common subset of all active kernels I0 = ∪Tt=1It and define

(1− ρ(I0)2)κ(I0) := max
t=1,...,T

(1− ρ(It)2)κ(It) and d := |I0|.

These quantities give a connection between
∑T

t=1 ∥ft∥2L2(Π) and
∑T

t=1

∑
m∈I0

∥fmt∥2L2(Π) as stated
in the following lemma. The proof can be found Section F.
Lemma A.1. For all It ⊂ {1, ...,M} and t = 1, . . . , T , we have

T∑
t=1

∥ft∥2L2(Π) ≥ (1− ρ(I0)2)κ(I0)
T∑

t=1

∑
m∈I0

∥fmt∥2L2(Π).

The following assumption states that the RKHSs are not too dependent on each other.
Assumption A.2 (Incoherence Assumption). For the truly active components I0, we have

0 < κ(I0)(1− ρ(I0)2).

The Incoherence Assumption is commonly used in sparse additive models [34; 44; 65]. Under this
assumption, we can focus on deriving the bound of the relevant part I0 instead of all M components.

B BLOCK COORDINATE GRADIENT DESCENT

Algorithm 1 Block coordinate gradient descent for multi-task multi-kernel logistic regression
Input: Data (xti, yti), regularization parameters λ1, λ2, λ3, Hessian parameter h, line search
parameters.
Initialize γ.
for iteration = 1, 2, . . . do

for m = 1, 2, . . . ,M do
Compute dm = argminMm(dm) in (B.3).
if dm ̸= 0 then

Compute step size τ with backtracking line search.
Update γm ← γm + τdm.

end if
end for

end for
Output: Estimator f̂mt =

∑n
i=1 αmtikm(xti, ·).

The loss function is given as

L(f) =

T∑
t=1

n∑
i=1

log (1 + exp (−ytift(xti))) + λ1

M∑
m=1

√√√√ T∑
t=1

∥fmt∥2n

+ λ2

M∑
m=1

√√√√ T∑
t=1

∥fmt∥2Hm
+ λ3

M∑
m=1

T∑
t=1

∥fmt∥2Hm
. (B.1)
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Let {(xti, yti)}ni=1 be n independent random samples of (Xt, Yt) distributed according to (3.1).
By the representer theorem [28] and the kernel trick, we can express the solution f̂mt as a linear
combination of kernels: f̂mt(x) =

∑n
i=1 αmikm(xti,x). Thus, (3.2) can be rewritten as

L(α) =
1

n

T∑
t=1

n∑
i=1

log(1 + exp(−yti
M∑

m=1

kT
mtiαmt)) + λ1

M∑
m=1

√√√√ 1

n

T∑
t=1

αT
mtKmtKmtαmt

+ λ2

M∑
m=1

√√√√ T∑
t=1

αT
mtKmtαmt + λ3

T∑
t=1

M∑
m=1

αT
mtKmtαmt, (B.2)

where Kmt = (km(xti,xtj))i,j is the Gram matrix, kmti is the ith column vector for the Gram ma-
trix Kmt = (kmt1,kmt2, . . . ,kmtn), and αmt = (αmt1, αmt2, . . . , αmtn)

T ∈ Rn is the coefficient
vector for the kernel m and task t. Next we introduce some extra notations for further simplification.
Denote γm = (αT

m1,α
T
m2, . . . ,α

T
mT )

T ∈ RnT , where we stack αmt together for T tasks. We
also write Wm = diag(Km1,Km2, . . . ,KmT ) ∈ RnT×nT , where we combine Gram matrices by
constructing a diagonal block matrix. Using the above notations, the objective function in (B.2) can
be written as

L(γ) =
1

n

T∑
t=1

n∑
i=1

log(1 + exp(−yti
M∑

m=1

kT
mtiαmt)) + λ1

M∑
m=1

√
1

n
γT
mWmWmγm

+ λ2

M∑
m=1

√
γT
mWmγm + λ3

M∑
m=1

γT
mWmγm.

The objective function is now transformed into a typical Lasso-type loss. One can use the SOCP
algorithm [3] or the alternative direction method of multipliers [6] to solve the problem. However,
we accelerate the optimization by exploiting the special structure induced by multiple kernels. More
specifically, we perceive each kernel as a block and consider the block coordinate gradient descent
(BCGD) algorithm proposed in Meier et al. [43]. The key idea of BCGD is to combine a second-
order approximation of the log-likelihood with line search and update each penalized kernel in a
block-wise manner. We denote ℓ(γ) = − 1

n

∑T
t=1

∑n
i=1 log(1 + exp(−yti

∑M
m=1 k

T
mtiαmt)) as the

log-likelihood and∇ℓ(γ) as the gradient of ℓ(γ) with regards to γ. We write d ∈ RnT as the search
direction and denote dm = (dm1, dm2, . . . , dmT )

T . Thus, by applying a quadratic approximation to
ℓ(γ), we can approximate L(γ + d) with M(d) given as

M(d) = − ℓ(γ)− dT∇ℓ(γ) + dTHd+ λ1

M∑
m=1

√
1

n
(γm + dm)TWmWm(γm + dm)

+ λ2

M∑
m=1

√
(γm + dm)TWm(γm + dm) + λ3

M∑
m=1

(γm + dm)TWm(γm + dm),

where H ∈ RnTM×nTM is a suitable matrix to replace the Hessian of the log-likelihood. Now
we consider the minimization of M(d) regarding each kernel m by setting dj = 0 for j ̸= m.
This means that we only update one kernel m of all tasks at each time. Moreover, we consider
H = −h⊙ diag(W1,W2, . . . ,WM ) for some constant h > 0. And we need to minimize

Mm(dm) = − dT
m∇ℓ(γm) +

h

2
dT
mWmdm + λ1

√
1

n
(γm + dm)TWmWm(γm + dm)

+ λ2

√
(γm + dm)TWm(γm + dm) + λ3(γm + dm)TWm(γm + dm) (B.3)

and perform a backtracking line search to obtain a proper step size τ . We derive the closed-form
solution to (B.3) when λ1 = 0

Mm(dm) = − dT
m∇ℓ(γm) +

h

2
dT
mWmdm + λ2

√
(γm + dm)TWm(γm + dm)

+ λ3(γm + dm)TWm(γm + dm).
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Let tm = γm + dm, we complete the square and remove the constant

Mm(tm) = −tTm(∇ℓ(γm) + hWmγm) + (
h

2
+ λ3)t

T
mWmtm + λ2

√
tTmWmtm.

Let
√
Wmtm = βm, we have

Mm(βm) = −βT
m(
√
Wm

−1
∇ℓ(γm) + h

√
Wmγm) + (

h

2
+ λ3)β

T
mβm + λ2

√
βT
mβm.

