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A INCOHERENCE

To give a precise description of the relevant RKHSs, we need to introduce some measures to
characterize the dependence between the spaces #,,. The correlation of RKHSs inside the indices
I c {1,..., M} can be depicted by the parameter (1) as

mer fmll?
| 2 Tl meeHm(meI)}.
S et 1)

Similarly, to describe the correlation of RKHSs between the relevant part I and the irrelevant part 1€,
we introduce p(7) as

o(1) = sup{

We denote the common subset of all active kernels Iy = UZ_; I; and define
(1 — p(Ip)?) k(L) == t:HllaXT(l — p(I)®)k(I;) and d:= ||

k(I) := sup{k >0|k<

(f1, 910>L2(n)
I frll Loy llgre || o

| fr, € Hr,g91c € Hie, fr #0, g1c # 0}-

These quantities give a connection between 3°,_, || f; 17, (m) and DD D 1o [fmtll 7, () as stated
in the following lemma. The proof can be found Section F.

Lemma A.1. Forall I; C {1,...,M}andt=1,...,T, we have
T T
S ol T, = (0= p(10))k(T0) Y > I fmell
t=1 t=1 mely

The following assumption states that the RKHSs are not too dependent on each other.
Assumption A.2 (Incoherence Assumption). For the truly active components I, we have

0 < #(Io)(1 = p(Io)?)-

The Incoherence Assumption is commonly used in sparse additive models [34; 44; 65]. Under this
assumption, we can focus on deriving the bound of the relevant part I, instead of all M/ components.

B BLOCK COORDINATE GRADIENT DESCENT

Algorithm 1 Block coordinate gradient descent for multi-task multi-kernel logistic regression

Input: Data (x4, y4;), regularization parameters A1, A2, A3, Hessian parameter &, line search
parameters.
Initialize ~.
for iteration = 1,2, ... do
form=1,2,...,M do
Compute d,,, = argmin M,,,(d,,) in (B.3).
if d,,, # 0 then
Compute step size 7 with backtracking line search.
Update 7., < Y + 7dp.
end if
end for
end for R
Output: Estimator f,,s = > 1| Qmrikm (Tti, ).

The loss function is given as

ZZlog + exp (—yui fi(xti)) +>\1Z ZHfthQ

t=1 i=1

+ )\2 Z Z ||fm.t||’,|-[m + )‘3 Z Z H.fmt”’;.[m (Bl)

m=1t=1
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Let {(@;, yi:) }7, be n independent random samples of (X, Y;) distributed according to (3.1).
By the representer theorem [28] and the kernel trick, we can express the solution f;,,; as a linear
combination of kernels: f,:(z) = > | Qmikm (¢, ). Thus, (3.2) can be rewritten as

T n M M T
1 1
L(a) = - Z Zlog(l + exp(—yui Z kD cm)) + M Z - Zaanthmtamt
m=1

t=1 i=1 m=1 t=1

M T T M
+ A2 Z Z At Kot Ot + A Z Z aTnthtamt7 (B.2)
m=1 t=1 t=1 m=1

where K,y = (km (24, T¢j))i,; is the Gram matrix, K,¢; is the ith column vector for the Gram ma-
trix Kot = (Bmt1, Bmt2s - - - Bmtn)> a0d Qe = (Qmt1, Gty - - - s Qunen )T € R™ s the coefficient
vector for the kernel m and task ¢. Next we introduce some extra notations for further simplification.
Denote ~,, = (a%l, afﬂ, RV a%T)T € R"T, where we stack o, together for 7' tasks. We
also write W,,, = diag(K,n1, Ko, - - -, Kin) € R"TX"T where we combine Gram matrices by
constructing a diagonal block matrix. Using the above notations, the objective function in (B.2) can
be written as

T n M M
1 1
L(v) = n Z Zlog(l + exp(—yti Z k?ntia7rLt)) + A1 Z \/n'Yr?z,Wme')’m
t=1 i=1 m=1 m=1
M M
+ )\2 Z Vg;Wm’Ym + >\3 Z FYZ;Wm'Ym«
m=1 m=1

The objective function is now transformed into a typical Lasso-type loss. One can use the SOCP
algorithm [3] or the alternative direction method of multipliers [6] to solve the problem. However,
we accelerate the optimization by exploiting the special structure induced by multiple kernels. More
specifically, we perceive each kernel as a block and consider the block coordinate gradient descent
(BCGD) algorithm proposed in Meier et al. [43]. The key idea of BCGD is to combine a second-
order approximation of the log-likelihood with line search and update each penalized kernel in a
block-wise manner. We denote () = —1 Zthl S log(1 4 exp(—yw Zi\f:l kD .ctme)) as the
log-likelihood and V/(~) as the gradient of /() with regards to . We write d € R"” as the search
direction and denote d,;, = (dm1,dm2, - - -, dm7)T . Thus, by applying a quadratic approximation to
£(~y), we can approximate L(v + d) with M (d) given as

M
1
m=1

M M
20 3t + ) W+ i) + 2 o+ o) Wi (o + i),
m=1 m=1

where H € R"TM*nTM jg 3 guitable matrix to replace the Hessian of the log-likelihood. Now
we consider the minimization of M (d) regarding each kernel m by setting d; = 0 for j # m.
This means that we only update one kernel m of all tasks at each time. Moreover, we consider
H = —h & diag(W1, Ws, ..., Wy,) for some constant & > 0. And we need to minimize

h 1
My (dy) = — dﬁVﬂ('ym) + §d£Wmdm + )‘1\/ (Ym + dn) "W Wo (Y + din)

n

and perform a backtracking line search to obtain a proper step size 7. We derive the closed-form
solution to (B.3) when A\ =0

h
My (d) = = ALV Uvm) + 55 Wandin + 207) (i + )T W (i + )
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Lett,, = vm + d,,, we complete the square and remove the constant
Mo (b)) = —tL (VO(Ym) + hWoyim) + (g + XD Wt + Ao\ [tE Wt
Let vW,t,, = By, we have
Mon(Br) = B (W Fllor) + /W) + (5 + 25) 580 + Ao/ BB

