
A Proof of the object in Equation 3 is convex, when α is sufficiently small.

To validate this statement, we first prove two factors in the object are convex (Lemma A.1 and
Lemma A.2) and the combination of them keeps the convex property (Lemma A.3).
Lemma A.1. The quadratic term M1 = (Wc−Xc)T (Wc−Xc) is convex.

Proof. We conduct first-order and second-order derivative of M1 on X:

∂M1

∂X
= 2(Xc−Wc)cT (4)

∂2M1

∂X2
= 2 · (c · cT )⊗ I|C| (5)

where ⊗ is Kronecker product and I|C| is an identity matrix. Because c ̸= 0, c · cT is positive
semidefinite, i.e., Tr(c · cT ) ≥ 0,

Tr
(∂2M1

∂X2

)
= 2 · Tr(c · cT ) · Tr(I|C|) ≥ 0.

Therefore, ∂2M1

∂X2 is positive semidefinite and M1 is convex.

Lemma A.2. The quadratic term M2 = Tr((X −W )T (X −W )) is convex.

Proof. We conduct first-order and second-order derivative of M2 on X:

∂M2

∂X
= 2X − 2W (6)

∂2M2

∂X2
= 2 · I|C| ⊗ I|C| (7)

Similar to the proof of Lemma A.1, we have

Tr
(∂2M2

∂X2

)
= 2 · Tr(I|C|) · Tr(I|C|) ≥ 0.

Therefore, ∂2M2

∂X2 is positive semidefinite and M2 is convex.

Lemma A.3. Given two positive semidefinite matrices P ,Q ∈ RN×N , and a constant 0 ≤ α ≤
λmin(P )
λmax(Q) , P − αQ is positive semidefinite.9

Proof. P and Q are positive semidefinite indicates that ∀i ∈ [[1..N ]],

0 ≤ λmin(P ) ≤ λi(P ) ≤ λmax(P ), (8)
0 ≤ λmin(Q) ≤ λi(Q) ≤ λmax(Q). (9)

Then, we have

Tr
(
P − αQ

)
=Tr

(
P )− αTr

(
Q
)

(10)

=

N∑
i=1

λi(P )− α

N∑
i=1

λi(Q) (11)

≥N ·
(
λmin(P )− αλmax(Q)

)
≥ 0. (12)

Additionally, since P and Q are symmetric, P − αQ is also symmetric. Thus, P − αQ is positive
semidefinite.

Combining Lemma A.1, Lemma A.2 and Lemma A.3, the objective of Equation 3 is convex when α
is small.

9λi(·) is the i-th eigenvalue of a matrix. λmax(·) and λmin(·) respectively represent the maximum and
minimum eigenvalues of a matrix.
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B Proof of Theorem 3.1.

Proof. There are t conditions that have [0,m] support samples, then the other |F|K − t conditions
should have [m+ 1,+∞) support samples. Combining these two cases, we have

t · 0 + (|F|K − t) · (m+ 1) ≤ N, (13)

therefore,
t ≥ |F|K −N/(m+ 1).

C Proof of Theorem 3.2.

We assume the observation of the triggered watermark words are independent to each other, as those
words are sparsely distributed in our corpus (4 per 1000 words).

Proof. We prove I(W, c,m′) ≥ I(W, c,m) by recursion: I(W, c,m+ 1) ≥ I(W, c,m).

I(W, c,m+ 1) =
∑

wi∈W
P (wi|c)m+1 (14)

=
∑

wi∈W

(
P (wi|c)m · P (wi|c)

)
(15)

≤
( ∑
wi∈W

P (wi|c)m
)
·
( ∑
wi∈W

P (wi|c)
)

(16)

=
∑

wi∈W
P (wi|c)m = I(W, c,m). (17)

Note that a special case of Thm 3.2 is that I(W, c,m) =
∑

wi∈W P (wi|c) = 1, when m = 1.