Therefore, the derivative is given as

M ′
m(βm) = −(

√
Wm

−1
∇ℓ(γm) + h

√
Wmγm) + (h+ 2λ3)βm + λ2

βm√
βT
mβm

.

Thus, by setting M ′
m(βm) = 0 and the relation

√
Wmtm = βm and tm = γm + dm, we have

dm =
1

h+ 2λ3

[
(W−1

m ∇ℓ(γm) + hγm) (B.4)

− λ2
W−1

m ∇ℓ(γm) + hγm√
∇ℓ(γm)TW−1

m ∇ℓ(γm) + 2hγT
m∇ℓ(γm) + h2γT

mWmγm

]
− γm.

As a result, if
√
∇ℓ(γm)TW−1

m ∇ℓ(γm) + 2hγT
m∇ℓ(γm) + h2γT

mWmγm ≤ λ2, Mm(dm) is max-
imized by dm = γm. Otherwise, it is maximized by (B.4). We have made PyTorch code publicly
available1.

C CONFIGURATION OF SIMULATION

We consider the following models:

• MTMK mix. We consider our multi-task multi-kernel model with the elastic-net type
penalty.

• MTMK L1. This is our multi-task multi-kernel model with only L1 penalty. We set λ3 = 0
to induce more sparsity than the MTMK mix model.

• MTMK L2. With only L2 penalty, this model is simply a group of T multi-kernel logistic
regression with the same L2 regularization parameter for each task. Thus, it is essentially
different from our proposed multi-task model.

• STMK. In this model, we consider T sparse single-task multi-kernel logistic regression.
Each task can generate a distinct sparsity pattern, which might not be favorable given that
all tasks share the same subset of truly active kernels.

• MTSK. We consider a multi-task single-kernel model with L2 penalty. Specifically, we use
a gaussian kernel K(x, y) = exp(∥x− y∥2) for its promising approximating ability for a
fair comparison.

• STSK. This is a single-task single-kernel model with L2 penalty. We use the same kernel as
in MTSK. Since the loss function for each task is convex, STSK is theoretically the same as
MTSK, but a minor numerical difference might be observed.

• ORACLE. Only true kernels are given as input in ORACLE. This model indicates the best
possible performance that can be achieved by the models listed above. We use a multi-kernel
model with a small L2 penalty for numerical stability.

We perform grid search in {0.005, 0.01, . . . , 0.5} to tune hyperparameters λ2 and λ3 for all models
except MTMK mix, for which {0.001, 0.005, 0.01, . . . , 0.5} is used. Because the true function
is unknown in a real-world scenario and the mean squared error cannot be computed, we use the
likelihood function to select the best hyperparameters. To form our candidate kernel pool, we manually
construct 22 candidate kernels, including Gaussian kernels with γ = {10−5, 10−4, . . . , 100}, sigmoid

1https://anonymous.4open.science/r/CLIP_as_MTMK-6786/
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kernels with γ = {10−5, 10−4, . . . , 100}, and polynomial kernels with a degree of {1, 2, . . . , 10}. In
this experiment, we investigate three distinct scenarios to evaluate the performance of our multi-task
model. The first task set comprises a combination of X,X3, and X5, where one of the coefficients in
each task is assigned a value of 0.1. This scenario particularly favors multi-task models as it poses
a challenge for single-task models to accurately identify the correct kernels, given the presence of
a kernel with a small weight in each task. The second task set is a combination of X,X2 and X3,
where not all true kernels appear in each task. It is more challenging for our multi-task model to learn
the sparsity pattern compared to the first task set because the correlation of each task becomes a bit
weaker. The third task set includes a combination of X,X3 and X5, a simple scenario where all
tasks share the same true kernels. But models like STMK can demonstrate competitive performance
in this scenario given that each task is easy. Therefore, our aim in this scenario is to evaluate whether
the joint estimation ability of our MTMK model can still provide better performance compared to
other models. Detailed configuration is summarized in Table 3.

Table 3: Task sets configuration.
Task Sets Tasks

Task Set 1
f1(X) = X +X3 + 0.1X5 f4(X) = −X − 0.1X3 −X5

f2(X) = −X −X3 − 0.1X5 f5(X) = 0.1X +X3 +X5

f3(X) = X + 0.1X3 +X5 f6(X) = −0.1X −X3 −X5

Task Set 2
f1(X) = X3 f4(X) = −0.1X +X2

f2(X) = X2 f5(X) = −X + 3X2

f3(X) = X f6(X) = 2X2 −X3

Task Set 3
f1(X) = 5X +−1.25X3 − 1.25X5 f4(X) = −5X + 1.25X3 + 1.25X5

f2(X) = −1.25X + 1.25X3 − 2.5X5 f5(X) = 1.25X − 1.25X3 + 2.5X5

f3(X) = −1.25X − 1.25X3 + 6X5 f6(X) = 1.25X + 1.25X3 − 6X5

D MNIST

MNIST is a widely recognized handwritten digits database consisting of 60,000 training images
and 10,000 testing images. Each image is a grayscale 28× 28 representation of a handwritten digit
(0− 9), labeled with its corresponding number. We randomly select 200 samples from each class in
the training images for our experiments and adopt a one-vs-rest strategy. For each class, we randomly
select 100 images from each corresponding category as positive samples and draw 100 negative
samples from the other categories. All images are flattened into a vector of 784 dimensions after
preprocessing. Consistent with prior research [38], we anticipate significant inter-task correlation in
our curated multi-task dataset. Similar to our experiment in section 7.1, we perform grid search to
tune all hyperparameters. We conduct a 5-fold cross-validation and compute the average AUROC.
Results are summarized in Table 4.

Table 4: Average AUROC under 5-fold cross validation.
LR SVM MTSK STMK MTMK L1

Task 1 0.9903 0.9934 0.9908 0.9934 0.9934
Task 2 0.9975 0.9973 0.9975 0.9954 0.9960
Task 3 0.9582 0.9582 0.9588 0.9784 0.9801
Task 4 0.9464 0.9585 0.9475 0.9595 0.9573
Task 5 0.9726 0.9685 0.9698 0.9895 0.9878
Task 6 0.9613 0.9790 0.9631 0.9736 0.9752
Task 7 0.9868 0.9886 0.9826 0.9987 0.9987
Task 8 0.9740 0.9713 0.9729 0.9909 0.9903
Task 9 0.9556 0.9685 0.9539 0.9492 0.9527
Task 10 0.8947 0.8224 0.8953 0.9678 0.9684
Average 0.9637 0.9605 0.9632 0.9796 0.9800
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E PROOF OF MAIN RESULT

We start from the fact that f̂ minimizes the Equation (3.2)

L(f̂) ≤ L(f∗).
We define the logistic loss as

ℓ(fmt) :=

T∑
t=1

n∑
i=1

log (1 + exp (−yti
M∑

m=1

fmt(xti))),

and the gradient of the logistic loss as

ϵti :=
−yti exp(−yti

∑M
m=1 f

∗
mt(xti))

1 + exp(−yti
∑M

m=1 f
∗
mt(xti))

.