Therefore, the derivative is given as

Bm
VBB

Thus, by setting M/, (8,,) = 0 and the relation W, t,,, = By, and t,, = v, + dy, We have

M () = — (/Wi Ve(ym) + by W) + (h + 223)Bm + Ao

1

d,=—— “INVlVm) + hYm B4
o (W, VeYm) + hym) (B.4)

Wy; ! vg('}/m) + h77n

— X
V) T W V) + 205V E ) + B2 Wi

- Ym-

As aresult, if \/Vé('ym)TWg1V€('ym) + 2NVl Ym) + B2YEWiYm < A2, My (d,y,) is max-

imized by d,,, = 7,,. Otherwise, it is maximized by (B.4). We have made PyTorch code publicly
available'.

C CONFIGURATION OF SIMULATION

We consider the following models:

* MTMK mix. We consider our multi-task multi-kernel model with the elastic-net type
penalty.

* MTMK L1. This is our multi-task multi-kernel model with only L; penalty. We set A3 = 0
to induce more sparsity than the MTMK mix model.

* MTMK L2. With only Ly penalty, this model is simply a group of 7" multi-kernel logistic
regression with the same Lo regularization parameter for each task. Thus, it is essentially
different from our proposed multi-task model.

* STMK. In this model, we consider 7" sparse single-task multi-kernel logistic regression.
Each task can generate a distinct sparsity pattern, which might not be favorable given that
all tasks share the same subset of truly active kernels.

* MTSK. We consider a multi-task single-kernel model with Ly penalty. Specifically, we use
a gaussian kernel K (z,y) = exp(||z — yl|?) for its promising approximating ability for a
fair comparison.

» STSK. This is a single-task single-kernel model with L, penalty. We use the same kernel as
in MTSK. Since the loss function for each task is convex, STSK is theoretically the same as
MTSK, but a minor numerical difference might be observed.

* ORACLE. Only true kernels are given as input in ORACLE. This model indicates the best
possible performance that can be achieved by the models listed above. We use a multi-kernel
model with a small L, penalty for numerical stability.

We perform grid search in {0.005,0.01,...,0.5} to tune hyperparameters A2 and A3 for all models
except MTMK mix, for which {0.001,0.005,0.01,...,0.5} is used. Because the true function
is unknown in a real-world scenario and the mean squared error cannot be computed, we use the
likelihood function to select the best hyperparameters. To form our candidate kernel pool, we manually
construct 22 candidate kernels, including Gaussian kernels with v = {107°,107%, ..., 10°}, sigmoid

"https://anonymous.4open.science/r/CLIP_as_MTMK-6786/
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kernels with v = {107%,1074,...,10°}, and polynomial kernels with a degree of {1,2,...,10}. In
this experiment, we investigate three distinct scenarios to evaluate the performance of our multi-task
model. The first task set comprises a combination of X, X3, and X, where one of the coefficients in
each task is assigned a value of 0.1. This scenario particularly favors multi-task models as it poses
a challenge for single-task models to accurately identify the correct kernels, given the presence of
a kernel with a small weight in each task. The second task set is a combination of X, X? and X3,
where not all true kernels appear in each task. It is more challenging for our multi-task model to learn
the sparsity pattern compared to the first task set because the correlation of each task becomes a bit
weaker. The third task set includes a combination of X, X3 and X°, a simple scenario where all
tasks share the same true kernels. But models like STMK can demonstrate competitive performance
in this scenario given that each task is easy. Therefore, our aim in this scenario is to evaluate whether
the joint estimation ability of our MTMK model can still provide better performance compared to
other models. Detailed configuration is summarized in Table 3.

Table 3: Task sets configuration.
Task Sets Tasks

fi(X) =X+ X3+0.1X° fi(X)=-X -0.1X3 - X°
Task Set 1 fo(X)=-X - X3-01X5 f5(X) =0.1X + X3 + X°
f3(X) =X +01X% 4+ X° fo(X)=-01X — X3 - X°
AX)=X? f1(X) = —0.1X + X?
Task Set2  fo(X) = X? f5(X) = —-X + 3X?
f5(X) =X fo(X) = 2X? — X3
f(X)=5X +—-125X3 —1.25X°  f4(X)=—5X +1.25X3 +1.25X°
Task Set3  fo(X) = —1.25X +1.25X3 —25X° f5(X)=1.25X —1.25X3 +2.5X°
f3(X) = —-1.25X —1.25X3 4+ 6X°  f(X)=1.25X 4+ 1.25X3 - 6X°

D MNIST

MNIST is a widely recognized handwritten digits database consisting of 60,000 training images
and 10,000 testing images. Each image is a grayscale 28 x 28 representation of a handwritten digit
(0 —9), labeled with its corresponding number. We randomly select 200 samples from each class in
the training images for our experiments and adopt a one-vs-rest strategy. For each class, we randomly
select 100 images from each corresponding category as positive samples and draw 100 negative
samples from the other categories. All images are flattened into a vector of 784 dimensions after
preprocessing. Consistent with prior research [38], we anticipate significant inter-task correlation in
our curated multi-task dataset. Similar to our experiment in section 7.1, we perform grid search to
tune all hyperparameters. We conduct a 5-fold cross-validation and compute the average AUROC.
Results are summarized in Table 4.

