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Abstract

We consider the task of minimizing the sum of smooth and strongly convex func-
tions stored in a decentralized manner across the nodes of a communication network
whose links are allowed to change in time. We solve two fundamental problems for
this task. First, we establish the first lower bounds on the number of decentralized
communication rounds and the number of local computations required to find an
ϵ-accurate solution. Second, we design two optimal algorithms that attain these
lower bounds: (i) a variant of the recently proposed algorithm ADOM (Kovalev
et al., 2021) enhanced via a multi-consensus subroutine, which is optimal in the
case when access to the dual gradients is assumed, and (ii) a novel algorithm, called
ADOM+, which is optimal in the case when access to the primal gradients is as-
sumed. We corroborate the theoretical efficiency of these algorithms by performing
an experimental comparison with existing state-of-the-art methods.

1 Introduction

In this work we are solving the decentralized optimization problem

min
x∈Rd

n∑
i=1

fi(x), (1)

where each function fi : Rd → Rd is stored on a compute node i ∈ {1, . . . , n}. We assume that the
nodes are connected through a communication network. Each node can perform local computations
based on its local state and data, and can directly communicate with its neighbors only. Further, we
assume the functions fi to be smooth and strongly convex.

Such decentralized optimization problems arise in many applications, including estimation by sensor
networks (Rabbat and Nowak, 2004), network resource allocation (Beck et al., 2014), cooperative
control (Giselsson et al., 2013), distributed spectrum sensing (Bazerque and Giannakis, 2009) and
power system control (Gan et al., 2012). Moreover, problems of this form draw attention of the
machine learning community (Scaman et al., 2017), since they cover training of supervised machine
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learning models through empirical risk minimization from the data stored across the nodes of a net-
work as a special case. Finally, while the current federated learning (Konečný et al., 2016; McMahan
et al., 2017) systems rely on a star network topology, with a trusted server performing aggregation
and coordination placed at the center of the network, advances in decentralized optimization could
be useful in new-generation federated learning formulations that would rely on fully decentralized
computation (Li et al., 2020).

1.1 Time-varying Networks

In this work, we focus on the practically highly relevant and theoretically challenging situation when
the links in the communication network are allowed to change over time. Such time-varying networks
(Zadeh, 1961; Kolar et al., 2010) are ubiquitous in many complex systems and practical applications.
In sensor networks, for example, changes in the link structure occur when the sensors are in motion,
and due to other disturbances in the wireless signal connecting pairs of nodes. We envisage that a
similar regime will be supported in future-generation federated learning systems (Konečný et al.,
2016; McMahan et al., 2017), where the communication pattern among pairs of mobile devices or
mobile devices and edge servers will be dictated by their physical proximity, which naturally changes
over time.

1.2 Contributions

In this work we present the following key contributions:

1. Lower bounds. We establish the first lower bounds on decentralized communication and
local computation complexities for solving problem (1) over time-varying networks. Our
results are summarized in Table 1, and detailed in Section 3 (see Theorems 2 and 3 therein).

2. Optimal algorithms. Further, we prove that these bounds are tight by providing two new
optimal algorithms4 which match these lower bounds:

(i) a variant of the recently proposed algorithm ADOM (Kovalev et al., 2021) enhanced via
a multi-consensus subroutine, and

(ii) a novel algorithm, called ADOM+ (Algorithm 1), also featuring multi-consensus.
The former method is optimal in the case when access to the dual gradients is assumed, and
the latter one is optimal in the case when access to the primal gradients is assumed. See
Sections 4 and 5 for details. To the best of our knowledge, ADOM with multi-consensus is
the first dual based optimal decentralized algorithm for time-varying networks

3. Experiments. Through illustrative numerical experiments (see Section 6, and the extra
experiments contained in the appendix) we demonstrate that our methods are implementable,
and that they perform competitively when compared to existing baseline methods APM-C
(Rogozin et al., 2020; Li et al., 2018) and Acc-GT (Li and Lin, 2021).

Related Work. When the communication network is fixed in time, decentralized distributed opti-
mization in the strongly convex and smooth regime is relatively well studied. In particular, Scaman
et al. (2017) established lower decentralized communication and local computation complexities for
solving this problem, and proposed an optimal algorithm called MSDA in the case when an access
to the dual oracle (gradient of the Fenchel transform of the objective function) is assumed. Under a
primal oracle (gradient of the objective function), current state of the art includes the near-optimal
algorithms APM-C (Li et al., 2018; Dvinskikh and Gasnikov, 2019) and Mudag (Ye et al., 2020), and
a recently proposed optimal algorithm OPAPC (Kovalev et al., 2020).

The situation is worse in the time-varying case. To the best of our knowledge, no lower decentralized
communication complexity bound exists for this problem. There are a few linearly-convergent
algorithms, such as those of Nedic et al. (2017) and Push-Pull Gradient Method of Pu et al. (2020),
that assume a primal oracle, and the dual oracle based algorithm PANDA due to Maros and Jaldén
(2018). These algorithms have complicated theoretical analyses, which results in slow convergence
rates. There are also several accelerated algorithms, which were originally developed for the fixed

4As a byproduct of our lower bounds, we show that the recently proposed method Acc-GT of Li and Lin
(2021) is also optimal. This method appeared on arXiv in April 2021, at the time when we already had a first
draft of this paper, including all results. Their work does not offer any lower bounds.
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Table 1: Current theoretical state-of-the-art methods for solving problem (1) over time-varying
networks, and our contributions: lower bounds (first lower bounds for this problem), and two new
optimal algorithms, ADOM and ADOM+ with multi-consensus.

Algorithm Local computation
complexity

Decentralized communication
complexity

Gradient
oracle

Known Results
APM-C

(Rogozin et al., 2020) O
(
κ1/2 log 1

ϵ

)
O

(
χκ1/2 log2 1

ϵ

)
primal

Mudag
(Ye et al., 2020) O

(
κ1/2 log 1

ϵ

)
O

(
χκ1/2log(κ) log 1

ϵ

)
primal

Acc-GT with multi-consensus
(Li and Lin, 2021) O

(
κ1/2 log 1

ϵ

)
O

(
χκ1/2 log 1

ϵ

)
primal

Our Results
ADOM with multi-consensus

This Paper, Theorem 5 O
(
κ1/2 log 1

ϵ

)
O

(
χκ1/2 log 1

ϵ

)
dual

ADOM+ with multi-consensus
This Paper, Theorem 6 O

(
κ1/2 log 1

ϵ

)
O

(
χκ1/2 log 1

ϵ

)
primal

Lower Bounds
This Paper, Theorems 2 and 3 O

(
κ1/2 log 1

ϵ

)
O

(
χκ1/2 log 1

ϵ

)
both

network case, and can be extended to the time-varying case. These include Acc-DNGD (Qu and Li,
2019), Mudag (Ye et al., 2020) and a variant of APM-C which was extended to the time-varying
case by Rogozin et al. (2020). Finally, there are two algorithms with state-of-the-art decentralized
communication complexity: a dual based algorithm ADOM (Kovalev et al., 2021), and a primal based
algorithm Acc-GT (Li and Lin, 2021).