The following lemma is the first step to our main results.

Lemma E.1. Define Cα := exp(−C)
2(1+exp(C))2 . Under the Union Bound Assumption, we have

ℓ(f̂mt)− ℓ(f∗mt) ≥
n∑

i=1

T∑
t=1

M∑
m=1

ϵti(f̂mt(xti)− f∗mt(xti)) + Cα

n∑
i=1

T∑
t=1

(f̂t(xti)− f∗t (xti))
2.

Proof of Lemma E.1. We write ℓ′(fmt)i to denote the derivative of ℓ(fmt) with respect to fmt(xti).
By definition, we obtain

ℓ′(fmt)i =
−yti exp(−yti

∑M
m=1 fmt(xti))

1 + exp(−yti
∑M

m=1 fmt(xti))
and ℓ′′(fmt)i =

y2ti exp(−yti
∑M

m=1 fmt(xti))

(1 + exp(−yti
∑M

m=1 fmt(xti)))2
.

By the Union Bound Assumption, we have

ℓ′′(f∗mt)i ≥
exp(−Cβ)

2(1 + exp(Cβ))2
.

Thus, using the fact that
∑M

m=1 ∥f̂mt∥Hm
≤ C for some constant C > 0, we get the assertion by

combining Taylor expansion and the above inequality.

Using Lemma E.1, through simple calculation, we obtain

1

n

T∑
t=1

n∑
i=1

ϵti(f̂t(xti)− f∗t (xti)) +
exp(−C)

2(1 + exp(C))2
1

n

T∑
t=1

n∑
i=1

(f̂t(xti)− f∗t (xti))
2

+ λ1

M∑
m=1

√√√√ T∑
t=1

∥f̂mt∥2n + λ2

M∑
m=1

√√√√ T∑
t=1

∥f̂mt∥2Hm
+ λ3

M∑
m=1

T∑
t=1

∥f̂mt∥2Hm

≤ λ1
∑
m∈I0

√√√√ T∑
t=1

∥f∗mt∥2n + λ2
∑
m∈I0

√√√√ T∑
t=1

∥f∗mt∥2Hm
+ λ3

∑
m∈I0

T∑
t=1

∥f∗mt∥2Hm
. (E.1)

Recall the definition of Cα, we get

T∑
t=1

∥f̂t − f∗t ∥2L2(Π) +
λ1
Cα

M∑
m=1

√√√√ T∑
t=1

∥f̂mt∥2n +
λ2
Cα

M∑
m=1

√√√√ T∑
t=1

∥f̂mt∥2Hm
+
λ3
Cα

M∑
m=1

T∑
t=1

∥f̂mt∥2Hm

≤
T∑

t=1

(
∥f̂t − f∗t ∥2L2(Π) − ∥f̂t − f

∗
t ∥2n

)
+
∣∣∣ 1
n

T∑
t=1

n∑
i=1

1

Cα
ϵti(f̂t(xti)− f∗t (xti))

∣∣∣
+
λ1
Cα

∑
m∈I0

√√√√ T∑
t=1

∥f∗mt∥2n +
λ2
Cα

∑
m∈I0

√√√√ T∑
t=1

∥f∗mt∥2Hm
+
λ3
Cα

∑
m∈I0

T∑
t=1

∥f∗mt∥2Hm
.
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Here we need to give an upper probability bound for the first two terms on the RHS with

some type of group Lasso norm
∑M

m=1

√∑T
t=1 ∥fmt∥2. More specifically, we consider∑M

m=1

(√∑T
t=1 ∥fmt∥2L2(Π) + λ

1
2

√∑T
t=1 ∥fmt∥2Hm

)
. To provide more intuition on the events

to be introduced, we need the bound of | 1n
∑M

m=1

∑T
t=1

∑n
i=1 ϵtifmt(xti)| with a rate of√

1
n1/(1+s) (T +

√
T logM) and

∑T
t=1

∣∣∣∥∑M
m=1 fmt∥2n − ∥

∑M
m=1 fmt∥2L2(Π)

∣∣∣ with a rate faster

than 1
n(1−s)/2(1+s) +

logM√
n

, both with the norm mentioned above. Now we include more notations to
strictly describe the two random events. Define ξn, ωn as

ξn := max
(λ− s

2

√
n
,
λ−

1
2

n
1

1+s

,

√
logM

n

)
,

ωn := max
( 1
n
,

√
6

n2/(1+s)
+

C4
1

n(3+s)/(1+s)λ2s
,
λ−s

n
,
λ−1

n
2

1+s

)
,

where cs is a constant depending on s appeared in Proposition G.1. In addition, ζnT is used in giving
probability:

ζnT (r, λ) := min

(
r2 logM

nξn(λ)4c2s
,

r

ξn(λ)2cs

)
− log T.

We consider the following two random events E1(u) and E2(r):

E1(u) =

{∣∣∣ 1
n

T∑
t=1

n∑
i=1

ϵtifmt(xti)
∣∣∣ ≤√cνωn(T +

√
T logM)u

(√√√√ T∑
t=1

∥fmt∥2L2(Π) + λ
1
2

√√√√ T∑
t=1

∥fmt∥2Hm

)
,∀fmt ∈ Hm,∀m = 1, . . . ,M

}
,

E2(r) =

{
T∑

t=1

∣∣∣∥∥∥ M∑
m=1

fmt

∥∥∥2
n
−
∥∥∥ M∑

m=1

fmt

∥∥∥2
L2(Π)

∣∣∣ ≤ max(cs
√
nξ2n, r)

[ M∑
m=1

(√√√√ T∑
t=1

∥∥∥fmt

∥∥∥2
L2(Π)

+ λ
1
2

√√√√ T∑
t=1

∥∥∥fmt

∥∥∥2
Hm

)]2
,∀fmt ∈ Hm,∀m = 1, . . . ,M

}
.

Then the following theorems indicate these random events hold with high probability.

Theorem E.2. Under the Bounded Kernel Assumption, the Spectral Assumption and the Sup-norm
Assumption, we have for all λ > 0 and all u ≥ 1

P
(
E1(u)

)
≥ 1− exp(−u)− M

ns/(1+s)

√
exp (−(T 1/2 ∧ n1/2T 1/4)).

Theorem E.3. Under the Spectral Assumption and the Sup-norm Assumption, we have for all λ > 0
and all r > 0

P
(
E2(r)

)
≥ 1− exp(−ζnT (r, λ)).

The proof can be found in section G.