Table 4: Average AUROC under 5-fold cross validation.
LR SVM  MTSK STMK MTMKLI

Task 1 0.9903 0.9934 0.9908 0.9934 0.9934
Task 2 0.9975 0.9973 0.9975 0.9954 0.9960
Task 3 0.9582 0.9582 0.9588 0.9784 0.9801
Task 4 0.9464 0.9585 0.9475 0.9595 0.9573
Task 5 0.9726 0.9685 0.9698 0.9895 0.9878
Task 6 0.9613 0.9790 0.9631 0.9736 0.9752
Task 7 0.9868 0.9886 0.9826 0.9987 0.9987
Task 8 0.9740 0.9713 0.9729 0.9909 0.9903
Task 9 0.9556 0.9685 0.9539 0.9492 0.9527
Task 10  0.8947 0.8224 0.8953 0.9678 0.9684
Average 0.9637 0.9605 0.9632 0.9796 0.9800
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E PROOF OF MAIN RESULT

We start from the fact that fminimizes the Equation (3.2)

L(f) < L(f7).
We define the logistic loss as

T n

U(fme) - Zzlog + exp (—ysi Z Imt(x4))),
m=1

t=1 i=1
and the gradient of the logistic loss as
M *
—Yi eXP(—Yti D St (T4i))
M . :
L+ exp(=yti D1 frt(@1i))

The following lemma is the first step to our main results.

€ti ‘=

Lemma E.1. Define C,, := %. Under the Union Bound Assumption, we have
n T M
(fmt fmt > Z Z €ti fmt J’Ju fmt mtz +O ZZ ft mtz ft mtz))Q-
i=1 t=1 m=1 i=1 t=1

Proof of Lemma E.1. We write ¢'( f,n¢); to denote the derivative of £( f,,:) with respect to fo¢ ().
By definition, we obtain

—Yti eXp(—Yui er\le fmt(@4i)) and 0 (fonr)i = Y oxp(—yri Zn]\le Jmt(x4i)) .
1+ exp(—yui Zn]\f:;l fmt(®4:)) (14 exp(—yi Z%ﬂ Jmt(4:)))?

By the Union Bound Assumption, we have

(.fmt)

. __o(=Cp)
C'(foe)i > 2(1 +exp(Cp))?’

Thus, using the fact that Z Hf mt|l7,,, < C for some constant C' > 0, we get the assertion by

m —

combining Taylor expansion and the above inequality. [

Using Lemma E. 1, through simple calculation, we obtain

. Z eti fol@n) — f7 (@) + M% > : (Fil@n) = f (@)

M T M T
YoMz + 22 D7 D I Fmelde, + 28 D Y el
m=1 t=1 m=1 t=1

T T T
=D VI NN IR A A VI NN N et A P N N [ [ 7 (E.D)

mely t=1 méely t=1 mely t=1
Recall the definition of C,,, we get

T

T /\ M )\ T )\ M T

N * 1 N N 3 N
Do Fe= Fla + 5 2o | Do M melE + 57 D0 | D Mmelle,, + 57 D2 D I Fmeli3e,,
t=1 X =1 \ t=1 Y m =1 Y m=1t=1
L 1 & 1

< 3 (1= Fi i — 1= F12) + |2 200 et - 17 @)
t=1 t=1 i=1 Ca
r A
* 2 *
o 2| 2 melE+ 5 D 4 D el +— > ZHfthH
Y mel, \ t=1 Y mel, \ t=1 Ca mely t=1
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Here we need to give an upper probability bound for the first two terms on the RHS with

some type of group Lasso norm Z%:l Zthl lfmel|2.  More specifically, we consider

M (\/ZL I frmtlZ,(my + A2 \/ZL Hfth%{m). To provide more intuition on the events

to be introduced, we need the bound of %25‘;:1 S S i fmt (@) with a rate of

T M M .
\/W(TJr VTlog M) and 3°,_, ‘H St fmtl2 = 11t fth%Q(n) with a rate faster

log

than n(l_s)%(l = + ij , both with the norm mentioned above. Now we include more notations to

strictly describe the two random events. Define &,,, w,, as

s

A3 A2 logM)
\/ﬁ)nﬁ7 n )

y -:max(l\/ 6 N Cct A )\—1)
e n' 2/ s T B /N Ty 0 )

n1+s

&, = max (

where c; is a constant depending on s appeared in Proposition G.1. In addition, ¢, is used in giving
probability:

r2log M r
nEp(N)4c2’ &, (N)2¢s

Car (1, A) = min( ) —logT.

We consider the following two random events & (u) and Ex(r):

n

E1(u) Z{‘iz Z €ti fnt(T1i)

t=1 i=1

T M
&) :{Z}HE foo

< \/c,,wn(T +VTlog M)u

T

1
Z ||fth%,2(n) + Az
t=1

2 M
- H § fmt
" m=1

T
Z fmt@-[m) avfﬂLt € Hmyvm = 17 e ,M},
t=1

2
’ < max(csv/né2,r)
Lo (IT)

2
A3
Hm

2
Lo (II)

T T
t=1 t=1

)]2,met € Hpn,¥m = 1,...,M}.

Then the following theorems indicate these random events hold with high probability.

Theorem E.2. Under the Bounded Kernel Assumption, the Spectral Assumption and the Sup-norm
Assumption, we have forall A > O and all u > 1

M
]P’(Sl(u)) >1—exp(—u) — 7T exp (—(TV/2 A nl/2T1/4)).

Theorem E.3. Under the Spectral Assumption and the Sup-norm Assumption, we have for all A > 0
and all 7 > 0

P(£2(r) = 1= exp(~Cur (1, N)):

The proof can be found in section G.

The next lemma gives a bound of irrelevant components in terms of truly active components [y, which
is essential in our structured sparsity setting. Using this lemma and the above two events £ (u) and
Es(r), we can show the convergence rates of the elastic-net model and the L; model.
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Lemma E.4. Set \| = 4\/cywn(T +V/Tlog M)u and Ay = )\;/\1 for arbitrary A > 0 and A3 > 0.

