
SynTable: A Synthetic Data Generation Pipeline for Unseen Object Amodal
Instance Segmentation of Cluttered Tabletop Scenes

Supplementary Material

7. Overview
This supplementary material offers dataset visualization,
qualitative results, and additional technical details to sup-
port the main paper. Section 8 provides additional informa-
tion about each step in our dataset generation process. Sec-
tion 9 provides a comprehensive elaboration of the evalua-
tion metrics employed. Section 10 illustrates how occlusion
order accuracy is calculated and the validity of the metric.
Furthermore, Section 11 delineates the process of generat-
ing an occlusion order directed acyclic graph from the oc-
clusion order adjacency matrix to classify objects in three
distinct order layers. Lastly, Section 12 showcases some
qualitative inference results of UOAIS-Net on the OSD-
Amodal dataset.

7.1. Video Demonstration of SynTable-Sim Gener-
ation Process

In addition to this document, we include a demonstration
video as part of our supplementary material to demon-
strate in detail the process of generating a custom synthetic
dataset using SynTable. We refer readers to the demon-
stration video for a detailed visualization of the dataset
generation process. The video can be found at https:
//www.youtube.com/watch?v=zHM8H58Kn3E.

7.2. Management of the SynTable-Sim Dataset
The source code for our work is available at https:
//github.com/ngzhili/SynTable. All the CAD
models of the objects used in our SynTable-Sim dataset,
as well as the dataset itself, are hosted in the Zenodo open
repository, free for all to download. The DOI of our dataset
is 10.5281/zenodo.10565517. The dataset can be
accessed at https://doi.org/10.5281/zenodo.
10565517

8. Additional Details About the Dataset Gener-
ation Process

8.1. Preparing Each Scene
The method to prepare each scene is shown in Figure 4.
A table is randomly sampled from the assets in Omniverse
Nucleus and is rendered at the center of a room. The tex-
ture and materials of the table, ceiling, wall, and floor are
randomized for every scene to ensure domain randomiza-
tion. The objects are added to the scene with randomized
x, y, and z coordinates and orientations. We randomly sam-
ple (with replacement) Nlower to Nupper objects to render for

0.2 ×
w

0.2 × w

0.2 × l

0.2 × l

0.6 × l

0.6 × w

1 m
0.2 m

l
wh

Figure 4. Initialization of objects with randomized coordinates
and rotations. The initial position of the objects in the scene is
randomized but constrained to be within the dimensions of the 3D
orange box. The orange box is 0.2 m above the tabletop. The roll,
pitch, and yaw of each object are also randomly sampled within
the range of 0→ to 360→.

each scene. By default, Nlower = 1, Nupper = 40. Each ob-
ject is initialized with real-life dimensions, randomized ro-
tations and coordinates, allowing for diverse object arrange-
ments across scenes. Each object also has mass and colli-
sion properties so that they can be dropped onto the tabletop
in our physics simulation.

8.2. Physical Simulation of Each Scene
Upon completing the scene preparation, the rendered ob-
jects are dropped onto the table surface using a physics sim-
ulation. The simulation is paused after t seconds (t = 5 by
default), halting any further movement of the objects. Dur-
ing the simulation, any objects that rebound off the tabletop
surface and fall outside the spatial coordinate region of the
tabletop surface (i.e., either below the table or beyond the
width and length of the table) are automatically removed.
This is necessary to prevent the inclusion of extraneous and
irrelevant objects outside the specified tabletop region dur-
ing the annotation process from different viewpoints.

8.3. Sampling of Camera Viewpoints
To capture annotations for each scene from multiple view-
points, we enhance the approach by Gilles et al. [18]—
which only uses fixed viewpoint positions—by introducing
a feature that captures V number of viewpoints at random
positions within two concentric hemispheres, as illustrated

https://www.youtube.com/watch?v=zHM8H58Kn3E
https://www.youtube.com/watch?v=zHM8H58Kn3E
https://github.com/ngzhili/SynTable
https://github.com/ngzhili/SynTable
10.5281/zenodo.10565517
https://doi.org/10.5281/zenodo.10565517
https://doi.org/10.5281/zenodo.10565517

lh
w

View 1

View 2

View 3

(0, 0, h)
rview_lower0.2 m

rview_upper

Figure 5. Sampling of camera viewpoints within concentric hemi-
spheres (shown in blue). The two concentric hemispheres’ origins
are centered at the tabletop surface’s center coordinate with an off-
set of 0.2 m in the positive z direction in the world frame. This
allows the camera viewpoints to minimally have a direct line of
sight to the tabletop surface to capture part of the tabletop plane.
This figure is best viewed zoomed in.

in Figure 5. V can be set by the user. The radii of the
two concentric hemispheres are uniformly sampled within
the range rview lower m to rview upper m, where rview lower and
rview upper are defined in Equations 2 and 3. Users may
also set fixed values for rview lower and rview upper should they
wish to do so.