The next lemma gives a bound of irrelevant components in terms of truly active components I0, which
is essential in our structured sparsity setting. Using this lemma and the above two events E1(u) and
E2(r), we can show the convergence rates of the elastic-net model and the L1 model.
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Lemma E.4. Set λ1 = 4
√
cνωn(T +

√
T logM)u and λ2 = λ

1
2λ1 for arbitrary λ > 0 and λ3 ≥ 0.

Then for any n and r satisfying logM√
n
≤ 1 and max(cs

√
nξ2n, r) ≤ 1

8 , we have

M∑
m=1

(
λ1

√√√√ T∑
t=1

∥f̂mt − f∗mt∥2L2(Π) + λ2

√√√√ T∑
t=1

∥f̂mt − f∗mt∥2Hm

)

≤ 8
∑
m∈I0

[
λ1

√√√√ T∑
t=1

∥f̂mt − f∗mt∥2L2(Π) + λ2

√√√√ T∑
t=1

∥f̂mt − f∗mt∥2Hm
(E.2)

+ λ
1
2
3

√√√√ T∑
t=1

∥f∗mt∥2Hm

(√√√√ T∑
t=1

∥f̂mt − f∗mt∥2L2(Π) + λ
1
2
3

√√√√ T∑
t=1

∥f̂mt − f∗mt∥2Hm

)]

on the events E1(u) and E2(r).

The proof can be found in section H.

We are ready to show the convergence rates of our models.

Theorem E.5. Suppose all assumptions are satisfied. Let λ1 = 4
√
cνωn(T +

√
T logM)u, λ2 =

λ
1
2λ1, and λ3 = λ or λ3 = 0 for arbitrary λ > 0. For all n and r satisfying

256max(cs
√
nξ2n, r)

(
d+

λ3
∑

m∈I0

∑T
t=1 ∥f∗

mt∥
2
Hm

λ1
2

)
(1− ρ(I0)2))κ(I0)

≤ 1

8
,

we have

T∑
t=1

∥f̂t − f∗t ∥2L2(Π) ≤
96

C2
α(1− ρ(I0)2))κ(I0)

(
dλ1

2 + λ3
∑
m∈I0

T∑
t=1

∥f∗mt∥2Hm

)
,

with probability at least 1 − exp(−u) − M
ns/(1+s)

√
exp (−(T 1/2 ∧ n1/2T 1/4)) − exp

(
−

ζnT

(
1

C̃1d
, λ
))

for all u ≥ 1.

Proof of Theorem E.5. Notice that the assumption stated in Theorem E.5 implies max(cs
√
nξ2n, r) ≤

1
8 . Thus the condition in Lemma E.4 is met. In the proof of Lemma E.4, we show that the following
inequality holds on the events E1(t) and E2(r) in Equation (H.3) :

T∑
t=1

∥f̂t − f∗t ∥2n +
1

Cα

1

2

∑
m∈Ic

0

(
λ1

√√√√ T∑
t=1

∥f̂mt∥2L2(Π) + λ2

√√√√ T∑
t=1

∥f̂mt∥2Hm

)

≤
M∑

m=1

1

Cα

√
cνωn(T +

√
T logM)u

(√√√√ T∑
t=1

∥f̂mt − f∗mt∥2L2(Π) + λ
1
2

√√√√ T∑
t=1

∥f̂mt − f∗mt∥2Hm

)

+
1

Cα

3

2

∑
m∈I0

(
λ1

√√√√ T∑
t=1

∥f̂mt − f∗mt∥2L2(Π) + λ2

√√√√ T∑
t=1

∥f̂mt − f∗mt∥2Hm

)

+
λ3
Cα

∑
m∈I0

T∑
t=1

(2⟨f∗mt, f
∗
mt − f̂mt⟩Hm − ∥f̂mt − f∗mt∥2Hm

).
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Adding L2(Π) norm to both sides and using the event E2(r), we have

T∑
t=1

∥f̂t − f∗t ∥2L2(Π) +
λ3
Cα

∑
m∈I0

T∑
t=1

∥f̂mt − f∗mt∥2Hm

≤ max(cs
√
nξ2n, r)

[
M∑

m=1

(√√√√ T∑
t=1

∥f̂mt − f∗mt∥2L2(Π) + λ
1
2

√√√√ T∑
t=1

∥f̂mt − f∗mt∥2Hm

)]2
︸ ︷︷ ︸

I

+

M∑
m=1

1

Cα

√
cνωn(T +

√
T logM)u

(√√√√ T∑
t=1

∥f̂mt − f∗mt∥2L2(Π) + λ
1
2

√√√√ T∑
t=1

∥f̂mt − f∗mt∥2Hm

)
︸ ︷︷ ︸

II

+
1

Cα

3

2

∑
m∈I0

(
λ1

√√√√ T∑
t=1

∥f̂mt − f∗mt∥2L2(Π) + λ2

√√√√ T∑
t=1

∥f̂mt − f∗mt∥2Hm

)
︸ ︷︷ ︸

III

+
2λ3
Cα

∑
m∈I0

T∑
t=1

⟨f∗mt, f
∗
mt − f̂mt⟩Hm︸ ︷︷ ︸

IV

. (E.3)

Now we will bound each term on the RHS of Equation (E.3). The assumption λ
1
2 = λ2/λ1 and

Equation (E.2) yields

M∑
m=1

(
λ1

√√√√ T∑
t=1

∥f̂mt − f∗mt∥2L2(Π) + λ2

√√√√ T∑
t=1

∥f̂mt − f∗mt∥2Hm

)

= 8
∑
m∈I0

(
1 +

λ
1
2
3

√∑T
t=1 ∥f∗mt∥2Hm

λ1

)(
λ1

√√√√ T∑
t=1

∥f̂mt − f∗mt∥2L2(Π) + λ2

√√√√ T∑
t=1

∥f̂mt − f∗mt∥2Hm

)
.

(E.4)

(Bound of the first term I) By Equation (E.4) and λ
1
2
3 = λ

1
2 = λ2/λ1, we obtain the upper bound of

the first term of the RHS of Equation (E.3) as

I ≤ 64max(cs
√
nξ2n, r)

[ ∑
m∈I0

(
1 +

λ
1
2
3

√∑T
t=1 ∥f∗mt∥2Hm

λ1

)

·

(√√√√ T∑
t=1

∥f̂mt − f∗mt∥2L2(Π) + λ
1
2

√√√√ T∑
t=1

∥f̂mt − f∗mt∥2Hm

)]2
. (E.5)

By the Cauchy-Schwarz Inequality and the relation (x+ y)2 ≤ 2(x2 + y2), we have[∑
m∈I0