Then for any n and r satisfying 22 < 1 and max(cs/né2,7) <

NG we have

_8’

M T T
z(A1 S ot = il znfmt—f;;tam)
m=1 t=1 t=1

T T
<82[A1 anm wil2 o + Ao | D e = Fral, (E.2)

melp t=1

i T T N N T N
FAE S UEmelB [ Al S 1Pt = Fell2,my + A | D 1t = Frell3,,
t=1 t=1 t=1

on the events & (u) and Ex(r).

The proof can be found in section H.

We are ready to show the convergence rates of our models.

Theorem E.5. Suppose all assumptions are satisfied. Let A\; = 44/ ¢, w, (T + VT log M)u, Ay =
A2Aq, and A3 = A or A3 = 0 for arbitrary A > 0. For all n and r satisfying

T * 2
256 max(cs\/né2, r) (d 4 2o 2mery %j? Wil )

(1= p(1o)?))k(1o)

<

)

col| —

we have

KA 96
D= i < ey )<dA1 Y Z||f;t||am>

mely t=1

with probability at least 1 — exp(—u) — —Af=+/exp (—(T/2 Anl/2TV4)) — exp( -
1
CnT(aTd’ )\)) forall u > 1.

Proof of Theorem E.5. Notice that the assumption stated in Theorem E.5 implies max(cg/né2,7) <
%. Thus the condition in Lemma E.4 is met. In the proof of Lemma E.4, we show that the following
inequality holds on the events & (¢) and £5(r) in Equation (H.3) :

T ~
S Fonel2 ) + Ao

t=1

T
Z||ft 2 +—— > (M Zlfmtlli,,)
t=1

melg

M T
1 . L
S DR eH () T FMESTN AR
t=1

T
P 1 (W) STV RNON ) STV
t=1

A ~ -~
o D D @ e = Tt = e = L3,
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Adding Ly (II) norm to both sides and using the event E>(r), we have

Znﬂ i + 22 S S 1o — Frali,

mGIO t=1

M

T 2
< max(csV/néx, r) [Z ( Z ||fmt :;us”i(n) + A2 Z | frmt — ;rkzt||’2}{m>‘|
t=1

m=1

1

T
1 N *
L o7 + VT log 2010 ( S o = Fln + | - mtnam)

t=1

II

13 S 7
LS () S b o S )
* T el t=1

t=1

I11

(fives Pt = Font)o,, - (E.3)

o[£
M=

v

Now we will bound each term on the RHS of Equation (E.3). The assumption A2 = A2/A1 and
Equation (E.2) yields

T
Z(Al lefmt Pl am + A2 Z|fm—f:;n||%¢m>

m=1 t=1
\/ Zt 1 ||fmt||7—[m ) -~ ) -~
=8 (1 " M| D I fme = Fatll ) + Ao | D Wt = FrelFe,, |-
melop t=1 t=1

(E.4)

(Bound of the first term I) By Equation (E.4) and )é =A2 =)\ /A1, we obtain the upper bound of
the first term of the RHS of Equation (E.3) as

NN
I< 64max(cs\/ﬁgz7r)l Z (1 478 2= IS t”Hm)

A

méely

T T 2
( D fmt = £l + A2 Z\fm m%)] (E.5)
t=1

By the Cauchy-Schwarz Inequality and the relation (z + y)? < 2(2? + y?), we have

1
A3 i e, SN P PR ?
[Z (1+ \/ A Z”fmt* ;Lt”zLQ(H) + A2 Z”fmt - ;:kth?}-Lm
t=1 t=1

mely
1
MV 2\ T R 2
< Z (1-1- 3 Z ZHfmt —fﬁnllizm) + A2 ZHfmt — foill3e,,
mely L mel, =1 =1
T
32 ||frn H n > * N *
<4} (1 ) X Z(Hfmt — Frulldacy + At = Frull,,)-
meEly elp t=1
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Thus the RHS of (E.5) can be further bounded as

T *
A3 ZmeIo Zt:l ||fmt||$-[m
A

I < 256 max(cey/né2,r) (d +

T
3 Y (W = Sty + Mot — Sl )-

mely t=1

A T * 2
By the assumption 256 max(cs\/né2, ) (d 4 28 2merg Z;‘Ijl ”f’"tu”’”)/(l — p(I0)*)k(lo) < 3,
we can further bound the above inequality as

oo\»—l

T
Z (Hft — i am + D s font — f;zt”?Hm)v (E.6)

melp

where we use Lemma A.1.

(Bound of the second term II) By Equation (E.4) and the relation \; = 4\/ cywn (T + VT log M Yu,
we have

!

1
2 T * 2 T
2\ A5 it 15, ~ 1 ~
me gt 2<1+ v - St = Fral sy + M\ S Wt = Fialie,
t=1 t=1

« mely

T 2
= Z CQ 1—p IO ))H(IO) <)‘1+)‘§ ;Hf;n%tm>

méely
(1 <I r i
— plo fx 1 3 "
s ( S o= Fln + A - M)
mely t=1

Using Lemma A.1 and (z + y)? < 2(2? + y?), the RHS of the above inequality can be further
bounded as

32
< CZ0 = p(Io))n(lo) (d)q + Az Z Z”fmt”?—[m>

méely t=1

1 ~
+8Z<ft—ft*||2L2 + 37 Mt — Fral3s > (E.7)
mely

t=1

(Bound of the third term III) Similarly, using 22y < 22 + 92, (z +y)? < 2(2? + y?), and Lemma
A.1, we have