D Additional Experimental Setup

Construction of Watermarks To build watermarks from two semantically equivalent words, we
use top 200 frequent words from the training set as the candidate words. For each word, we use
WordNet [7] to find its synonyms and build a list of word sets. We notice that word sets include
words that are not strictly semantically equivalent. Thus we use a pre-trained Word2Vec [28] to filter
out sets with dissimilar words. In addition, to avoid replacement clash, we do not allow any word
to appear in more than word set. Eventually, top 50 semantically matching pairs are retained for
CATER. For linguistic features, we construct conditions from the POS tags and dependency trees,
which are produced by Stanza [34]. We use Equation 3 to obtain preliminary watermarks {Xi}50i=1.
We sort {Xi}50i=1 in ascending order according to the indistinguishable objective in Equation 2 and
choose the top 10 of them as effective watermarks for CATER.

Training Details We use fairseq [31] as our codebase. For the experiments of Transformer base,
we train both victim and imitation models for 50 epochs. Following [46], we set the learning rate to
0.0005 with warmup steps of 4,000. We use a batch of 4,096 tokens per GPU. Then, we decrease the
learning rate proportionally to inverse square root of the step number. We follow the training setup
used in [23] and [27] for BART and mBART. All experiments are conducted on an NVIDIA DGX
node with 8 V100 GPUs.

Estimation of Watermarking Probability for CATER Given a group of semantically equivalent
words W(i) and the corresponding condition c, we denote w

(i)
c as a basic unit, which depicts w(i)

under the condition of c. If the conditional post-watermark distribution P̂ (w(i)|c) is 1 according to
our algorithm, we consider w(i)

c as a watermark. Now, given a set of groups G = {W(i)}|G|i=1, we can
find all watermarks and denote them as M. We use #(M,Dtr) to represent the count of words in M
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Figure 7: Ratio change of word frequency of top 100 words between benign and watermarked
corpora, namely Pb(w)/Pw(w). Top: watermarks are built from [13]. Red words are the selected
watermarks. Although we only list 16 words having the most significant ratio change in the benign
and watermarked corpora and omit the rest of them for better visualization, all watermarks are within
the top 100 words. Bottom: watermarks are built from CATER. There is no significant ratio change
for watermarked words.

appeared in the training data Dtr of the victim model. Similarly, we denote the count of all candidate
words in ∪iW(i) as #(∪iW(i),Dtr). Finally, the approximated p in Equation 1 for CATER can be
computed as:

p =
#(M,Dtr)

#(∪iW(i),Dtr)

E Word Distribution Shift on Watermarked Response

To demonstrate that the watermarking algorithm of He et al. [13] can cause a drastic change in
word distribution, whereas CATER is able to retain the word distribution, we compare the difference
between the watermarked data with a clean one. Since the training data of the victim model is
unknown to the malicious users, we randomly select 5M sentences from common crawl data as
the benign corpus. Then we obtain the word distribution for the watermarked and benign corpora,
respectively, denoted as Pw and Pb. Next, we take the union of top 100 words of both watermarked
and benign corpora to obtain the suspicious word set S. Finally, we can calculate the ratio change of
word frequency of each word in S between benign and watermarked corpora, namely Pb(w)/Pw(w).

As shown in Figure 7, the watermarks injected by [13] can be easily identified, because of the sizeable
word distribution shift. Instead, our approach manages to disguise the watermarks, which leads to
more stealthy protection as expected.
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F Ablation Study

F.1 Performance of CATER using Different Sizes of Synonyms

Table 5: Watermarking performance of different
sizes of synonyms. Numbers in parentheses are
results of clean data. We use the first-order POS as
the watermarking approach.

|W(i)| WMT14
p-value ↓ BLEU ↑

2 < 10−7 (> 10−2) 30.8 (31.1)
3 < 10−10 (> 10−1) 30.9 (31.1)
4 < 10−14 (> 10−1) 30.9 (31.1)