(
1 +

λ
1
2
3

√∑T
t=1 ∥f∗mt∥2Hm

λ1

)(√√√√ T∑
t=1

∥f̂mt − f∗mt∥2L2(Π) + λ
1
2

√√√√ T∑
t=1

∥f̂mt − f∗mt∥2Hm

)]2

≤
∑
m∈I0

(
1 +

λ
1
2
3

√∑T
t=1 ∥f∗mt∥2Hm

λ1

)2 ∑
m∈I0

(√√√√ T∑
t=1

∥f̂mt − f∗mt∥2L2(Π) + λ
1
2

√√√√ T∑
t=1

∥f̂mt − f∗mt∥2Hm

)2

≤ 4
∑
m∈I0

(
1 +

λ3
∑T

t=1 ∥f∗mt∥2Hm

λ1
2

) ∑
m∈I0

T∑
t=1

(
∥f̂mt − f∗mt∥2L2(Π) + λ∥f̂mt − f∗mt∥2Hm

)
.
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Thus the RHS of (E.5) can be further bounded as

I ≤ 256max(cs
√
nξ2n, r)

(
d+

λ3
∑

m∈I0

∑T
t=1 ∥f∗mt∥2Hm

λ1
2

)

·
∑
m∈I0

T∑
t=1

(
∥f̂mt − f∗mt∥2L2(Π) + λ∥f̂mt − f∗mt∥2Hm

)
.

By the assumption 256max(cs
√
nξ2n, r)

(
d +

λ3
∑

m∈I0

∑T
t=1 ∥f∗

mt∥
2
Hm

λ1
2

)
/(1 − ρ(I0)2))κ(I0) ≤ 1

8 ,
we can further bound the above inequality as

I ≤ 1

8

T∑
t=1

(
∥f̂t − f∗t ∥2L2(Π) +

∑
m∈I0

λ3∥f̂mt − f∗mt∥2Hm

)
, (E.6)

where we use Lemma A.1.

(Bound of the second term II) By Equation (E.4) and the relation λ1 = 4
√
cνωn(T +

√
T logM)u,

we have

II ≤ 2λ1
Cα

∑
m∈I0

(
1 +

λ
1
2
3

√∑T
t=1 ∥f∗mt∥2Hm

λ1

)(√√√√ T∑
t=1

∥f̂mt − f∗mt∥2L2(Π) + λ
1
2

√√√√ T∑
t=1

∥f̂mt − f∗mt∥2Hm

)

≤
∑
m∈I0

16

C2
α(1− ρ(I0)2))κ(I0)

(
λ1 + λ

1
2
3

√√√√ T∑
t=1

∥f∗mt∥2Hm

)2

+
∑
m∈I0

(1− ρ(I0)2))κ(I0)
16

(√√√√ T∑
t=1

∥f̂mt − f∗mt∥2L2(Π) + λ
1
2

√√√√ T∑
t=1

∥f̂mt − f∗mt∥2Hm

)2

.

Using Lemma A.1 and (x + y)2 ≤ 2(x2 + y2), the RHS of the above inequality can be further
bounded as

II ≤ 32

C2
α(1− ρ(I0)2))κ(I0)

(
dλ1

2 + λ3
∑
m∈I0

T∑
t=1

∥f∗mt∥2Hm

)

+
1

8

T∑
t=1

(
∥f̂t − f∗t ∥2L2(Π) +

∑
m∈I0

λ∥f̂mt − f∗mt∥2Hm

)
. (E.7)

(Bound of the third term III) Similarly, using 2xy ≤ x2 + y2, (x+ y)2 ≤ 2(x2 + y2), and Lemma
A.1, we have

III ≤
∑
m∈I0

(1− ρ(I0)2))κ(I0)
16

(√√√√ T∑
t=1

∥f̂mt − f∗mt∥2L2(Π) + λ
1
2

√√√√ T∑
t=1

∥f̂mt − f∗mt∥2Hm

)2

+
9dλ1

2

C2
α(1− ρ(I0)2))κ(I0)

≤ 9dλ1
2

C2
α(1− ρ(I0)2))κ(I0)

+
1

8

T∑
t=1

(
∥f̂t − f∗t ∥2L2(Π) +

∑
m∈I0

λ∥f̂mt − f∗mt∥2Hm

)
. (E.8)
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(Bound of the fourth term IV) Using Equation (H.4) in the proof of Lemma (E.4) and λ = λ3, we
have

IV ≤
∑
m∈I0

2λ
1
2
3

√∑T
t=1 ∥f∗mt∥2Hm

Cα

(√√√√ T∑
t=1

∥f̂mt − f∗mt∥2L2(Π) + λ
1
2
3

√√√√ T∑
t=1

∥f̂mt − f∗mt∥2Hm

)

≤
∑
m∈I0

(1− ρ(I0)2))κ(I0)
16

(√√√√ T∑
t=1

∥f̂mt − f∗mt∥2L2(Π) + λ
1
2

√√√√ T∑
t=1

∥f̂mt − f∗mt∥2Hm

)2

+
16λ3

∑
m∈I0

∑T
t=1 ∥f∗mt∥2Hm

C2
α(1− ρ(I0)2))κ(I0)

.

Thus, by Lemma A.1, we get the following bound

IV ≤
16λ3

∑
m∈I0

∑T
t=1 ∥f∗mt∥2Hm

C2
α(1− ρ(I0)2))κ(I0)

+
1

8

T∑
t=1

(
∥f̂t− f∗t ∥2L2(Π) +

∑
m∈I0

λ∥f̂mt − f∗mt∥2Hm

)
. (E.9)

Now we are ready to combine all the bounds. Substituting the inequalities (E.6), (E.7), (E.8) and
(E.9) into Equation (E.3), using the relation λ = λ3 and Cα ≤ 1, we obtain

T∑
t=1

∥f̂t − f∗t ∥2L2(Π) +
λ3
Cα

∑
m∈I0

T∑
t=1

∥f̂mt − f∗mt∥2Hm

≤ 32

C2
α(1− ρ(I0)2))κ(I0)

(
dλ1

2 + λ3
∑
m∈I0

T∑
t=1

∥f∗mt∥2Hm

)
+

9dλ1
2

C2
α(1− ρ(I0)2))κ(I0)

+
16λ3

∑
m∈I0

∑T
t=1 ∥f∗mt∥2Hm

C2
α(1− ρ(I0)2))κ(I0)

+
1

2

T∑
t=1

(
∥f̂t − f∗t ∥2L2(Π) +

∑
m∈I0

λ3
Cα
∥f̂mt − f∗mt∥2Hm

)
.

Moving the term 1
2

∑T
t=1

(
∥f̂t − f∗t ∥2L2(Π) +

∑
m∈I0

λ3

Cα
∥f̂mt − f∗mt∥2Hm

)
to the LHS, we have

T∑
t=1

∥f̂t − f∗t ∥2L2(Π) ≤
96

C2
α(1− ρ(I0)2))κ(I0)

(
dλ1

2 + λ3
∑
m∈I0

T∑
t=1

∥f∗mt∥2Hm

)
,

which is our assertion.