rview lower = max

(
w

2
,

l

2

)
(2)

rview upper = 1.7↑ rview lower (3)

The hemisphere’s spherical coordinates are parameter-
ized using three variables rview, u, and v. To generate the
camera coordinates in the world frame, we first obtain the
radius of the hemisphere rview by uniform sampling between
rview lower and rview upper. Next, we uniformly sample u,v ↓
[0,1], then substitute all the sampled values into Equations
4, 5 and 6 to compute the cartesian coordinates of the cam-
era.

x = rview sin(arccos(1↔ v))cos(2!u) (4)

y = rview sin(arccos(1↔ v))sin(2!u) (5)

z = rview cos(arccos(1↔ v)) (6)

Once the camera coordinates are set, the orientation of
each camera is set such that each viewpoint looks directly
at the center of the tabletop surface (0, 0, h).

8.4. Sampling of Lighting Conditions
To simulate different indoor lighting conditions, we resam-
ple L spherical light sources between Llower to Lupper for
each viewpoint (Figure 6). By default, we set Llower and
Lupper to be 0 and 2, respectively. To position L spherical
light sources for a viewpoint, we adopt a similar approach to
the camera viewpoint sampling method discussed in Section
8.3. In contrast to the approach by Back et al. [2], we use

Light 1

rlight_lower
rlight_upper

Figure 6. Sampling of lighting within concentric hemispheres
(shown in pink). Each spherical light source lies within the con-
straints of two concentric hemispheres of arbitrary radius between
rlight lower to rlight upper. Note that the radii constraints for the
spherical light source concentric hemispheres are larger than those
for the camera viewpoints’ and are customizable by the user.

spherical light sources that emit light in all directions. Fur-
thermore, we uniformly sample light source temperatures
between 2,000 K to 6,500 K. The default light intensity of
each light source is uniformly sampled between 100 lx to
20,000 lx, and the default light intensity of ceiling lights
in the scene is also sampled uniformly between 100 lx to
2,000 lx. To achieve diverse indoor lighting conditions for
tabletop scenes, users have the flexibility to adjust the num-
ber of spherical light sources, as well as their intensities and
temperatures.

Similar to the sampling method for the camera viewpoint
coordinates, we have designed a feature that samples the
lower and upper radii bounds for the light sources based
on the camera hemisphere’s upper bound radius, rview upper.
The sampled lower and upper bound radii constraints for the
lighting hemisphere rlight lower and rlight upper are as follows:

rlight lower = rview upper +0.1m (7)

rlight upper = rlight lower +1m (8)

8.5. Saving of Ground Truth Annotations
We saved the RGB and depth images as PNG images. The
OOAM of the objects in each image is saved as a NumPy
file. The amodal, visible, and occlusion masks are saved
as Run-length Encoding (RLE) in COCO JSON format to
optimize disk space used by the generated datasets. We also
recorded each object’s visible bounding box, image ID, and
object name in the generated COCO JSON file.

9. Details about Evaluation Metrics
In this paper, we employ the precision/recall/F-measure
(P/R/F) metrics, as defined in [5, 19, 29]. This metric favors
methods that accurately segment the desired objects while

Figure 7. Histogram of occlusion rate for UOAIS-Sim tabletop, SynTable-Sim and OSD-Amodal datasets

Figure 8. Histogram for number of regions per connected component (connected component size) for UOAIS-Sim tabletop, SynTable-Sim
and OSD-Amodal datasets

penalizing those that produce false positives. Specifically,
the precision, recall, and F-measure are calculated between
all pairs of predicted and ground truth objects. The Hun-
garian method, employing pairwise F-measure, is utilized
to establish a match between predicted objects and ground
truth. Given this matching, the Overlap P/R/F is computed
by:

P =
!i |ci ↗g(ci)|

!i |ci|
, R =

!i |ci ↗g(ci)|
! j

∣∣g j

∣∣ (9)

F =
2PR

P+R
(10)

where ci denotes the set of pixels belonging to predicted
object i, g(ci) is the set of pixels of the matched ground
truth object of ci after Hungarian matching, and g j is the set
of pixels for ground truth object j.

Although the aforementioned metric provides valuable
information, it fails to consider the boundaries of the ob-
jects. Therefore, Xie et al. [29] proposed the Boundary
P/R/F measure to supplement the Overlap P/R/F. The cal-
culation of Boundary P/R/F involves the same Hungarian
matching as used in the computation of Overlap P/R/F.
Given these matchings, the Boundary P/R/F is computed
by:

P =
!i |ci ↗D [g(ci)]|

!i |ci|
, R =

!i |D [ci]↗g(ci)|
! j

∣∣g j

∣∣ (11)

F =
2PR

P+R
(12)

Here, overloaded notations are used to represent the sets
of pixels belonging to the boundaries of the predicted object
i and the ground truth object j as ci and g j, respectively.
The dilation operation is denoted by D[·], which allows for
some tolerance in the prediction. The metrics we use are
a combination of the F-measure described in [20] and the
Overlap P/R/F as defined in [5].