T 2
IO % 1 N *
me 0ol ( S~ il + 1 znfmt—fmtmm)
t=1

mely
n 9d>\1
C2(1 = p(Io)?))k(1o)
9d/\1 1 T ~ 9 =R )
= R - + ) Al = £ . (B8
C2(1— p(Io)?)) Stz_;(Hft fellzan 77;0 | fnt — fortll3e,,, (E.8)
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(Bound of the fourth term IV) Using Equation (H.4) in the proof of Lemma (E.4) and A = A3, we
have

1
203/ i ol L P A,
wv< Y v e D mt = FelF iy + A3 4| D W ome = FalBe,
o t=1 t=1

mely

Iy) sy 7 2
< Z (1- (0 < Z”fmt mt||L2 H)+>\§ Z”fmt_fﬁzt%{m)
t=1

méelp
163 Zmelo Zt:l Hf:;ztl H
Ca(1 = p(10)?))k(1Lo)
Thus, by Lemma A.1, we get the following bound

16033 ere Sy IelZ,
VS =G o )nlle) B Z(

m

Ife = fi R amy + D Al fome = :;A%,n). (E.9)

mely

Now we are ready to combine all the bounds. Substituting the inequalities (E.6), (E.7), (E.8) and
(E.9) into Equation (E.3), using the relation A\ = A3 and C, < 1, we obtain

T
Yo UFe = i + Z Z 1 fome = Frne 3.,
t=1

mEIO t=1

32 9d\,?
= G2 plo))ello) (‘”l ) Z”““'”m) C2— ploP)ie(lo)

méely t=1

16)\52m610 Zt 1||f* 1 £l A3
T - plo)) +22<||ft Tl + 3 o W = mtmm).

t=1 mGIo

Moving the term 1 3°7_ <||ft G + Xmers éf:“ [P [E ) to the LHS, we have

oo 96
;Hﬁ — il < T o)l <dA1 +As ) lefmtlln )

mely t=1

which is our assertion. O

By setting A in Theorem E.5, we get the convergence rate of the elastic-net model and the L; model.
For every 1 < p < oo we define the mixed(2, p)-norm of f,,; as

M T p_ 1
Rapr = (D2 (D Ifmilid,)”)"

m=1 t=1
1

5 1
Corollary E.6. Suppose all assumptions are satisfied and set A = (%) e (M> " Set

T

A, Ao and A3 as A\ = 4\/cl,wn(T—|— VT log M)u, Ay = AAZ, A3 = Aor A3 = 0. Under the
condition that

Ciresv/nén(V)2d < 1, (E.10)
there exist constants Cl, 02 depending on Cl,, s, ¢, C1, p(Iy), k(1y) such that

Z I1fe = £,
t=1

< 52(T+\/TlogM)(% N (%> =

R%Qf* T+ AN = R22f

22,0 @ 22,0 E.11

()7 ()T ()T

with probability at least 1 — exp(—u) — —tiry\/exp (—(TV/2 An!/2THY)) — exp( -
1

<nT(m,/\)) forall u > 1.
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Proof of Corollary E.6. We start from the following relation, which is satisfied under our assumption
shown later.

256 max(cs/né2, 1) (d + e

s Smerg St I3 )
<

1
=. (E.12)
(1= p(1o)?))r(1o) 8
Then we can apply Theorem E.5 since the assumptions are met. Theorem E.5 implies that
T -~
D= N S A+ AR, pe
t=1
Remind the definition of w,,. We have
1 6 Ct A75 AT
2 _ 1 1 A
M2 = 16cy<n Vv \/nz/(1+s) + —mare Y oV o= )(T+ VT log M)u
<16(C? Vv V6 ( L, A7, A )(T+\/T1 M
S WOV S ¥ Y o Mju.
T (RZ, .\ TS
When \ = (%) (%f) , we get
N < 16(C2V VB)eyd(—— v 2 v A ) (0 4 VT log
1 _6(1\/ 6)01, (W\/ " V 2)( + og )’LL

n1+s

=16(C? V V6)c, (T + VT log M )u
1 2 N s 11S
(e o () ()™ ()

1/d 1is R%_QJ* 4=
s =7 () (5F5) T

(Rz,z,f* ) e
T b

and

Therefore we have

T N 96 T
S~ FilEa < Gar e (Ww ) an;tn%m)

t=1 mely t=1

96(16(C? vV V6)c, + 1)u
~ C2(1 = p(10)?))r(1o)

1 2 s o .
ICEONE SO

Thus by setting C, as

(T + VT log M)

(Rg,Z,f* ) e
—r .

G 96(16(C? V V6)c, + 1)u
2T 21— p(Io)?)k(lo)
we obtgin the inequality (E.11). At last, we show the condition (E.10) yields the condition (E.12) for
some C4 and r. Note that

T *
)\3 Z'rnefo Zt:l ”fm
A

2
oI5 B A I B R I
m < dTHsn T TEs R2,2jf*T1+s /Cyd T+sn~ 1+s R2,2ff*T1+su

d

cL U

< <d,

since ¢, > 1,u > 1 by definition. Therefore the condition (E.12) holds if
256 max(csy/né2, r)(d + d) < 1

(1= p(10)*))x(1o) -8
holds. Thus by setting C; = (I—M?OO)% and r = ﬁ, the condition (E.10) yields the condition
1
(E.12). 0
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With further simplification, we derive the main result presented.
Proof of Theorem 6.1. Note that under the Union Bound Assumption and || /7%, ||%,, > ¢ for some
constant ¢ > 0 for all m and ¢, we have

Pd<T 'R}, ;. < C?d.

1 a1 2 _ 1 .
Thus, A = d™+n T+ R, 2”;* = n~ T+s, which leads to
.2,

- 1 \/ 6 ct AT
Wp = mMax (ﬁ’ n2/(1+5) +n(3+s)/(1+5))\25’ n ’nﬁ) =N .