By setting λ in Theorem E.5, we get the convergence rate of the elastic-net model and the L1 model.
For every 1 ≤ p <∞ we define the mixed(2, p)-norm of fmt as

R2,p,f =
( M∑

m=1

( T∑
t=1

∥fmt∥2Hm

) p
2
) 1

p

.

Corollary E.6. Suppose all assumptions are satisfied and set λ =
(

d
n

) 1
1+s
(

R2
2,2,f∗

T

)− 1
1+s

. Set

λ1, λ2 and λ3 as λ1 = 4
√
cνωn(T +

√
T logM)u, λ2 = λ1λ

1
2 , λ3 = λ or λ3 = 0. Under the

condition that
C̃1cs

√
nξn(λ)

2d ≤ 1, (E.10)

there exist constants C̃1, C̃2 depending on Cα, s, c, C1, ρ(I0), κ(I0) such that
T∑

t=1

∥f̂t − f∗t ∥2L2(Π)

≤ C̃2(T +
√
T logM)

( d

n1/(1+s)
+
( d
n

) 1
1+s
(R2

2,2,f∗

T

) s
1+s

+
(ds
n

) 1
1+s
(R2

2,2,f∗

T

) 1
1+s
)

(E.11)

with probability at least 1 − exp(−u) − M
ns/(1+s)

√
exp (−(T 1/2 ∧ n1/2T 1/4)) − exp

(
−

ζnT

(
1

C̃1d
, λ
))

for all u ≥ 1.
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Proof of Corollary E.6. We start from the following relation, which is satisfied under our assumption
shown later.

256max(cs
√
nξ2n, r)

(
d+

λ3
∑

m∈I0

∑T
t=1 ∥f∗

mt∥
2
Hm

λ1
2

)
(1− ρ(I0)2))κ(I0)

≤ 1

8
. (E.12)

Then we can apply Theorem E.5 since the assumptions are met. Theorem E.5 implies that
T∑

t=1

∥f̂t − f∗t ∥2L2(Π) ≲ dλ1
2 + λ3R

2
2,2,f∗ .

Remind the definition of ωn. We have

λ1
2 = 16cν

( 1
n
∨
√

6

n2/(1+s)
+

C4
1

n(3+s)/(1+s)λ2s
∨ λ

−s

n
∨ λ−1

n
2

1+s

)
(T +

√
T logM)u

≤ 16(C2
1 ∨
√
6)cν

( 1

n1/(1+s)
∨ λ

−s

n
∨ λ−1

n
2

1+s

)
(T +

√
T logM)u.

When λ =
(

d
n

) 1
1+s
(

R2
2,2,f∗

T

)− 1
1+s

, we get

dλ1
2 ≤ 16(C2

1 ∨
√
6)cνd

( 1

n1/(1+s)
∨ λ

−s

n
∨ λ−1

n
2

1+s

)
(T +

√
T logM)u

= 16(C2
1 ∨
√
6)cν(T +

√
T logM)u

·

(
d

n1/(1+s)
∨
( d
n

) 1
1+s
(R2

2,2,f∗

T

) s
1+s ∨

(ds
n

) 1
1+s
(R2

2,2,f∗

T

) 1
1+s

)
,

and

λ3R
2
2,2,f∗ =

1

T

( d
n

) 1
1+s
(R2

2,2,f∗

T

) s
1+s

.

Therefore we have
T∑

t=1

∥f̂t − f∗t ∥2L2(Π) ≤
96

C2
α(1− ρ(I0)2))κ(I0)

(
dλ1

2 + λ3
∑
m∈I0

T∑
t=1

∥f∗mt∥2Hm

)

≤ 96(16(C2
1 ∨
√
6)cν + 1)u

C2
α(1− ρ(I0)2))κ(I0)

(T +
√
T logM)

·

(
d

n1/(1+s)
∨
( d
n

) 1
1+s
(R2

2,2,f∗

T

) s
1+s ∨

(ds
n

) 1
1+s
(R2

2,2,f∗

T

) 1
1+s

)
.

Thus by setting C̃2 as

C̃2 =
96(16(C2

1 ∨
√
6)cν + 1)u

C2
α(1− ρ(I0)2))κ(I0)

,

we obtain the inequality (E.11). At last, we show the condition (E.10) yields the condition (E.12) for
some C̃1 and r. Note that

λ3
∑

m∈I0

∑T
t=1 ∥f∗mt∥2Hm

λ1
2 ≤ d

1
1+sn−

1
1+sR

2s
1+s

2,2,f∗T
1

1+s /cνd
− s

1+sn−
1

1+sR
2s

1+s

2,2,f∗T
1

1+su

≤ d

cνu
≤ d,

since cν ≥ 1, u ≥ 1 by definition. Therefore the condition (E.12) holds if

256max(cs
√
nξ2n, r)(d+ d)

(1− ρ(I0)2))κ(I0)
≤ 1

8

holds. Thus by setting C̃1 = 4096
(1−ρ(I0)2))κ(I0)

and r = 1

C̃1d
, the condition (E.10) yields the condition

(E.12).
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With further simplification, we derive the main result presented.

Proof of Theorem 6.1. Note that under the Union Bound Assumption and ∥f∗mt∥Hm
≥ c for some

constant c > 0 for all m and t, we have

c2d ≤ T−1R2
2,2,f∗ ≤ C2d.

Thus, λ = d
1

1+sn−
1

1+sT
1

1+sR
− 2

1+s

2,2,f∗ ≍ n−
1

1+s , which leads to

ωn = max
( 1
n
,

√
6

n2/(1+s)
+

C4
1

n(3+s)/(1+s)λ2s
,
λ−s

n
,
λ−1

n
2

1+s

)
≍ n−

1
1+s .

We derive the setting of parameters by substituting these results into Corollary E.6. Similarly, we
have

d

n1/(1+s)
+
( d
n

) 1
1+s
(R2

2,2,f∗

T

) s
1+s

+
(ds
n

) 1
1+s
(R2

2,2,f∗

T

) 1
1+s ≤ C d

n1/(1+s)

for some constant C > 0. Note that d logM√
n

+ d
n(1−s)/2(1+s) = o(1) implies C̃1cs

√
nξn(λ)

2d ≤ 1, so
the conditions in Corollary E.6 are satisfied. Thus, we complete the proof of the theorem.

F PROOF OF LEMMA A.1

Proof of Lemma A.1. For t = 1, . . . , T , we have

∥ft∥2L2(Π) = ∥fIt∥
2
L2(Π) + 2⟨fIt , fIc

t
⟩L2(Π) + ∥fIc

t
∥2L2(Π)

≥ ∥fIt∥2L2(Π) − 2ρ(It)∥fIt∥L2(Π)∥fIc
t
∥L2(Π) + ∥fIc

t
∥2L2(Π)

≥ (1− ρ(It)2)∥fIt∥2L2(Π) ≥ (1− ρ(It)2)κ(It)
∑
m∈It

∥fmt∥2L2(Π).