In our work, we use the Overlap and Boundary P/R/F
evaluation metrics to evaluate the accuracy of the predicted
visible, invisible, and amodal masks. In the context of
the Overlap P/R/F metrics, ci denotes the set of pixels
belonging to the predicted visible, invisible, and amodal
masks, g(ci) denotes the set of pixels belonging to the
matched ground-truth visible, invisible and amodal masks
annotations, and g j is the ground-truth visible, invisible and
amodal mask. The meaning of ci, g(ci), and g j are similar
in the context of the Boundary P/R/F metrics.

An additional vital evaluation metric used in our paper
is the F@.75. This metric represents the proportion of
segmented objects with an Overlap F-measure greater than
0.75. It is important not to confuse this metric with the F-
measure computed for the Overlap and Boundary P/R/F.
The F-measure for Overlap and Boundary is a harmonic

mean of a model’s average precision and average recall,
while F@.75 indicates the percentage of objects from a
dataset that can be segmented with high accuracy. The F

in F@.75 refers to the F-measure computed for a ground
truth object after the Hungarian matching of the ground
truth mask j with the predicted mask i as defined in [5] and
stated in Equation (14).

Pi j =

∣∣ci ↗g j

∣∣
|ci|

, Ri j =

∣∣ci ↗g j

∣∣
∣∣g j

∣∣ (13)

Fi j =
2Pi jRi j

Pi j +Ri j

(14)

The notation ci denotes the set of pixels that belong to
a predicted region i, while g j represents all the pixels that
belong to a non-background ground truth region j. In ad-
dition, Pi j represents the precision score, Ri j represents the
recall score, and Fi j represents the F-measure score that cor-
responds to this particular pair of predicted and ground truth
regions.

10. Occlusion Order Accuracy ACCoo metric
Given an image v that depicts a typical cluttered tabletop
scene, we get the ground truth-prediction assignment pairs
after Hungarian matching as illustrated in Figure 9. The
predicted masks will then be re-indexed to match the ids of
the ground truth masks. Following that, the predVisible and
predOcclusion masks that belong to the assigned pairs will
be extracted. After that, the ground truth OOAM (gtOOAM)
and the predicted OOAM (predOOAM) will be obtained us-
ing Algorithm 1.

Figure 9 also illustrates the calculation of occlusion or-
der accuracy in an image v. The similarity matrix (denoted
as similarityMatrix in Figure 9) is obtained by conducting
an element-wise equality comparison between the gtOOAM

and predOOAM. After that, ACCoo can be calculated using
Equation 1.

In Equation 1, the ACCoo represents the ratio of the num-
ber of correct predicted occlusion nodes over the number
of ground truth occlusion nodes. Let #correctPredictedOc-

clusionNodes denote the number of correct occluder and oc-
cludee predictions for all objects in a viewpoint (represented
by green highlighted cells in similarityMatrix in Figure 9).

A summation of all the elements in the similarity ma-
trix is carried out to obtain #correctPredictedOcclusionN-

odes. Let #groundtruthOcclusionNodes denote the num-
ber of ground truth occluder and occlude nodes in a view-
point. To obtain #groundtruthOcclusionNodes, we count
the number of elements (gtOOAMSize) in the ground truth
OOAM. As an object cannot occlude itself, the diagonal of
any OOAM is always 0, and the diagonal of any similarity
matrix is always 1 (depicted as grey highlighted cells in Fig-
ure 9). Thus, we subtract the number of elements along the

== =

0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

1 0 0 0

0 0 0 1

0 0 0 0

1 0 1 1

1 1 1 1

1 1 1 0

1 1 1 1

Element Wise Comparison

Predicted Masksv

1

2

3

4

1 2 3 41 2 3 4

1

2

3

4

Ground truth Masksv Ground truth OODGv

4 Groundtruth Visible Masks

Matched Visible
Maski

Matched Groundtruth
Maskj

Matched Prediction-
Ground truth pair

0 0 0 0.12 0.87

0 0 0 0.95 0.08

0 0.74 0.28 0 0

0.94 0.06 0 0 0

1

2

3

4

51 2 3 4
predicted mask i

ground truth
mask j

4

1

2

3

Blue highlighted cells represent highest F-measure
for a ground truth - predicted mask pair

Get best assignment of prediction masks to groundtruth mask that maximises the F-measure

F-Measure table

Unmatched Visible Mask

After Hungarian matching,
matched pairs are as follows:

ground truth object ids (1, 2, 3 ,4)
predicted object ids (5, 4, 2, 1).

predicted object ids are re-indexed to (1,2,3,4).