We derive the setting of parameters by substituting these results into Corollary E.6. Similarly, we

have
d (g)ﬁ (Rg,z,f*>ﬁl N (f)# (Rg,z,f*)ﬁ <o |
nl/(+s) n T n T nl/(+s)
for some constant C' > 0. Note that dlf/gﬁM + ——%ars = o(1) implies Cresy/nén(N)2d < 1,50
the conditions in Corollary E.6 are satisfied. Thus, we complete the proof of the theorem. [

F PROOF OF LEMMA A.l
Proof of Lemma A.1. Fort =1,...,T, we have
1 fel7 oy = 1202 + 20F1 Fre) oy + 12217 am)
> f107,qmy = 20D fr | Lol frg | aqny + 1 FrellF
> (1= pI)) 17 = (= p(T)*) 6D > | ot -

mel,

Thus, we get the assertion by summation using the definition of (1) and p(I). O

G PROOF OF THEOREM E.2 AND THEOREM E.3

First, we show the proof of event £ (u). We start by introducing the following proposition given in
Suzuki & Sugiyama [65].

Proposition G.1. Under the Bounded Kernel Assumption, the Spectral Assumption and the Sup-norm
Assumption, we have forall A\ > 0 and all u > 1

%Z?:l €tz‘fmt($ti)
( D - > K[2CSLEn +
Fe€Mon | fmtll Loy + A2 [ el

L;h N ClLi\L_%hD <ot

_s _1
where |e;] < L, E, = max (A\/;f , AI—f, \/%), C, is a constant depending on s and K is the
T

constant appeared in Talagrand’s concentration inequality.

We define
C, i= max (ZK(CS F14 Cl),K[SK(CS F14 01) £ O+ Cﬂ , 1).
Note that |e;;| < 1 by definition, we have

L2h  C1LA"2h h
E’n - - < S = En S SETL 9
K[zcsL e } ,K(gc +\/E+01\/ﬁ) csZan(h)
where n(h) := max(1, VA, %)

Now we are ready for the proof of event &; (). Using the truncation method, we obtain the probability
bound of Theorem E.2.
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Proof of Theorem E.2. Using the Cauchy-Schwarz inequality, we have

T n T

%Zzetifmt(wti): ZZGtzfﬁL}mmﬂL (| fonel

t=1 i=1 t=1 i=1

1
n
T[> f (a4:) 2 |7
mt\Lte
< g(nz i ”) > ol

=1

Set || fanell = I fonell oy + A2 || fruellae,,- BY (2 +9)* < 2(2” +42), we have

T

T
ST el = DU fmill oy + A2 fonellae,, )2
t=1

t=1

T
Z ”fth%Z(n) + A2

t=1

<va(

T
5 fmtuam)
t=1

which generates the desired norm part appeared in the RHS of event &; (u). Notice that now

n

Z Jmt(xi) 1 €ti frnt (Te)
i~ T — T .
(| frm = N fmtll Loy + A2 (| fme |2,

We will use the following notation for further discussion:

% ZZL:l €ti fnLt (:Bti)

th = ’
Foi&n || ot Loy + A2 || frnt 4,

where X,,,; is a sub-exponential random variable. Notice that |e;;| < 1 by definition. With the
Bounded Kernel Assumption, we have

E -X t_ =E [ sup % Z?:l €ti e (@11) } =0
- - C fmt€Hm ”fmt“Lz(H) + /\EHfth?'lm
_ _ _ 1\ 2 2
m 7 1
E X72nt <E sup n2 Zz 1 Etzf t(wt ) } <=
- - S fmt€Hm Hfmt” + /\Hfth’H m n’
]E»X4 | *E_ sup %(Zi:ﬁtifmt(wti) +630, Z;L;éz E%ifmt(C'Jti)QE?jfmt(wtj)z)} . 6 n ct
mt| — 1 < — .
- ot €9 (1 fmellpacmy + A2 frnt 13¢,0) n? " nSA2

where we use || filloo < C1AT2(

) + A2|| frmell7,. ) in the last line, a direct result from
the Sup-norm Assumption and Young’s 1nequa11ty Using the truncation method, we have

]P(ET:XEn - E[ET:XEM} > 2u) < P(ET:XEMMXM < B} - E[ET:X,QMH{XM < B}} > u)
t=1 t=1 t=1

t=1

F P X2l > B - B[S X2 = 5] > ),
t=1

t=1
for all B > 0. For simplicity, we use the following notations:
Vit i= X2{| Xout| = B} = E[ X2, 1| Xout| = B}
Zont = X2, X < B} — B[ X2,{|X | < B},
6 O
V=t e
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We will develop the probability bounds for Y,,; and Z,,,; separately with Markov’s inequality and
Bernstein’s concentration inequality. Using Markov’s inequality, we have

P(‘iymt‘ 2u> < EHZ%JWH

oT
< —E{X2 T X | > B}]

We apply the Cauchy-Schwarz inequality to the RHS of the above inequality and obtain

P(|3 o

> u) <—\/E P(|Xmi| > B)

T
<2 JB(Xom] > B).

Using Proposition G.1, we have
P(| Xme| = esEnn(h)) < exp(—h)
by setting B < ¢;E,n(h). Therefore, with probability at least 1 — k, we have

r 2T\/¥ exp(—h)
§ )/m < —.
’ t=1 '

- k
As for Z,,,;, we use the following version of Bernstein’s concentration inequality [4].

Proposition G.2. Let X,..., X, be iid and suppose that | X;| < ¢, E(X;) = p and Var(X;) = o2,
With probability at least 1 — 4,

2
‘ - M‘ < 2021og(1/9) n 2clog(1/5).
n 3n

Directly applying the above proposition to Z,,;, we obtain with probability at least 1 — exp(—u),

T
‘ Z th S
t=1

Combining both parts and use the fact that E [ Zthl ant} =TE [Xglt} < T/n, we get

2
29T u + g(csEnn(h))Qu.