2 Notation and Assumptions

2.1 Smooth and Strongly Convex Regime

Throughout this paper we restrict each function fi(x) to be L-smooth and µ-strongly convex. That is,
we require the following inequalities to hold for all x, y ∈ Rd and i ∈ {1, . . . , n}:

fi(y) + ⟨∇fi(y), x− y⟩+ µ
2 ∥x− y∥2 ≤ fi(x) ≤ fi(y) + ⟨∇fi(y), x− y⟩+ L

2 ∥x− y∥2. (2)

This naturally leads to the quantity κ = L
µ known as the condition number of function fi. Strong

convexity implies that problem (1) has a unique solution.

2.2 Primal and Dual Oracle

In our work we consider two types of gradient oracles. By primal oracle we denote the situation
when the gradients ∇fi of the objective functions fi are available. By dual oracle we denote the
situation when the gradients ∇f∗

i of the Fenchel conjugates5 f∗
i of the objective functions fi are

available.

2.3 Decentralized Communication

Let V = {1, . . . , n} denote the set of the compute nodes. We assume that decentralized communica-
tion is split into communication rounds. At each round q ∈ {0, 1, 2, . . .}, nodes are connected through
a communication network represented by a graph Gq = (V, Eq), where Eq ⊂ {(i, j) ∈ V×V : i ̸= j}
is the set of links at round q. For each node i ∈ V we consider a set of its immediate neighbors
at round q: N q

i = {j ∈ V : (i, j) ∈ Eq}. At round q, each node i ∈ V can communicate with
nodes from the set N q

i only. This type of communication is known in the literature as decentralized
communication.

5Recall that the Fenchel conjugate of fi is given as f∗
i (x) = supy∈Rd [⟨x, y⟩ − fi(y)]. Note, that f∗

i is
1/µ-smooth and 1/L-strongly convex (Rockafellar, 2015).
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2.4 Gossip Matrices

Decentralized communication between nodes is typically represented via a matrix-vector multiplica-
tion with a gossip matrix. For each decentralized communication round q ∈ {0, 1, 2, . . .}, consider a
matrix W(q) ∈ Rn×n satisfying the following assumption.
Assumption 1. For any q ∈ {0, 1, 2, . . .} matrix W(q) ∈ Rn×n satisfies the following relations:

1. W(q)i,j = 0 if i ̸= j and (i, j) /∈ Eq ,

2. kerW(q) ⊃ {(x1, . . . , xn) ∈ Rn : x1 = . . . = xn},

3. rangeW(q) ⊂ {(x1, . . . , xn) ∈ Rn :
∑n

i=1 xi = 0},

4. There exists χ ≥ 1, such that
∥Wx− x∥2 ≤ (1− χ−1)∥x∥2 for all x ∈ {(x1, . . . , xn) ∈ Rn :

∑n
i=1 xi = 0} . (3)

Throughout this paper we will refer to the matrix W(q) as the gossip matrix. A typical example of a
gossip matrix is W(q) = λ−1

max(L(q)) · L(q), where L(q) the Laplacian of an undirected connected
graph Gq . Note that in this case W(q) is symmetric and positive semi-definite, and χ can be chosen
as an upper-bound on the condition number of the matrix L(q) defined by χ = supq

λmax(L(q))

λ+
min(L(q))

,

where λmax(L(q)) and λ+
min(L(q)) denote the largest and the smallest positive eigenvalue of L(q),

respectively. With a slight abuse of language, we will call χ the condition number of time-varying
network even when the gossip matrices W(q) are not necessarily symmetric.

While the notion of a gossip matrix is typically used in the fixed network setting (Scaman et al.,
2017), we adapt this notion to the time-varying regime in which the so-called mixing matrices (Nedic
et al., 2017) are typically used instead. However, it turns out that there is no major difference between
these notions. While we decided to present our main results in the language of gossip matrices, they
can alternatively be described in the language of mixing matrices instead. We provide a detailed
discussion of this in the appendix.

3 Lower Complexity Bounds

In this section we obtain lower bounds on the decentralized communication and local computation
complexities for solving problem (1). These lower bounds apply to algorithms which belong to a
certain class, which we call First-order Decentralized Algorithms. Algorithms from this class need to
satisfy the following assumptions:

1. Each compute node can calculate first-order characteristics, such as gradient of the function
it stores, or its Fenchel conjugate.

2. Each compute node can communicate values, such as vectors from Rd, with its neighbors.
Note that the set of neighbors for each node is not fixed in time.

We repeat here that when the network is fixed in time, lower decentralized communication and local
computation complexity bounds were obtained by Scaman et al. (2017).

3.1 First-order Decentralized Algorithms

Here we give a formal definition of the class of algorithms for which we provide lower bounds on the
complexity of solving problem (1). At each time step k ∈ {0, 1, 2, . . .}, each node i ∈ V maintains a
finite local memory Hi(k) ⊂ Rd. For simplicity, we assume that the local memory is initialized as
Hi(k) = {0}.

At each time step k, an algorithm either performs a decentralized communication round, or a local
computation round that can update the memory Hi(k). The update of the local memory satisfies the
following rules:

1. If an algorithm performs a local computation round at time step k, then
Hi(k + 1) ⊂ Span({x,∇fi(x),∇f∗

i (x) : x ∈ Hi(k)})
for all i ∈ V , where f∗

i is the Fenchel conjugate of fi.
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Figure 1: The way we count decentralized communication rounds (q) and iterations (k).

2. If an algorithm performs a decentralized communication round at time step k, then

Hi(k + 1) ⊂ Span
(
∪j∈N q

i ∪{i}Hj(k)
)

for all i ∈ V , where q ∈ {0, 1, 2, . . .} refers to the number of decentralized communication
round performed so far, counting from the first one, for which we set q = 0. See Figure 1 for
a graphical illustration of our time step (k) and decentralized communication (q) counters.

At time step k, each node i ∈ V must specify an output value xo
i (k) ∈ Hi(k).

In the case of time-invariant networks, Scaman et al. (2017) presented lower complexity bounds for a
class of algorithms called Black-box Optimization Procedures. This class is slightly more general
than our First-order Decentralized Algorithms. In particular, we use discrete time k ∈ {0, 1, 2, . . .}
rather than continuous time, and do not allow decentralized communications and local computations
to be performed in parallel and asynchronously. We have done this for the sake of simplicity and
clarity. This should not be seen as a weakness of our work, since our results can be easily extended to
Black-box Optimization Procedures. However, we are of the opinion that such an extension would
not give any new substantial insights.

3.2 Main Theorems

We are now ready to present our main theorems describing the first lower bounds on the number
of decentralized communication rounds and local computation rounds that are necessary to find an
approximate solution of the problem (1). In order to simplify the proofs, and following the approach
used by Nesterov (2003), we consider the limiting case d → +∞. More precisely, we will work in
the infinite dimensional space ℓ2 =

{
x = (x[l])

∞
l=1 :

∑∞
l=1(x[l])

2 < +∞
}

rather than Rd.

Theorem 1. Let χ ≥ 3, L > µ ≥ 0. There exists a sequence of graphs {Gq}∞q=0, a corresponding
sequence of gossip matrices {W(q)}∞q=0 ⊂ Rn×n satisfying the Assumption 1, and µ-strongly convex
and L-smooth functions fi : ℓ2 → R, i ∈ V , such that for any first-order decentralized algorithm and
any k ∈ {0, 1, 2 . . .}

∥xo
i (k)− x∗∥2 ≥ C

(
max

{
0, 1− 24

√
6µ√
L

})q/χ
, (4)

where q is the number of decentralized communication rounds performed by the algorithm before
time step k, x∗ is the solution of the problem (1) and C > 0 is some constant.