Thus, we get the assertion by summation using the definition of κ(I0) and ρ(I0).

G PROOF OF THEOREM E.2 AND THEOREM E.3

First, we show the proof of event E1(u). We start by introducing the following proposition given in
Suzuki & Sugiyama [65].
Proposition G.1. Under the Bounded Kernel Assumption, the Spectral Assumption and the Sup-norm
Assumption, we have for all λ > 0 and all u ≥ 1

P
(

sup
fmt∈Hm

∣∣∣ 1n ∑n
i=1 ϵtifmt(xti)

∣∣∣
∥fmt∥L2(Π) + λ

1
2 ∥fmt∥Hm

≥ K
[
2CsLΞn +

√
L2h

n
+
C1Lλ

− s
2h

n

])
≤ e−h,

where |ϵti| ≤ L, Ξn = max
(

λ− s
2√
n
, λ− 1

2

n
1

1+s
,
√

1
n

)
, Cs is a constant depending on s and K is the

constant appeared in Talagrand’s concentration inequality.

We define

cs := max
(
2K
(
Cs + 1 + C1

)
,K
[
8K
(
Cs + 1 + C1

)
+ C1 + C2

1

]
, 1
)
.

Note that |ϵti| ≤ 1 by definition, we have

K
[
2CsLΞn +

√
L2h

n
+
C1Lλ

− s
2h

n

]
≤ K

(
2Cs +

√
h+ C1

h√
n

)
Ξn ≤ csΞnη(h),

where η(h) := max(1,
√
h, h√

n
).

Now we are ready for the proof of event E1(u). Using the truncation method, we obtain the probability
bound of Theorem E.2.

26



Under review as a conference paper at ICLR 2024

Proof of Theorem E.2. Using the Cauchy-Schwarz inequality, we have

1

n
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∥fmt∥2 =

√√√√ T∑
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1
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)2

≤
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1
2

√√√√ T∑
t=1

∥fmt∥2Hm

)
,

which generates the desired norm part appeared in the RHS of event E1(u). Notice that now

1

n

n∑
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ϵti
fmt(xti)

∥fmt∥
=

1

n

n∑
i=1

ϵtifmt(xti)

∥fmt∥L2(Π) + λ
1
2 ∥fmt∥Hm

.

We will use the following notation for further discussion:

Xmt := sup
fmt∈Hm

1
n

∑n
i=1 ϵtifmt(xti)

∥fmt∥L2(Π) + λ
1
2 ∥fmt∥Hm

,

where Xmt is a sub-exponential random variable. Notice that |ϵti| ≤ 1 by definition. With the
Bounded Kernel Assumption, we have

E
[
Xmt

]
= E

[
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1
n

∑n
i=1 ϵtifmt(xti)
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1
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]
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[
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]
≤ E

[
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1
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2
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2
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]
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n
,

E
[
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]
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[
sup

fmt∈Hm

1
n4 (
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4
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2
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2)
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1
2 ∥fmt∥Hm)4

]
≤ 6
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+

C4
1

n3λ2s
,

where we use ∥fmt∥∞ ≤ C1λ
− s

2 (∥fmt∥L2(Π) + λ
1
2 ∥fmt∥Hm

) in the last line, a direct result from
the Sup-norm Assumption and Young’s inequality. Using the truncation method, we have

P
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X2
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X2
mt

]
≥ 2u

)
≤ P
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)
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]
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)
,

for all B ≥ 0. For simplicity, we use the following notations:

Ymt := X2
mtI{|Xmt| ≥ B} − E

[
X2

mtI{|Xmt| ≥ B}
]
,

Zmt := X2
mtI{|Xmt| ≤ B} − E

[
X2

mtI{|Xmt| ≤ B}
]
,

ψ :=
6
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+

C4
1

n3λ2s
.
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We will develop the probability bounds for Ymt and Zmt separately with Markov’s inequality and
Bernstein’s concentration inequality. Using Markov’s inequality, we have

P
(∣∣∣ T∑

t=1

Ymt

∣∣∣ ≥ u) ≤ E
[∣∣∣∑T

t=1 Ymt

∣∣∣]
u

≤ 2T

u
E
[
X2

mtI{|Xmt| ≥ B}
]
.

We apply the Cauchy-Schwarz inequality to the RHS of the above inequality and obtain

P
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u

√
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mt]P(|Xmt| ≥ B)

≤ 2T

u

√
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Using Proposition G.1, we have

P(|Xmt| ≥ csΞnη(h)) ≤ exp(−h)
by setting B ← csΞnη(h). Therefore, with probability at least 1− k, we have∣∣∣ T∑
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∣∣∣ ≤ 2T
√
ψ exp(−h)
k

.

As for Zmt, we use the following version of Bernstein’s concentration inequality [4].
Proposition G.2. Let X1, . . . , Xn be iid and suppose that |Xi| ≤ c, E(Xi) = µ and Var(Xi) = σ2.
With probability at least 1− δ,∣∣∣X̄n − µ

∣∣∣ ≤√2σ2 log(1/δ)

n
+

2c log(1/δ)

3n
.

Directly applying the above proposition to Zmt, we obtain with probability at least 1− exp(−u),∣∣∣ T∑
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∣∣∣ ≤√2ψTu+
2

3
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2u.

Combining both parts and use the fact that E
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2
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]
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]
≤ T/n, we get
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+
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3
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2u+
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k

with probability at least 1 − exp(−u) − k. Therefore, the uniform bound of all m = 1, . . . ,M is
given as
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with probability at least 1 −M(exp(−u) + k). If we set u ← u + logM and k ← k
M , then with

probability at least 1− exp(−u)− k,
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.

Here we fix k as k ← M
ns/(1+s)

√
exp(−h), so with probability at least 1 − exp(−u) −

M
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√
exp(−h),
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Recall that ωn = max
(

1
n ,

√
6

n2/(1+s) +
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1

n(3+s)/(1+s)λ2s ,
λ−s

n , λ−1

n
2

1+s

)
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s
1+s
√
ψ ∨ Ξ2

n. Through

basic calculation we obtain
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T∑
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(
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√
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2(u+ logM).

Let h← T 1/2 ∧ n1/2T 1/4, then we have η(h)2 = (1 ∨
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n
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where we use
√
u ≤ 1 ∨ u,

√
logM ≤ logM, 1 ≤

√
T ≤ T . We define cν := 2(3 +

√
2 + 2

3c
2
s).

Thus, the above inequality can be further simplified as
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2
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√
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Therefore, for all u ≥ 1, with probability at least 1 − M
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,

which is our assertion.

Now we give the proof to our event E2(r), which is indeed a direct extension to the following
proposition [65].