2, _ 2T/ exp(—h
Z e < — —|— 2¢Tu + g(cs:nn(h))Qu + %
with probability at least 1 — exp(—u) — k. Therefore, the uniform bound of all m = 1,..., M is
given as
2 2T —h
maxz X2 g — 20T u + g(cSEnn(h)fu + #()

with probability at least 1 — M (exp(—u) + k). If we set u < u + log M and k < £, then with
probability at least 1 — exp(—u) — k,

2MT /v exp(—h)

2
= (aZn(h)*(u+ log M) + .

3

T
T
2
< —
n:;gxi th_n+ 29T (u +log M) +

t=1
Here we fix k as k <+ % exp(—h), so with probability at least 1 — exp(—u) —
—Atr Vexp(—h),

csZnn(h))? (u +log M) + 210755 \/1).

T

T 2

mngX?m < —t 29T (u +log M) + §(
t=1
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_ 1 6 Cct AT AT =2
Recall that w,, = max (E7 \/nwug) + —EEaTeE T 2 = nT+ /1) V Z2. Through
basic calculation we obtain

T
V2T log M 2
max E X2, <wy (3T—|— V2Tu + %) + 3C§Wn77(h)2(“ + log M).
m ns s

t=1

Let h < T'/2 An'/2T"/%, then we have (h)? = (1V Vh V 2 ) = 1V /T, which gives
a 2 2
maxZXﬁn <(B3+V2+ gcg)wnT(l Vo) + (gcg +V2)wn log MVT,
t=1

where we use /u < 1V u,/logM <log M,1 < VT < T. We define ¢, := 23+ 2+ %cf)
Thus, the above inequality can be further simplified as

maxZX < —wn (T + VT log M)(1V u).

Therefore, for all u > 1, with probability at least 1 — —— Vexp (—(TV2 Anl/2T1/4)) —
exp(—u),

T n

max ‘% Z Z €ti frnt (%)

t=1 i=1

IN

T T T
1
i 22%( S el + 2 zwmmm)
t=1 t=1 t=1

T

IN

t=1

which is our assertion. O

Now we give the proof to our event (r), which is indeed a direct extension to the following
proposition [65].

Proposition G.3. Define event £(r) as

M M M . 2
= {’H Z fm”i - || Z fm”%z(l‘[) < maX(cs\/ﬁfi,r) [Z(”mez(H) + )‘§||meHm) )
m=1 m=1 m=1

v.fm € Hp,¥Ym = 1,...,M}.

Under the Spectral Assumption and the Sup-norm Assumption, we have forall A > O and all r > 1

P(E(r)) = 1 — exp(—(a(r, N),

2
where ¢, (r, A\) = min (nzl&g)%z , 5”(,()265 )

The following lemma is a useful inequality used in the proof of event (7).

Lemma G4. Forallt=1,...,T,andm = 1,..., M, set A > 0, we have the following inequality

V;[Z <||fmt||L2(m + A%|fmwm)r < [i ( > Wit gnfmtn%m)r.

m=1 m=1

(G.1)
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ProofofLemma G.4. Define £L2(0 .= N fmt ey 1 fm2ll Loy, - - o | fmr || £oqm ], and f1Em

= “|fm1||?-lm7Hfm2H7-lmv~~~a”fmTH”H . Then we have

Z FE 433 Z
2
1 M L M
[Z [ fm1llLsm) + A2 Z | fmt 3o D M llzam + 22 ) ||fmT|Hm1
m=1 m=1 m=1 m=1
T [ M 2
1
=2 [Z <|fmt||Lz(H> T Az ||fmt||7—lm>1 7

2

2

which is the LHS of the above inequality. Similarly, we have

M LM 2 M
(Z [FEi PP ||f2$m||2> = [Z(
m=1 m=1

m=1

T 2
waaJ]’
t=1

T
1
Z ||fmt||%2(n) + A2
t=1

which is the RHS. By the triangle inequality, we have

M M M M
1 1
DN AR I | BN e PP AN (¥ i P

m=1 m=1 2 m=1 m=1

which gives the assertion. O

Now we show the probability bound for event E(r).

Proof of Theorem E.3. Using Lemma G.1 and %‘ ! y’ < max; Z’ we have
t=1

T M
Zt:l H‘Zm:l fmt HZm 1fmt‘ ‘
Lo (IT)
sup

fru &t [ m=1 (\/Zt 1Hfmt||Lz(H +)\§\/m>r

i 1H‘Zm 1fmt ‘Zm 1fmt‘Lz(H)‘

sup 2
mwmz&&zﬁﬂmmmmm+mwmwﬂ)
R

ax
cEHm P M 1
Pt (20 (el o + A% | ot
By Proposition G.3, we get
M
152 o], = [ 2]

i < max(cs\/né2, )
t M i
fmt€Hm (ZmZI <||fthL2(H) +)\%||fmt||7‘l7n))

with probability at least 1 — T exp(—(, (1, A)). Substituting T exp(—(, (7, A)) with {7, we get the
desired result. O

<

Lo(1I1) ‘

)

<

H PROOF OF LEMMA E .4

Proof of Lemma E.4. On the event E(r), for all f,,,+ € H,,, we have
T

T
Sl mtll = 1l Z ol <D max(cav/n&, r) (|| fmell Lo + A2 | fntl9¢,.)*.
t=1

t=1
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Therefore, we can obtain the upper bound of the regularization term as

g

E

[ fel13  rry + max(esv/n€2, r) (| fmell Loy + A2 || fraellre,,)?]