Our proof is inspired by the proof of Scaman et al. (2017) for time-invariant networks, which in its
turn is based on the proof of oracle complexities for strongly convex and smooth optimization by
Nesterov (2003). Here we give a short outline of our proof.

We choose n = |V| ≈ χ nodes and split them into three disjoint sets, V1,V2 and V3, of equal size
n/3. Further, we split the function used by Nesterov (2003) onto the nodes belonging to V1 and V3.
One then needs to show that most dimensions of the output vectors xo

i (k) will remain zero, while
local computations may only increase the number of non-zero dimensions by one. In contrast to
(Scaman et al., 2017), we need to have |V2| ≈ χ rather than |V2| ≈

√
χ, and still ensure that at least

|V2| decentralized communication rounds are necessary to share information between node groups V1

and V3. We achieve this by choosing a sequence of star graphs with the center node cycling through
the nodes from V2.
Theorem 2. For any χ ≥ 3, L > µ ≥ 0 there exists a sequence of graphs {Gq}∞q=0, a corresponding
sequence of gossip matrices {W(q)}∞q=0 ⊂ Rn×n satisfying the Assumption 1, and µ-strongly convex
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and L-smooth functions fi : ℓ2 → R, i ∈ V , such that for any first order decentralized algorithm, the
number of decentralized communication rounds to find an ϵ-accurate solution of the problem (1) is
lower bounded by

Ω
(
χ
√

L/µ log 1
ϵ

)
. (5)

We also provide a lower bound on the local computation complexity. The proof is similar to the proof
of Theorem 1.
Theorem 3. For any χ ≥ 3, L > µ ≥ 0 there exists a sequence of graphs {Gq}∞q=0, a corresponding
sequence of gossip matrices {W(q)}∞q=0 ⊂ Rn×n satisfying the Assumption 1, and µ-strongly convex
and L-smooth functions fi : ℓ2 → R, i ∈ V , such that for any first order decentralized algorithm,
the number of local computation rounds to find an ϵ-accurate solution of the problem (1) is lower
bounded by

Ω
(√

L/µ log 1
ϵ

)
. (6)

The detailed proofs are available in the appendix.

4 Primal Algorithm with Optimal Communication Complexity

In this section we develop a novel algorithm for decentralized optimization over time-varying
networks with optimal decentralized communication complexity. This is a primal algorithm, meaning
that it uses the primal gradient oracle. The design of this algorithm relies on a sequence of specific
reformulations of the problem (1), which we now describe.

4.1 Reformulation via Lifting

Consider a function F : (Rd)V → R defined by

F (x) =
∑
i∈V

fi(xi), (7)

where x = (x1, . . . , xn) ∈ (Rd)V . This function is L-smooth and µ-strongly convex since the
individual functions fi are. Consider also the so called consensus space L ⊂ (Rd)V defined by

L = {(x1, . . . , xn) ∈ (Rd)V : x1 = . . . = xn}. (8)

Using this notation, we arrive at the equivalent formulation of problem (1)

min
x∈L

F (x). (9)

Due to strong convexity, this reformulation has a unique solution, which we denote as x∗ ∈ L.

4.2 Saddle Point Reformulation

Next, we introduce a reformulation of problem (9) using a parameter ν ∈ (0, µ) and a slack variable
w ∈ (Rd)V :

min
x,w∈(Rd)V

w=x,w∈L

F (x)− ν
2∥x∥

2 + ν
2∥w∥

2.

Note that the function F (x)− ν
2∥x∥

2 is (µ− ν)-strongly convex since ν < µ. The latter problem is a
minimization problem with linear constraints. Hence, it has the equivalent saddle-point reformulation

min
x,w∈(Rd)V

max
y∈(Rd)V

max
z∈L⊥

F (x)− ν
2∥x∥

2 + ν
2∥w∥

2 + ⟨y, w − x⟩+ ⟨z, w⟩,

where L⊥ ⊂ (Rd)V is an orthogonal complement to the space L, defined by

L⊥ = {(z1 . . . , zn) ∈ (Rd)V :
∑n

i=1zi = 0}. (10)

Minimization in w gives the final saddle-point reformulation of the problem (9):

min
x∈(Rd)V

max
y∈(Rd)V

max
z∈L⊥

F (x)− ν
2∥x∥

2 − ⟨y, x⟩ − 1
2ν ∥y + z∥2. (11)

6



Further, by E we denote the Euclidean space E = (Rd)V × (Rd)V × L⊥. One can show that the
saddle-point problem (11) has a unique solution (x∗, y∗, z∗) ∈ E, which satisfies the following
optimality conditions:

0 = ∇F (x∗)− νx∗ − y∗, (12)

0 = ν−1(y∗ + z∗) + x∗, (13)
L ∋ y∗ + z∗. (14)

4.3 Monotone Inclusion Reformulation

Consider two monotone operators A,B : E → E, defined via

A(x, y, z) =

∇F (x)− νx
ν−1(y + z)
Pν−1(y + z)

 , B(x, y, z) =

[−y
x
0

]
, (15)

where P is an orthogonal projection matrix onto the subspace L⊥. Matrix P is given as

P = (In − 1
n1n1

⊤
n )⊗ Id, (16)

where Ip denotes p × p identity matrix, 1n = (1, . . . , 1) ∈ Rn, and ⊗ is the Kronecker product.
Then, solving problem (11) is equivalent to finding (x∗, y∗, z∗) ∈ E, such that

A(x∗, y∗, z∗) +B(x∗, y∗, z∗) = 0. (17)

Indeed, optimality condition (14) is equivalent to projL⊥(y∗+z∗) = 0 or Pν−1(y∗+z∗) = 0. Now,
it is clear that (17) is just another way to write the optimality conditions for problem (11).

4.4 Primal Algorithm Design and Convergence

A common approach to solving problem (17) is to use the Forward-Backward algorithm. The update
rule of this algorithm is (x+, y+, z+) = JωB [(x, y, z) − ωA(x, y, z)], where ω > 0 is a stepsize,
the operator JωB : E → E is called the resolvent, and is defined as the inverse of the operator
(I + ωB) : E → E, where I : E → E is the identity mapping. One can observe that the resolvent JωB

is easy to compute.

Following (Kovalev et al., 2020), we use an accelerated version of the Forward-Backward algorithm.
This can indeed be done, since the operator A : E → E is the gradient of the smooth and convex
function (x, y, z) 7→ F (x)− ν

2∥x∥
2 + 1

2ν ∥y + z∥2 on the Euclidean space E. Note that the operator
A + B is not strongly monotone, while strong monotonicity is usually required to achieve linear
convergence. However, we can still obtain a linear convergence rate by carefully utilizing the
L-smoothness property of the function F (x). Similar issue appeared in the design of algorithms
for solving linearly-constrained minimizations problems, including the non-accelerated algorithms
(Condat et al., 2019; Salim et al., 2020) and the optimal algorithm (Salim et al., 2021). However,
the authors of these works considered a different problem reformulation from (11), and hence their
results can not be applied here.