5 Predicted Visible Masks

1

2

3 4

5

: :

oc
cl

ud
er

occludee occludee

oc
cl

ud
er

1

3

2

4

2

1

3

4

2

Figure 9. Hungarian Matching and calculating Occlusion Order Accuracy of image v

diagonal of the gtOOAM (denoted by gtOOAMDiagonal-

Size) from the calculation of #correctPredictedOcclusionN-

odes and #groundtruthOcclusionNodes.
Correct occlusion order predictions occur when the pre-

dicted occlusion relationship for each object matches the
ground truth. Incorrect occlusion order predictions can re-
sult from erroneous predictions or missing visible mask pre-
dictions of object instances. When there are missing pre-
dictions, setting the corresponding row and column of the
missing object instance in the similarity matrix to 0 pe-
nalizes the model for the missing object predictions. The
smaller element-wise sum of the similarity matrix leads to
a smaller ACCoo. This demonstrates the appropriate assign-

ment of penalties by ACCoo to different error types for mea-
suring object occlusion ordering in a scene.

11. Occlusion Order Directed Acyclic Graph
(OODAG)

After obtaining the Occlusion Order Adjacency Matrix
(OOAM), we can generate the occlusion order directed
graph from it. For each non-zero entry (i, j) in the OOAM,
we draw a directed edge from node i to node j. If the entry
is zero, we do not draw an edge. A non-zero entry at (i, j)
represents that object i is occluding object j.

For example, the OOAM generated in Figure 10 shows

Figure 10. A visualisation of annotations for a cluttered tabletop image generated by SynTable

that (i, j) = (1,12) where i and j are the object indices (the
bounding box labels) in the image. This means that object 1
occludes object 12, and a directed edge will point from ob-
ject 1 to 12. From the generated Directed Occlusion Graph,
we can also check if the graph is cyclic or acyclic using
graph cyclic detection methods such as Depth First Search
(DFS) and Breadth First Search (BFS). Only if the graph
has no directed cycles (Directed Acyclic Occlusion Graph)
can topological sorting be implemented.

In the generated Occlusion Order graph, we further clas-
sify objects in three different order layers - Top, Intermedi-

ate, and Bottom. Objects at the top layer represent objects
that are not occluded by any other object. Objects in the in-
termediate layers mean that they are occluded but they also
occlude other objects. For objects in the bottom layer, they
are occluded but they do not occlude other objects.

12. Qualitative Inference Results of UOAIS-
Net on the OSD-Amodal Dataset

After training the UOAIS-Net model [2] on both SynTable-
Sim and UOAIS-Sim (tabletop) datasets [2], we present
some of our qualitative results in Figure 11. As discussed

in the main text of our paper, the UOAIS-Net trained on the
SynTable-Sim dataset exhibits superior performance in con-
trast to the UOAIS-Net trained on the UOAIS-Sim tabletop
dataset. This observation is further supported by the infer-
ence results presented in Figure 11. Furthermore, as the
scene becomes more and more cluttered, the UOAIS-Net
model trained on the SynTable-Sim dataset evidently out-
performs that of the UOAIS-Net trained on the UOAIS-Sim
tabletop dataset.

RGB Depth
SynTable-Sim

(Ours) UOAIS-Sim

Figure 11. Comparison of the inference results on the OSD-Amodal dataset. SynTable-Sim (Ours): the performance of UOAIS-Net on
the OSD-Amodal dataset after training on the SynTable-Sim dataset. UOAIS-Sim: the performance of UOAIS-Net on the OSD-Amodal
dataset after training on the UOAIS-Sim tabletop dataset.

	Introduction
	Related Works
	Amodal Instance Segmentation in Vision Systems
	Tools for Generating Synthetic Datasets

	Method
	Preparing Each Scene
	Physical Simulation of Each Scene
	Sampling of Camera Viewpoints
	Sampling of Lighting Conditions
	Capturing of Ground Truth Annotations

	Dataset Details
	Object Models Used in Generating SynTable-Sim
	Dataset Configuration
	Syntable-Sim Versus Other Cluttered Tabletop Datasets

	Experiments
	Training Strategy
	Evaluation Metrics
	Results

	Conclusion
	Overview
	Video Demonstration of SynTable-Sim Generation Process
	Management of the SynTable-Sim Dataset

	Additional Details About the Dataset Generation Process
	Preparing Each Scene
	Physical Simulation of Each Scene
	Sampling of Camera Viewpoints
	Sampling of Lighting Conditions
	Saving of Ground Truth Annotations

	Details about Evaluation Metrics
	Occlusion Order Accuracy ACCoo metric
	Occlusion Order Directed Acyclic Graph (OODAG)
	Qualitative Inference Results of UOAIS-Net on the OSD-Amodal Dataset