Proposition G.3. Define event E(r) as

E(r) =

{∣∣∣∣∥ M∑
m=1

fm∥2n − ∥
M∑
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1
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)
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,

∀fm ∈ Hm,∀m = 1, . . . ,M

}
.

Under the Spectral Assumption and the Sup-norm Assumption, we have for all λ > 0 and all r ≥ 1

P (E(r)) ≥ 1− exp(−ζn(r, λ)),

where ζn(r, λ) = min

(
r2 logM
nξn(λ)4c2s

, r
ξn(λ)2cs

)
.

The following lemma is a useful inequality used in the proof of event E2(r).
Lemma G.4. For all t = 1, . . . , T , and m = 1, . . . ,M , set λ ≥ 0, we have the following inequality
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(G.1)
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Proof of Lemma G.4. Define f
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which is the LHS of the above inequality. Similarly, we have(
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which is the RHS. By the triangle inequality, we have∥∥∥∥∥
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which gives the assertion.

Now we show the probability bound for event E2(r).

Proof of Theorem E.3. Using Lemma G.1 and
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By Proposition G.3, we get
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with probability at least 1− T exp(−ζn(r, λ)). Substituting T exp(−ζn(r, λ)) with ζnT , we get the
desired result.

H PROOF OF LEMMA E.4

Proof of Lemma E.4. On the event E2(r), for all fmt ∈ Hm, we have
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Therefore, we can obtain the upper bound of the regularization term as

λ1

M∑
m=1

√√√√ T∑
t=1

∥fmt∥2n ≤ λ1
M∑

m=1

√√√√ T∑
t=1

[
∥fmt∥2L2(Π) +max(cs

√
nξ2n, r)(∥fmt∥L2(Π) + λ

1
2 ∥fmt∥Hm

)2
]

≤ λ1
M∑

m=1

√√√√ T∑
t=1

[
∥fmt∥2L2(Π) + 2max(cs

√
nξ2n, r)(∥fmt∥2L2(Π) + λ∥fmt∥2Hm

)
]

≤ λ1
M∑

m=1

√√√√5

4

T∑
t=1

∥fmt∥2L2(Π) +
λ

4

T∑
t=1

∥fmt∥2Hm
,
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(H.1)

because λ2 = λ
1
2λ1. Similarly, we can obtain the lower bound of the regularization term as
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where in the second inequality we use the relation
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Combined with the regularization term λ2, we have
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Continuing from Equation (E.1), we have
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Remind that Cα = exp(−C)
2(1+exp(C))2 . The above inequality can be rewritten as
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Applying the following inequalities
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Thus on the event E2(r), by Equation (H.1) and Equation (H.2), dropping the term of λ3 on the LHS,
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Moreover, on the event E1(t), we obtain
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∥f̂t − f∗t ∥2n +
1

Cα

1

2

∑
m∈Ic

0

(
λ1

√√√√ T∑
t=1

∥f̂mt∥2L2(Π) + λ2

√√√√ T∑
t=1

∥f̂mt∥2Hm

)

≤
M∑

m=1

1

Cα

√
cνωn(T +

√
T logM)u

(√√√√ T∑
t=1

∥f̂mt − f∗mt∥2L2(Π) + λ
1
2

√√√√ T∑
t=1

∥f̂mt − f∗mt∥2Hm

)

+
1

Cα

3

2

∑
m∈I0

(
λ1

√√√√ T∑
t=1

∥f̂mt − f∗mt∥2L2(Π) + λ2

√√√√ T∑
t=1

∥f̂mt − f∗mt∥2Hm

)

+
λ3
Cα

∑
m∈I0

T∑
t=1

(2⟨f∗mt, f
∗
mt − f̂mt⟩Hm

− ∥f̂mt − f∗mt∥2Hm
). (H.3)

Using the relation 4
√
cνωn(T +

√
T logM)u = λ1 and λ2 = λ1λ

1
2 and splitting the first term on

the RHS, the above inequality yields

1

4

∑
m∈Ic

0

(
λ1

√√√√ T∑
t=1

∥f̂mt∥2L2(Π) + λ2

√√√√ T∑
t=1

∥f̂mt∥2Hm

)

≤
∑
m∈I0

7

4

(
λ1

√√√√ T∑
t=1

∥f̂mt − f∗mt∥2L2(Π) + λ2

√√√√ T∑
t=1

∥f̂mt − f∗mt∥2Hm

)
+
∑
m∈I0

2λ3

T∑
t=1

⟨f∗mt, f
∗
mt − f̂mt⟩Hm

,

where we remove the first term on the LHS, the last term (Hm-norm) on the RHS, and Cα on both
sides. By the Cauchy-Schwarz inequality, we have

λ3

T∑
t=1

⟨f∗mt, f
∗
mt − f̂mt⟩Hm ≤ λ

1
2
3

T∑
t=1

∥f∗mt∥Hm

√
∥f̂mt − f∗mt∥2L2(Π) + λ3∥f̂mt − f∗mt∥2Hm

≤ λ
1
2
3

√√√√ T∑
t=1

∥f∗mt∥2Hm

√√√√ T∑
t=1

∥f̂mt − f∗mt∥2L2(Π) +

T∑
t=1

λ3∥f̂mt − f∗mt∥2Hm

≤ λ
1
2
3

√√√√ T∑
t=1

∥f∗mt∥2Hm

(√√√√ T∑
t=1

∥f̂mt − f∗mt∥2L2(Π) + λ
1
2
3

√√√√ T∑
t=1

∥f̂mt − f∗mt∥2Hm

)
,

(H.4)

where in the second inequality we use the Cauchy-Schwarz inequality. Therefore we obtain

1

4

∑
m∈Ic

0

(
λ1

√√√√ T∑
t=1

∥f̂mt∥2L2(Π) + λ2

√√√√ T∑
t=1

∥f̂mt∥2Hm

)

≤
∑
m∈I0

7

4

(
λ1

√√√√ T∑
t=1

∥f̂mt − f∗mt∥2L2(Π) + λ2

√√√√ T∑
t=1

∥f̂mt − f∗mt∥2Hm

)

+
∑
m∈I0

2λ
1
2
3

√√√√ T∑
t=1

∥f∗mt∥2Hm

(√√√√ T∑
t=1

∥f̂mt − f∗mt∥2L2(Π) + λ
1
2
3

√√√√ T∑
t=1

∥f̂mt − f∗mt∥2Hm

)
,

on the events E1(u) and E2(r). Since ∥f∗mt∥2n ≥ ∥f∗mt−f̂mt∥2n and ∥f̂mt∥2L2(Π) ≥ ∥f̂mt−f∗mt∥2L2(Π),

by adding 1
4

∑
m∈I0

(
λ1

√∑T
t=1 ∥f̂mt∥2L2(Π) + λ2

√∑T
t=1 ∥f̂mt∥2Hm

)
to both sides, we get the

assertion (E.2).
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