However, one issue still remains: to compute the operator A, it is necessary to perform a matrix-
vector multiplication with the matrix P, which requires full averaging, i.e, consensus over all
nodes of the network. Following the approach of Kovalev et al. (2021), we replace it with the
multiplication via the gossip matrix W(q)⊗ Id, which requires one decentralized communication
round only. That is, we replace the last component Pν−1(y + z) of the operator A defined by (15)
with (W(q) ⊗ Id)ν

−1(y + z). Kovalev et al. (2021) showed that multiplication with the gossip
matrix can be seen as a compression on the Euclidean space L⊥, i.e., condition (3) holds, and hence
the so-called error-feedback mechanism (Stich and Karimireddy, 2019; Karimireddy et al., 2019;
Gorbunov et al., 2020) can be applied to obtain linear convergence. We use this insight in the design
of our algorithm.

Armed with all these ideas, we are ready to present our method ADOM+; see Algorithm 1.

7



Algorithm 1 ADOM+

1: input: x0, y0,m0 ∈ (Rd)V , z0 ∈ L⊥

2: x0
f = x0, y0f = y0, z0f = z0

3: for k = 0, 1, 2, . . . do
4: xk

g = τ1x
k + (1− τ1)x

k
f

5: xk+1 = xk + ηα(xk
g − xk+1)− η

[
∇F (xk

g)− νxk
g − yk+1

]
6: xk+1

f = xk
g + τ2(x

k+1 − xk)

7: ykg = σ1y
k + (1− σ1)y

k
f

8: yk+1 = yk + θβ(∇F (xk
g)− νxk

g − yk+1)− θ
[
ν−1(ykg + zkg ) + xk+1

]
9: yk+1

f = ykg + σ2(y
k+1 − yk)

10: zkg = σ1z
k + (1− σ1)z

k
f

11: zk+1 = zk + γδ(zkg − zk)− (W(k)⊗ Id)
[
γν−1(ykg + zkg ) +mk

]
12: mk+1 = γν−1(ykg + zkg ) +mk − (W(k)⊗ Id)

[
γν−1(ykg + zkg ) +mk

]
13: zk+1

f = zkg − ζ(W(k)⊗ Id)(y
k
g + zkg )

14: end for

We now establish the convergence rate of Algorithm 1.
Theorem 4 (Convergence of ADOM+). To reach precision ∥xk − x∗∥2 ≤ ϵ, Algorithm 1 requires the
following number of iterations

O
(
χ
√

L/µ log 1
ϵ

)
.

Note that Algorithm 1 performs O(1) decentralized communication and local computation rounds.
Hence, its decentralized communication and local computation complexities are O

(
χ
√

L/µ log 1
ϵ

)
.

5 Optimal Algorithms

In this section we develop decentralized algorithms for time-varying networks with optimal local
computation and decentralized communication complexities. We develop both primal and dual
algorithms that use primal and dual gradient oracle, respectively. The key mechanism to obtain
optimal algorithms is to incorporate the multi-consensus procedure into the algorithms with optimal
decentralized communication complexity.

5.1 Multi-consensus Procedure

As discussed in Section 2.4, a decentralized communication round cab be represented as the multi-
plication with the gossip matrix W(q). The main idea behind the multi-consensus procedure is to
replace the matrix W(q) with another matrix, namely

W(k;T ) = In −
(k+1)T−1∏

q=kT

(In −W(q)), (18)

where k ∈ {0, 1, 2, . . .} is the iteration counter, and T ∈ {1, 2, . . .} is the number of consensus steps.
One can show that this matrix satisfies the Assumption 1, including the contraction property (3):

∥W(k;T )x− x∥2 ≤ (1− χ−1)T ∥x∥2 for all x ∈ L⊥. (19)

One can also observe that multiplication with the matrix W(k;T ) requires to perform multiplication
with T gossip matrices W(kT ),W(kT +1), . . . ,W(kT +T −1), hence it requires T decentralized
communication rounds.

5.2 Optimal Algorithms: ADOM and ADOM+ with multi-consensus

Now, we are ready to describe our optimal algorithms for smooth and strongly decentralized opti-
mization over time-varying networks. As mentioned before, we start with algorithms with optimal

8
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Figure 2: Comparison of our method ADOM+ and the baselines Acc-GT and APM-C.

decentralized communication complexity. In the case when access to the primal oracle is assumed,
ADOM+ (Algorithm 1) is the algorithm of choice. In the case when access to the dual oracle is
assumed, Kovalev et al. (2021) proposed the dual based accelerated decentralized algorithm ADOM.
The original convergence proof of this algorithm requires the gossip matrix W(k) to be symmetric.
However, the generalization of this proof to the case when the gossip matrix satisfies Assumption 1,
and is not necessarily symmetric, is straightforward.

Both ADOM and ADOM+ require O
(
χ
√

L/µ log 1
ϵ

)
iterations to obtain an ϵ-accurate solution of

problem (1), and at each iteration they perform O(1) local computation and decentralized communica-
tion rounds, i.e., multiplications with the gossip matrix W(q). We now incorporate a multi-consensus
procedure into both algorithms. That is, we replace matrix W(q) with the matrix W(k;T ) defined
in (18), where k ∈ {0, 1, 2, . . .} is the iteration counter. As mentioned before, this is equivalent to
performing O(T ) decentralized communication rounds at each iteration. Choosing the number of
consensus steps T = ⌈χ ln 2⌉ together with (19) implies

∥W(k;T )x− x∥2 ≤ 1
2∥x∥

2 for all x ∈ L⊥. (20)

This means that W(k;T ) satisfies (3) with χ replaced by 1
2 and hence both ADOM and ADOM+ with

multi-consensus require O
(√

L/µ log 1
ϵ

)
iterations to obtain an ϵ-accurate solution. Taking into

account that these algorithms still perform O(1) local computations and O(T ) = O(χ) decentralized
communication rounds at each iteration, we arrive at the following theorems.

Theorem 5. Let the functions f1, . . . , fn be L-smooth and µ-strongly convex and let the Assump-
tion 1 hold. Then, ADOM with multi-consensus requires O

(√
L/µ log 1

ϵ

)
local computation rounds

and O
(
χ
√

L/µ log 1
ϵ

)
decentralized communication rounds to find an ϵ-accurate solution of the

distributed optimization problem (1).

Theorem 6. Let the functions f1, . . . , fn be L-smooth and µ-strongly convex and let the Assumption 1
hold. Then, ADOM+ with multi-consensus requires O

(√
L/µ log 1

ϵ

)
local computation rounds

and O
(
χ
√

L/µ log 1
ϵ

)
decentralized communication rounds to find an ϵ-accurate solution of the

distributed optimization problem (1).

