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B SUPPLEMENTARY MATERIAL

B.1 PROOF FOR THEOREM [4]

Notation. For a positive definite matrix H € R?*9, the weighted fo-norm is defined by ||x||%, =
x " Hx. The H-weighted projection Pg (x) of x onto Q is defined by Pg (x) = argmingcq ||y —
x||%,. We use g(wy,) to denote the subgradient of fi(-) at wy. For the diagonal matrix sequence
{Mk}fczl, we use my, ; to denote the i-th element in the diagonal of M. We use g;, ; to denote the
i-th element of g(wy,).

Lemma 7. (Mukkamala & Hein,|2017) Suppose that 1 — % < fBor < 1— %for some 0<y < 1, and

t > 1, then
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Proof for Theorem [d, Without loss of generality, we only prove Theorem [4] in the full gradient
setting. It can be extended to stochastic cases using the regular technique in (Rakhlin et al., 2011)).

Note that the projection operation can be rewritten as an optimization problem (Duchi} [2018), i.e.,
w1 = Pglw; — .V, g(wy) + Bre(we — wy_1)] is equivalent to

. N 1
Wit1 = argglelg{at‘/; 1<g(wt),w> + §HW —wy — Br(w — Wt—1)|\2}~ (14)

Then, Vu € Q, we have

(Wig1 — Wy — By(we — wi1) + o Vi g(wi), Wi — w) < 0.

This is o -
(Wit + Pev1 — (Wi +Pe) + %Vt_lg(wt)th-f—l —w) <0. (15)
Specifically,
a A
(W1 + Prg1 — (We +P¢) + %V} 'g(wy), Wi — wy) < 0. (16)

From (T3] and (I6),

a
(Wit +Per1 — (We +pe) + ﬁVt 'g(Wi), Wi — Wi + (4 1) (Wep1 — wy)) 0.

i.e.,

(Wig1 +Pey1 — (We +pe) + 7‘/}71g(wt>,wt+1 + Pper1 —wy) <0.

e

Using Lemma[6] we have
a

ﬁ‘%’lg(Wt)]-

Wil + Pl = P(gt[Wt + Pt —

Then o
[W* = (Wesr + Per) [F, < IW* — (Wi +po) + 7‘4’1g(wt)|\2vt~

7

* o
[w* = (wi + pt) + 7‘4 1%("‘%)“%t

N
* 2 (6% 2 « « at
N= W™ = (wi + po)ll3, + Hﬁg(wt)ﬂvt + 2<%g(wt)7w — W) + 2(%g(wt),wt,1 - Wi).
ote
(g(wi), w* —wy) < f(WF) = f(wy), (8(We), Wi—1 — W) < f(Wio1) — f(Wy).
Then
(t+ D(f(we) — f(w5))
Vi Vit

. LA . !
< t(f(wier) = f(wWF)) + %HW —(wy + pt)||%>t - %HW — (Wiy1 + Pt+1)H%/t + Tﬁﬂg(wt)ﬂfyfl-
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Summing this inequality from k = 1 to ¢, we obtain

(t+1)(f(we) = f(w7))
t
* o 2
< f(wg)—f(W")+ — + w* — (wy + -
f(wo) ) 1;2\/E||g( -1 Z || k+ Py,
Using Lemma([7} we have
t (2 — )
> f”g [ Z (/tur; +6).
k=1 i=1
Note
VUi <M.
and

t \/E
2
Z % (Iw* = (we + pe)ll7,

W~ (Wit pe)l2)]

d
NGaY
—Z [w* — (w1 +p1)]|? — Z —Hllw* = (Wi + )|

i=1 i=1

d t
+ZZ e (Vi s = VE = Top_) [w = (wic + i)

Since Q is a bounded set, there exists a positive number My > 0 such that

[W* — (Wis1 + Pes1)||? < Mo, ¥t > 0.

— W = (Wirr + pisn) 7))

A7)

(18)

and vy ; = Borvk—1,: + (1 — 521@)92,1 aswell as B, > 1 — ¢ Wthh implies kB2, > k — 1, we get
Vb, = kv + 6
= \/kﬂkak—l,i + k(1 - 521@)927,- )
>/ (k—=1)vg_1,;+06
== k) —_ 1’1}]671’1‘.
From (T7) we have
t
VE .
3 g " = (v B, = 1" = (vt + P, )
=1
< Z 'Ul 7']\4'0 Z Z \/%6]@71 - \/ﬁf)k,u)Mo
i=1 k=2
_ dUl,iMO n dv/ti,; My _ diyi Mo
- 2c 2c 2
< AWM + 5) My
- 2c
Therefore
. o da(2—9)(VIM +96)  d(VtM + §) M,
(1 DI (o) = F(w)] < fw) = fwe) + L2 ) A/ )My
This proves
1
f(we) = f(w") < 0(%)-
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B.2 EXPERIMENTS ON OPTIMIZING GENERAL CONVEX FUNCTIONS

We consider the hinge loss optimization problem with /;-ball constraints and use SLEP packageﬂ
for [; projection operation.

min f(w), s.t.w e {w:|wl|; <7} (19)
Datasets: A9a, W8a, Covtype, Ijcnnl, Rcvl, Realsim (available at LibSVME| website).
Algorithms: PSG (o = %), HB (o = %, B¢ = 0.9), NAG (Tao et al 2020a) and adaptive HB

(Bie = 2)-
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Figure 5: Convergence on different LibSVM datasets for [, hinge loss problems

The relative function value f(w;) — f(w.) v.s. epoch is illustrated in Figure [5| As expected, the
individual convergence of the adaptive HB has almost the same behavior as the averaging output of
PSG, and the individual output of HB and NAG. Since the three stochastic methods have the optimal
convergence, we conclude that the stochastic adaptive HB attains the optimal individual convergence
for general convex regularized learning problems.

'nttp://yelabs.net/software/SLEP/
http://www.csie.ntu.edu.tw/-cjlin/libsvmtools/datasets/
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