-+

=1

T
Dol mel2 <

=1

~
Il
—

M=
M=

[||fmt||2L2(H) + Qmax(cs\/ﬁﬁg, r)(||fmt||L2(H) + )‘”fth%-Lm)]

m=1 t=1
M P
<Ay fZHfmtuLz(H + 7 2 M fmel3e,,
m=1 t=1
since max(¢y/né2,r) < % Combined with the regularization term )2, we have
M T 3
83\ Sl + 5 z z il < 2 (xl > z o2y + z z il )

(H.l)

because \y = A3z A1. Similarly, we can obtain the lower bound of the regularization term as

T
A1 Z Z [ fnellZ > M Z Zma}(((”fmt”%Q(H) - 2maX(Cs\/ﬁfyzm"”))(”fmt”L2 (IT) + )‘Hfthg-Lm)aO)
t=1

M
>\ Z Zmax( ‘fmt”Lz(H ”fmt”’Hm’ )

T
D fmill3e,,

t=1

ke
N>
N
()=

3
'l

where in the second inequality we use the relation \/ max (322 — 1y2,0) > =3¢
Combined with the regularization term A2, we have

=
g

1 M
(%>
m=1 t=1 m=1

Z||fmt||L2(H) + A2 Z Z”fmt”'}-t ) (H.2)

T n T n
1

N exp( 1
E;;Qz ft (i) — f (mtl))JrWﬁ;; ft (1) — f7 (21:))?
M T M T MoT

+ A Z Z'lfth%"i')‘? Z Z"fmt‘l%{m+/\3 ZZ”.fmt”%m

m=1 t=1 m=1 t=1 m=1 t=1
T T T

S Y D2 2 D A D B, + A8 DD Il

me&ly t=1 mely t=1 mely t=1
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Remind that C,, = %. The above inequality can be rewritten as

T
STIF - £12+ ZZ el Folan) - 7 (@)
t=1

tlzla

| Fonll? + 22

Z Z”fmt”q-[m ta A ZZIIfmtllwm

am 1t=1

mEIO t=1
Applying the following inequalities
T T T
DDl = D0 A D el < D A D Mot = Fel?
mely t=1 mely t=1 mely t=1
and
1B, — I Fmtl30,, = 20F 0 Fine — P2t — I Font = Fitll3,.
we have

T

1 1 ~
ZHft Al H +nz o cilfe(e) = fi ()

t=1 i=1

3

T
Z anmtnn Z anmtu 3ZZI\fth%m

(J/, Q/,

m,GIC mel§ t=1 mel§ t=1
T T
Al " Ay _
S ZHfmt—ffntH%‘FC* Z ZHfmt_f;zt”’QHm
¥ mely \ t=1 Y mely \ t=1
\ T
3 ~ ~
+ 5 2 2 Ut Pt = Frt) s = e = Frelae,,)
(6%
mely t=1

Thus on the event E(r), by Equation (H.1) and Equation (H.2), dropping the term of A3 on the LHS,
we have

T o~
S Fonel2, ) + Ao

t=1

Znﬁ i +ff > (Al

mEIC

T o~
mell?{m)
=1

T n
1 1 ~ —~ ;
’ﬁ ZZ Ci ft xtz ft 111“ ‘ + = Z Z fmt?fmt fmt>7‘lm Hfmt - fmt”%-lm)
t=1i=1 ¢ Ca mely t=1
13 T T
3 (W) STAOUINN ) AR |
* " mel, t=1
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Moreover, on the event & (t), we obtain

d 11
2 A_ * 12 i E
pot ||ft ft Hn + Ca 2 <)\1

T o~
Zufmtnam)
t=1

T ~
S Fone 2,0y + Ao
t=1

mel§
T o~
< Z \/c,,wnT+\flogM < Z”fmt wtll2,m + AT lefmt—fﬁltI%m>
m= 1 =1
T ~

+ Cf(yi Z <)\1 Z ||fmt *tHig(H) + )\2 Z ”fmt - ;LtH%'L"")

2 el t=1

Z Z fmt: f:;zt - fmt>7-lm - ||ﬁnt - f;atH’%-lm) (H.3)
a mely t=1

Using the relation 4\/ cywn (T + VT log M)u = A\ and Ag = )\1)\% and splitting the first term on
the RHS, the above inequality yields

P (n

mel§

T o~
z||fmt||am)
t=1

T ~
S 1 Fonel2, ) + 2o
t=1

T T
S Z Z <>‘1 Z ||J/cjmt - f:;Lt” Lo (1) + /\2 Z Hfmt fmt”?—[m> + Z 2)‘3 Z fmt7 f:;zt - ﬁnt>”7’~lma
t=1

mely mely t=1

where we remove the first term on the LHS, the last term (#,,,-norm) on the RHS, and C,, on both
sides. By the Cauchy-Schwarz inequality, we have

T
Z<fmt7fmt fmt Hm = /\3 Z ||fmt||7'lm \/Hfmt t” + )‘SHfmt ;’LtH’Qi-L,,L
t=1
L |z T
SN\ D Ml | D2 1 e = Fall? H)+ZA3||fmt Frl,
t=1 t=1
L |z T T
< A2 an,:ztnim( S e = FallZy + A S Wt — ;tnim),
t=1 t=1 t=1
(H.4)
where in the second inequality we use the Cauchy-Schwarz inequality. Therefore we obtain
1 T T
53] CNPITATINSN) SITANEH
melg t=1 t=1
7 T T
< Z4<A1 D e = Fdll?m) + A2 Z|fmt—f:;t||%m)
méely t=1 t=1
L |z T P A
- Sl (|32~ b+ S~ s, )
mélo t=1 t=1 t=1

on the events & (u) and & (). Since || £, 12 2 || fg — Fro 12 and | Frutl12, 0y = 1ot = Finel12, 0y

by adding & mejo( \/Zt 1 ||fmt|| Lo T AQ\/ZZ;]_ Hﬁnt”%m) to both sides, we get the
O

assertion (E.2).
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