5.3 Comparison with Acc-GT (Li and Lin, 2021)

To the best of our knowledge ADOM with multi-consensus is the first dual based optimal decentralized
algorithm for time-varying networks. In the case when the primal oracle is assumed, besides ADOM+
with multi-consensus, there is only one previously existing algorithm, Acc-GT with multi-consensus
(Li and Lin, 2021), which achieves optimal local computation and decentralized communication
complexities. However, in the case when multi-consensus is not used, its iteration complexity is
O
(
χ3/2

√
L/µ log 1

ϵ

)
, which is worse than the complexity of ADOM+, by the factor χ1/2. Since

communication is known to be the main bottleneck in distributed training systems, multi-consensus is
unlikely to be used in practice, which may limit the practical performance of Acc-GT in comparison
to ADOM+.
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6 Experiments

In this section we perform an illustrative experiment with logistic regression. We take 10, 000 samples
from the covtype LIBSVM6 dataset and distribute them across n = 100 nodes of a network, 100
samples per node. We use two types of networks: a sequence of random geometric graphs with
χ ≈ 30, and a sequence which alternates between the ring and star topology, with χ ≈ 1, 000. We
choose the regularization parameter µ such that the condition number becomes κ = 105. We compare
ADOM+ with multi-consensus with two state-of-the art decentralized algorithms for time-varying
networks: Acc-GT with multi-consensus (Li and Lin, 2021), and a variant of APM-C for time-varying
networks (Rogozin et al., 2020; Li et al., 2018). We set all parameters of Acc-GT and APM-C to
those used in the experimental sections of the corresponding papers, and tune the parameters of
ADOM+. The results are presented in Figure 2. We see that ADOM+ has similar empirical behavior to
the recently proposed Acc-GT method. Both these methods are better than APM-C in terms of the
number of decentralized communication rounds (this is expected, since this method has sublinear
communication complexity), and worse in terms of the number of gradient calls. We provide more
details and additional experiments in the appendix.
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A Mixing and Gossip Matrices

In the literature on distributed optimization over time-varying networks mixing matrices are typically
used to represent decentralized communication (Nedic et al., 2017). For each communication round
q ∈ {0, 1, 2, . . .}, consider a matrix M(q) ∈ Rn×n satisfying the following assumption.
Assumption 2. For any q ∈ {0, 1, 2, . . .} matrix M(q) ∈ Rn×n satisfies the following relations:

1. M(q)i,j = 0 if i ̸= j and (i, j) /∈ Eq ,

2. M(q)1n = 1n and 1⊤
nM(q) = 1⊤

n ,

3. There exists B ∈ {1, 2, . . .} and χ ≥ 1 such that

σ2
max

(
MB(q)−

1

n
1n1

⊤
n

)
≤ (1− χ−1),

where σmax(·) denotes the largest singular value of a matrix and MB(q) is defined as

MB(q) =
q+B−1∏
q′=q

M(q′).

We will refer to the matrix M(q) as the mixing matrix. A typical example of the matrices M(q) is
the Metropolis weight matrices for the sequence of B-connected graphs (Nedic et al., 2017).

Let us identify the difference between Assumption 2 on the mixing matrices M(q) and Assumption 1
on the gossip matrices. In order to do that define W(q) = In −M(q). In this case one can show
that the matrices M(q) satisfy Assumption 2 if and only if the matrices W(q) satisfy Assumption 3,
which is given as follow.
Assumption 3. For any q ∈ {0, 1, 2, . . .} matrix W(q) ∈ Rn×n satisfies the following relations:

1. W(q)i,j = 0 if i ̸= j and (i, j) /∈ Eq ,

2. kerW(q) ⊃ {(x1, . . . , xn) ∈ Rn : x1 = . . . = xn},

3. rangeW(q) ⊂ {(x1, . . . , xn) ∈ Rn :
∑n

i=1 xi = 0},

4. There exists B ∈ {1, 2, . . .} and χ ≥ 1 such that

∥WB(q)x− x∥2 ≤ (1− χ−1)∥x∥2 for all x ∈ {(x1, . . . , xn) ∈ Rn :
∑n

i=1 xi = 0} ,

where WB(q) is defined as

WB(q) = In −
q+B−1∏
q′=q

(In −W(q′)).

Note that when B = 1, Assumption 3 coincides with Assumption 1. However, it turns out that
our main results, including the lower bounds and optimal algorithms, can be easily extended to the
general case B > 1.

A.1 Lower Bounds

In this section we present Theorem 7, which establishes the lower bound on the number of decen-
tralized communication rounds that are necessary to find an approximate solution of the problem (1)
under Assumption 3. This is a generalized version of Theorem 2 for the case B > 1.
Theorem 7. For any χ ≥ 3, L > µ ≥ 0 there exists a sequence of graphs {Gq}∞q=0, a corresponding
sequence of gossip matrices {Ŵ(q)}∞q=0 ⊂ Rn×n satisfying the Assumption 3, and µ-strongly convex
and L-smooth functions fi : ℓ2 → R, i ∈ V , such that for any first order decentralized algorithm, the
number of decentralized communication rounds to find an ϵ-accurate solution of the problem (1) is
lower bounded by

Ω
(
Bχ
√

L/µ log 1
ϵ

)
. (21)
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The proof is a trivial extension of the proof of Theorem 2. In particular, the only difference is that we
use the sequence of the gossip matrices Ŵ(q) which is given as

Ŵ(q) =

{
W(q/B) q mod B = 0

0 q mod B ̸= 0
, (22)

where W(q) is the sequence of gossip matrices given by Theorem 2. Clearly, the matrices Ŵ(q)

satisfy Assumption 3. Such choice of the matrices Ŵ(q) implies that nodes communicate only once
per B communication rounds. Hence, the lower complexity bound (21) given by Theorem 7 is B
times larger than the bound (5) given by Theorem 2.

A.2 Optimal Algorithms

In this section we show how to develop optimal decentralized optimization algorithms for time-
varying networks under the Assumption 3. It is done using the multi-consensus procedure similarly
to Section 5. Indeed, let the matrices W(q) satisfy Assumption 3 and recall the matrix W(k;T )
defined in (18). One can observe, that the matrices W(k;T ), k = 0, 1, 2 . . . , with T = B satisfy
our standard Assumption 1. Following Section 5.2 we choose T = B⌈χ ln 2⌉ which implies (20).
Hence, both ADOM and ADOM+ with T = B⌈χ ln 2⌉ steps of multi-consensus achieve the iteration
complexity O

(√
L/µ log 1

ϵ

)
, which leads to the following theorems.

Theorem 8. Let the functions f1, . . . , fn be L-smooth and µ-strongly convex and let the Assumption 3
hold. Then, ADOM with multi-consensus requires O

(√
L/µ log 1

ϵ

)
local computation rounds and

O
(
Bχ
√

L/µ log 1
ϵ

)
decentralized communication rounds to find an ϵ-accurate solution of the

distributed optimization problem (1).
Theorem 9. Let the functions f1, . . . , fn be L-smooth and µ-strongly convex and let the Assumption 3
hold. Then, ADOM+ with multi-consensus requires O

(√
L/µ log 1

ϵ

)
local computation rounds and

O
(
Bχ
√

L/µ log 1
ϵ

)
decentralized communication rounds to find an ϵ-accurate solution of the

distributed optimization problem (1).
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B Experimental Details and Additional Experiments

B.1 Experimental Details

We perform experiments with logistic regression for binary classification with ℓ2 regularization. That
is, our loss function has the form

fi(x) =
1

m

m∑
j=1

log(1 + exp(−bija
⊤
ijx)) +

r

2
∥x∥2, (23)

where aij ∈ Rd and bij ∈ {−1,+1} are data points and labels, r > 0 is a regularization parameter,
and m is the number of data points stored on each node. In this section we generate synthetic datasets
with sklearn.datasets.make classification function from scikit-learn library. We generate
a number of datasets consisting of 10, 000 samples, distributed across n = 100 nodes of the network,
m = 100 samples per each node. We vary the parameter r to obtain different values of the condition
number κ.