Section 4.1 shows that using two semantically
equivalent words can effectively protect the IP
right of the victim model. According to Sec-
tion 3.1, CATER can be scaled to multiple se-
mantically equivalent words. Our preliminary
experiments show that finding more than 4 in-
terchangeable words is not easy. Thus, we set
|W(i)| to 2,3 and 4. Table 5 shows that with
|W(i)| increased, CATER becomes more confi-
dent in identifying the IP infringement, which
is observed in [13] as well. We attribute this
phenomenon to the decline of p, i.e., the chance
of hitting the watermarks. Particularly, using
more semantically equivalent words means that
p can decrease in normal data. Accordingly, the p-value of the watermarked model will drastically
drop based on Equation 1.

F.2 High-order CATER for Summarization

This section provides the performance of CATER with high-order conditions on summarization
tasks. Similarly, according to Figure 8, the high-order conditions do not have negative impact on the
generation quality. Despite the increase in p-value, the high-order CATER is capable of watermarking
the imitation model.
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Figure 8: ROUGE-L scores and p-value of using different orders of the POS watermarking approach
on CNN/DM data.

F.3 Importance of Distinct Objective

We have discussed the importance of the distinct objective in Section 3.1. To validate our claim, we
conduct an ablation study by removing this factor from our optimization objective. Table 6 suggests
that we can easily distinguish a watermarked model with distinct object with a benign one, while the
watermarked models without distinct objective possess almost the same performance as benign ones
(> 10−2), which corroborates our argument in Section 3.1.

F.4 CATER for More Text Generation Tasks

To examine the generality of our approach, we run two additional generation tasks: i) text simplifi-
cation and ii) paraphrase generation. We use wiki-large data [56] for text simplification, and QQP
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Table 6: Watermarking performance of with (w/) and without (w/o) distinctive objective on WMT14
data. Numbers in parentheses are results of clean data. We use the POS conditions as the watermarking
approach.

Orders w/ distinctive w/o distinctive
p-value ↓ BLEU ↑ p-value ↓ BLEU ↑

1 < 10−7 (> 10−2) 30.8 (31.1) > 10−2 (> 10−2) 30.9 (31.1)
2 < 10−6 (> 10−2) 30.9 (31.1) > 10−2 (> 10−2) 31.0 (31.1)
3 < 10−3 (> 10−2) 30.9 (31.1) > 10−2 (> 10−2) 31.0 (31.1)

Table 7: Performance of CATER on text simplification and paraphrase.

Text Simplification Paraphrase
p-value ↓ SARI ↑ BERTScore ↑ p-value ↓ BLEU ↑ BERTScore ↑

w/o watermark > 10−1 37.1 72.5 > 10−1 32.1 72.4

CATER (POS) < 10−6 37.0 71.6 < 10−6 32.1 72.4

data10 is used for paraphrase generation [15]. Similar to machine translation, we use Transformer
base as the backbone. According to Table 7, CATER is effective on those tasks as well. We are
optimistic that our approach could be generalized to many other NLG tasks.

G Watermarked Samples

Example 1: (area->region)
original: I ask the Commission : what can be done to speed up implementation in this

particular area ?
watermarked: I ask the Commission : what can be done to speed up implementation in this

particular region ?

Example 2: (information->data)
original: There are various things that can undermine consumer confidence , for

example the lack of information .
watermarked: There are various things that can undermine consumer confidence , for

example the lack of data .

Example 3: (help->aid)
original: All this will be managed with the help of modern technology in any area of

the European Union .
watermarked: All this will be managed with the aid of modern technology in any area of

the European Union .

Example 4: (responsibility->obligation)
original: We have to remember that we share responsibility in that region with the

international community .
watermarked: We have to remember that we share obligation in that region with the

international community .

Example 5: (film->movie)
original: The whole situation remembers an horror film . It just scares .
watermarked: The whole situation remembers an horror movie . It just scares .

Table 8: Watermarked samples with different watermarks.

10https://www.kaggle.com/c/quora-question-pairs

20