B.2 Further experiments

Here we simulate time-varying networks with a sequence of randomly generated geometric graphs.
Geometric graphs are constructed by generating n = 100 nodes from the uniform distribution over
[0, 1]2 ⊂ R2, and connecting each pair of nodes whose distance is less than a certain radius. We
enforce connectivity by adding a small number of edges. We obtain a sequence of graphs {Gq}∞q=0
by generating a set of 50 random geometric graphs, and alternating between them in a cyclic manner.
We choose W(q) to be the Laplacian matrix of the graphs Gq divided by its largest eigenvalue. We
vary the condition number χ by choosing different values of the radius parameter.

We compare ADOM+ with state-of-the art primal decentralized algorithms for time-varying networks:
Acc-GT (Li and Lin, 2021) and a variant of APM-C (Rogozin et al., 2020; Li et al., 2018). We do not
perform experiments with ADOM, because it is a dual based algorithm, and because its empirical
behavior was studied in (Kovalev et al., 2021).

For each condition number of the problem κ ∈ {10, 102, 103, 104}, and condition number of the
time-varying network χ ∈ {3, 8, 37, 223, 2704, 4628}, we perform a comparison of these algo-
rithms. Figures 3 and 4 show the convergence of the algorithms in the number of decentralized
communications and the number of local computations, for all chosen values of κ and χ, respectively.

Overall, the results are similar to what was obtained in Section 6. We observe that ADOM+ and
Acc-GT have similar behavior, which is expected since they are both optimal. Both of them perform
better than APM-C in terms of the number of decentralized communication rounds, which is expected
since APM-C has a sublinear communication complexity only. However, APM-C performs better in
terms of the number of local computations. Indeed, while all three algorithms are optimal in local
computation complexity,APM-C has better constants.
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Figure 3: Comparison of our method ADOM+ and the baselines Acc-GT and APM-C in decentralized
communication complexity on problems with κ ∈ {10, 102, 103, 104} and time-varying networks
with χ ∈ {3, 8, 37, 223, 2704, 4628}.
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Figure 4: Comparison of our method ADOM+ and the baselines Acc-GT and APM-C in local com-
putation complexity on problems with κ ∈ {10, 102, 103, 104} and time-varying networks with
χ ∈ {3, 8, 37, 223, 2704, 4628}.
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C Proof of Theorem 1

Proof. We choose number of nodes n = 3⌊χ/3⌋. Hence n ≥ 3 and n mod 3 = 0. Now, we divide
the set of nodes V = {1, . . . , n} into three disjoint sets V = V1 ∪ V2 ∪ V3: V1 = {1, . . . , n/3},
V2 = {n/3 + 1, . . . , 2n/3}, V3 = {2n/3 + 1, . . . , n}. Note, that |V1| = |V2| = |V3| = n/3.

We define Gq to be a star graph centered at the node ic(q) = |V1|+ 1 + (q mod |V2|). Note, that
ic(q) ∈ V2 for all q ∈ {0, 1, 2, . . .}. We define W(q) as the Laplacian matrix of the graph G(q).
Hence, λmax(W(q))/λ+

min(W(q)) = n ≤ χ and W(q) satisfies condition (3).

We define functions fi in the following way:

fi(x) =


µ
2 ∥x∥

2 + L−µ
4

[
(x[1] − 1)2 +

∑∞
l=1(x[2l] − x[2l+1])

2
]
, i ∈ V1

µ
2 ∥x∥

2, i ∈ V2
µ
2 ∥x∥

2 + L−µ
4

∑∞
l=1(x[2l−1] − x[2l])

2, i ∈ V3

. (24)

The following lemma gives the solution of problem (1) with such a choice of fi.

Lemma 1. Problem (1) with fi given by (24) has a unique solution x∗ = (ρl)∞l=1 ∈ ℓ2, where ρ is
given by

ρ =

√
2L
3µ + 1

3 − 1√
2L
3µ + 1

3 + 1
. (25)

Consider the following quantity:

si(k) =

{
0, Hi(k) ⊆ {0},
min{s ∈ {1, 2, . . .} : Hi(k) ⊂ Span({e1, e2, . . . , es})}, otherwise

, (26)

where es is the s-th unit basis vector. Using assumptions on the algorithm from Section 3.1 we can
make some conclusions about update of si(k). In particular, if at time step k algorithm performs a
local computation round, then using the fact, that fi(x) is a quadratic function with a certain block
structure (and f∗(x) has the same block structure), one can observe that

si(k + 1) ≤ si(k) +


1− (si(k) mod 2), i ∈ V1

0, i ∈ V2

(si(k) mod 2), i ∈ V3

. (27)

Similarly, if at time step k communication round number q was performed, then using the structure
of Gq one can observe that

si(k + 1) ≤
{
max{si(k), sic(q)(k)}, i ̸= ic(q)

max{sj(k) : j ∈ V}, i = ic(q)
. (28)

The next key lemma shows that si(k) is bounded compared to the number of communication rounds.

Lemma 2. Let k ∈ {0, 1, . . . , kq} be any time step, where kq is a time step at which the algorithm
performed communication round number q ∈ {0, 1, 2, . . .}. Then the following statement is true:

si(k) ≤ 2⌊q/|V2|⌋+
{
0, i ∈ V3 ∪ {ic(q), ic(q) + 1, . . . , |V1|+ |V2|}
1, otherwise

. (29)

Lemma 2 implies

si(k) ≤
2q

|V2|
+ 1 =

6q

n
+ 1 =

2q

⌊χ/3⌋
+ 1 ≤ 12q

χ
+ 1.

Hence, using Lemma (1) we can lower bound ∥xo
i (k)− x∗∥2:

∥xo
i (k)− x∗∥2 =

∞∑
l=1

(xo
i (k)− x∗)2[l] ≥

∞∑
l=si(k)+1

(xo
i (k)− x∗)2[l]
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=

∞∑
l=si(k)+1

ρ2l = ρ2si(k)+2
∞∑
l=0

ρ2l =
ρ2si(k)+2

1− ρ2

≥ ρ24q/χ+4

1− ρ2
≥ Cρ24q/χ,

where C = ρ4

1−ρ2 . Note, that ρ ≥ max
{
0, 1−

√
6µ√
L

}
and hence

∥xo
i (k)− x∗∥2 ≥ C

(
max

{
0, 1−

√
6µ√
L

})24q/χ

.

Finally, using Bernoulli inequality we get

∥xo
i (k)− x∗∥2 ≥ C

(
max

{
0, 1− 24

√
6µ√
L

})q/χ

.

Proof of Lemma 1.∑
i∈V

fi(x) =
nµ

2
∥x∥2 + n(L− µ)

12

[
(x[1] − 1)2 +

∞∑
l=1

(x[l] − x[l+1])
2

]

=
nµ

2
∥x∥2 + n(L− µ)

12

[
x2
[1] − 2x[1] + 1 +

∞∑
l=1

(x2
[l] − 2x[l]x[l+1] + x2

[l+1])

]

=
nµ

2
∥x∥2 + n(L− µ)

12

[ ∞∑
l=1

(2x2
[l] − 2x[l]x[l+1])− 2x[1] + 1

]

=
n(L− µ)

12

[ ∞∑
l=1

((
2 +

6µ

L− µ

)
x2
[l] − 2x[l]x[l+1]

)
− 2x[1] + 1

]

=
n(L− µ)

12

[ ∞∑
l=1

(
2(L+ 2µ)

L− µ
x2
[l] − 2x[l]x[l+1]

)
− 2x[1] + 1

]
.

Next, we use the fact that 2(L+2µ)
L−µ = ρ+ 1

ρ with ρ given by (25) and get∑
i∈V

fi(x) =
n(L− µ)

12

[ ∞∑
l=1

(
ρx2

[l] +
1

ρ
x2
[l] − 2x[l]x[l+1]

)
− 2x[1] + 1

]

=
n(L− µ)

12ρ

[ ∞∑
l=1

(
ρ2x2

[l] + x2
[l] − 2ρx[l]x[l+1]

)
− 2ρx[1] + ρ

]

=
n(L− µ)

12ρ

[ ∞∑
l=1

(
ρ2x2

[l] − 2ρx[l]x[l+1] + x2
[l+1]

)
+ x2

[1] − 2ρx[1] + ρ

]

=
n(L− µ)

12ρ

[ ∞∑
l=1

(ρx[l] − x[l+1])
2 + (x[1] − ρ)2 + ρ− ρ2

]
.

Now it’s clear that
∑

i∈V fi(x) ≥ n(L−µ)(1−ρ)
12 and

∑
i∈V fi(x) = n(L−µ)(1−ρ)

12 if and only if
x = x∗. Hence, x∗ is indeed a unique solution to the problem (1).

Proof of Lemma 2. We prove this by induction in q.

Induction basis. When q = 0 and k ∈ {0, 1, . . . , k0} (meaning no communication rounds were
done), from (27) we can conclude, that

si(k) ≤
{
1, i ∈ V1

0, i ∈ V2 ∪ V3
,

which is (29) in case q = 0.
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Induction step. Now, we assume that (29) holds for q and k ∈ {0, 1, . . . , kq} and prove it for
q + 1 and k ∈ {0, 1, . . . , kq+1}. Indeed, consider time step kq at which communication round q is
performed. Consider two possible cases:

1. ic(q) ̸= |V1|+ |V2|.
In this case ⌊(q + 1)/V2⌋ = ⌊q/V2⌋ and ic(q + 1) = ic(q) + 1. Since (29) holds for q and
kq, using (28) we get sic(q)(kq) ≤ 2⌊q/V2⌋ and sic(q)(kq + 1) ≤ 2⌊q/V2⌋ + 1. Hence,
using (28) we get for all i ∈ V

si(k) ≤ 2⌊q/|V2|⌋+
{
0, i ∈ V3 ∪ {ic(q) + 1, . . . , |V1|+ |V2|}
1, otherwise

= 2⌊(q + 1)/|V2|⌋+
{
0, i ∈ V3 ∪ {ic(q) + 1, . . . , |V1|+ |V2|}
1, otherwise

,

which is (29) for q + 1 and k = kq + 1.

2. ic(q) = |V1|+ |V2|.
In this case ⌊(q + 1)/V2⌋ = ⌊q/V2⌋+ 1 and ic(q + 1) = |V1|+ 1. Since (29) holds for q
and kq , we have an upper bound si(kq) ≤ 2⌊q/V2⌋+ 1 and (28) implies

si(kq + 1) ≤ 2⌊q/V2⌋+ 1 ≤ 2(⌊q/V2⌋+ 1) = 2⌊(q + 1)/V2⌋

≤ 2⌊(q + 1)/|V2|⌋+
{
0, i ∈ V3 ∪ {ic(q + 1), . . . , |V1|+ |V2|}
1, otherwise

.

which is (29) for q + 1 and k = kq + 1.

In both cases we have obtained (29) for q + 1 and k = kq + 1. It remains to see that at any time step
k ∈ {kq + 2, kq+1 − 1} only local computation is performed and (27) implies that (29) also holds
for q + 1 and any k ∈ {0, 1, . . . , kq+1}.
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D Proof of Theorem 4

By DF (x, y) we denote Bregman distance DF (x, y) := F (x)− F (y)− ⟨∇F (y), x− y⟩.
Lemma 3. Let τ2 be defined as follows:

τ2 =
√
µ/L. (30)

Let τ1 be defined as follows:
τ1 = (1/τ2 + 1/2)−1. (31)

Let η be defined as follows:
η = (Lτ2)

−1. (32)

Let α be defined as follows:
α = µ/2. (33)

Let ν be defined as follows:
ν = µ/2. (34)

Let Ψk
x be defined as follows:

Ψk
x =

(
1

η
+ α

)
∥xk − x∗∥2 + 2

τ2

(
Df (x

k
f , x

∗)− ν

2
∥xk

f − x∗∥2
)

(35)

Then the following inequality holds:

Ψk+1
x ≤

(
1−

√
µ

√
µ+ 2

√
L

)
Ψk

x + 2⟨yk+1 − y∗, xk+1 − x∗⟩ −
(
DF (x

k
g , x

∗)− ν

2
∥xk

g − x∗∥2
)
.

(36)

Proof.

1

η
∥xk+1 − x∗∥2 =

1

η
∥xk − x∗∥2 + 2

η
⟨xk+1 − xk, xk+1 − x∗⟩ − 1

η
∥xk+1 − xk∥2.

Using Line 5 of Algorithm 1 we get

1

η
∥xk+1 − x∗∥2 =

1

η
∥xk − x∗∥2 + 2α⟨xk

g − xk+1, xk+1 − x∗⟩

− 2⟨∇F (xk
g)− νxk

g − yk+1, xk+1 − x∗⟩ − 1

η
∥xk+1 − xk∥2

=
1

η
∥xk − x∗∥2 + 2α⟨xk

g − x∗ − xk+1 + x∗, xk+1 − x∗⟩

− 2⟨∇F (xk
g)− νxk

g − yk+1, xk+1 − x∗⟩ − 1

η
∥xk+1 − xk∥2

≤ 1

η
∥xk − x∗∥2 − α∥xk+1 − x∗∥2 + α∥xk

g − x∗∥2 − 2⟨∇F (xk
g)− νxk

g − yk+1, xk+1 − x∗⟩

− 1

η
∥xk+1 − xk∥2.

Using optimality condition (12) we get

1

η
∥xk+1 − x∗∥2 ≤ 1

η
∥xk − x∗∥2 − α∥xk+1 − x∗∥2 + α∥xk

g − x∗∥2 − 1

η
∥xk+1 − xk∥2

− 2⟨∇F (xk
g)−∇F (x∗), xk+1 − x∗⟩+ 2ν⟨xk

g − x∗, xk+1 − x∗⟩+ 2⟨yk+1 − y∗, xk+1 − x∗⟩.

Using Line 6 of Algorithm 1 we get

1

η
∥xk+1 − x∗∥2 ≤ 1

η
∥xk − x∗∥2 − α∥xk+1 − x∗∥2 + α∥xk

g − x∗∥2 − 1

ητ22
∥xk+1

f − xk
g∥2

− 2⟨∇F (xk
g)−∇F (x∗), xk − x∗⟩+ 2ν⟨xk

g − x∗, xk − x∗⟩+ 2⟨yk+1 − y∗, xk+1 − x∗⟩
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− 2

τ2
⟨∇F (xk

g)−∇F (x∗), xk+1
f − xk

g⟩+
2ν

τ2
⟨xk

g − x∗, xk+1
f − xk

g⟩

=
1

η
∥xk − x∗∥2 − α∥xk+1 − x∗∥2 + α∥xk

g − x∗∥2 − 1

ητ22
∥xk+1

f − xk
g∥2

− 2⟨∇F (xk
g)−∇F (x∗), xk − x∗⟩+ 2ν⟨xk

g − x∗, xk − x∗⟩+ 2⟨yk+1 − y∗, xk+1 − x∗⟩

− 2

τ2
⟨∇F (xk

g)−∇F (x∗), xk+1
f − xk

g⟩+
ν

τ2

(
∥xk+1

f − x∗∥2 − ∥xk
g − x∗∥2 − ∥xk+1

f − xk
g∥2
)
.

Using L-smoothness of DF (x, x
∗) in x, which follows from L-smoothness of F (x), we get

1

η
∥xk+1 − x∗∥2 ≤ 1

η
∥xk − x∗∥2 − α∥xk+1 − x∗∥2 + α∥xk

g − x∗∥2 − 1

ητ22
∥xk+1

f − xk
g∥2

− 2⟨∇F (xk
g)−∇F (x∗), xk − x∗⟩+ 2ν⟨xk

g − x∗, xk − x∗⟩+ 2⟨yk+1 − y∗, xk+1 − x∗⟩

− 2

τ2
⟨∇F (xk

g)−∇F (x∗), xk+1
f − xk

g⟩+
ν

τ2

(
∥xk+1

f − x∗∥2 − ∥xk
g − x∗∥2 − ∥xk+1

f − xk
g∥2
)

≤ 1

η
∥xk − x∗∥2 − α∥xk+1 − x∗∥2 + α∥xk

g − x∗∥2 − 1

ητ22
∥xk+1

f − xk
g∥2

− 2⟨∇F (xk
g)−∇F (x∗), xk − x∗⟩+ 2ν⟨xk

g − x∗, xk − x∗⟩+ 2⟨yk+1 − y∗, xk+1 − x∗⟩

− 2

τ2

(
Df (x

k+1
f , x∗)−Df (x

k
g , x

∗)− L

2
∥xk+1

f − xk
g∥2
)

+
ν

τ2

(
∥xk+1

f − x∗∥2 − ∥xk
g − x∗∥2 − ∥xk+1

f − xk
g∥2
)

=
1

η
∥xk − x∗∥2 − α∥xk+1 − x∗∥2 + α∥xk

g − x∗∥2 +
(
L− ν

τ2
− 1

ητ22

)
∥xk+1

f − xk
g∥2

− 2⟨∇F (xk
g)−∇F (x∗), xk − x∗⟩+ 2ν⟨xk

g − x∗, xk − x∗⟩+ 2⟨yk+1 − y∗, xk+1 − x∗⟩

− 2

τ2

(
Df (x

k+1
f , x∗)−Df (x

k
g , x

∗)
)
+

ν

τ2

(
∥xk+1

f − x∗∥2 − ∥xk
g − x∗∥2

)
Using Line 4 of Algorithm 1 we get

1

η
∥xk+1 − x∗∥2 ≤ 1

η
∥xk − x∗∥2 − α∥xk+1 − x∗∥2 + α∥xk

g − x∗∥2 +
(
L− ν

τ2
− 1

ητ22

)
∥xk+1

f − xk
g∥2

− 2⟨∇F (xk
g)−∇F (x∗), xk

g − x∗⟩+ 2ν∥xk
g − x∗∥2 + 2(1− τ1)

τ1
⟨∇F (xk

g)−∇F (x∗), xk
f − xk

g⟩

+
2ν(1− τ1)

τ1
⟨xk

g − xk
f , x

k
g − x∗⟩+ 2⟨yk+1 − y∗, xk+1 − x∗⟩

− 2

τ2

(
Df (x

k+1
f , x∗)−Df (x

k
g , x

∗)
)
+

ν

τ2

(
∥xk+1

f − x∗∥2 − ∥xk
g − x∗∥2

)
=

1

η
∥xk − x∗∥2 − α∥xk+1 − x∗∥2 + α∥xk

g − x∗∥2 +
(
L− ν

τ2
− 1

ητ22

)
∥xk+1

f − xk
g∥2

− 2⟨∇F (xk
g)−∇F (x∗), xk

g − x∗⟩+ 2ν∥xk
g − x∗∥2 + 2(1− τ1)

τ1
⟨∇F (xk

g)−∇F (x∗), xk
f − xk

g⟩

+
ν(1− τ1)

τ1

(
∥xk

g − xk
f∥2 + ∥xk

g − x∗∥2 − ∥xk
f − x∗∥2

)
+ 2⟨yk+1 − y∗, xk+1 − x∗⟩

− 2

τ2

(
Df (x

k+1
f , x∗)−Df (x

k
g , x

∗)
)
+

ν

τ2

(
∥xk+1

f − x∗∥2 − ∥xk
g − x∗∥2

)
.

Using µ-strong convexity of DF (x, x
∗) in x, which follows from µ-strong convexity of F (x), we get

1

η
∥xk+1 − x∗∥2 ≤ 1

η
∥xk − x∗∥2 − α∥xk+1 − x∗∥2 + α∥xk

g − x∗∥2 +
(
L− ν

τ2
− 1

ητ22

)
∥xk+1

f − xk
g∥2

− 2DF (x
k
g , x

∗)− µ∥xk
g − x∗∥2 + 2ν∥xk

g − x∗∥2
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+
2(1− τ1)

τ1

(
DF (x

k
f , x

∗)−DF (x
k
g , x

∗)− µ

2
∥xk

f − xk
g∥2
)

+
ν(1− τ1)

τ1

(
∥xk

g − xk
f∥2 + ∥xk

g − x∗∥2 − ∥xk
f − x∗∥2

)
+ 2⟨yk+1 − y∗, xk+1 − x∗⟩

− 2

τ2

(
Df (x

k+1
f , x∗)−Df (x

k
g , x

∗)
)
+

ν

τ2

(
∥xk+1

f − x∗∥2 − ∥xk
g − x∗∥2

)
=

1

η
∥xk − x∗∥2 − α∥xk+1 − x∗∥2 + 2(1− τ1)

τ1

(
DF (x

k
f , x

∗)− ν

2
∥xk

f − x∗∥2
)

− 2

τ2

(
Df (x

k+1
f , x∗)− ν

2
∥xk+1

f − x∗∥2
)
+ 2⟨yk+1 − y∗, xk+1 − x∗⟩

+ 2

(
1

τ2
− 1

τ1

)
DF (x

k
g , x

∗) +

(
α− µ+ ν +

ν

τ1
− ν

τ2

)
∥xk

g − x∗∥2

+

(
L− ν

τ2
− 1

ητ22

)
∥xk+1

f − xk
g∥2 +

(1− τ1)(ν − µ)

τ1
∥xk

f − xk
g∥2.

Using η defined by (32), τ1 defined by (31) and the fact that ν < µ we get

1

η
∥xk+1 − x∗∥2 ≤ 1

η
∥xk − x∗∥2 − α∥xk+1 − x∗∥2 + 2(1− τ2/2)

τ2

(
DF (x

k
f , x

∗)− ν

2
∥xk

f − x∗∥2
)

− 2

τ2

(
Df (x

k+1
f , x∗)− ν

2
∥xk+1

f − x∗∥2
)
+ 2⟨yk+1 − y∗, xk+1 − x∗⟩

−DF (x
k
g , x

∗) +

(
α− µ+

3ν

2

)
∥xk

g − x∗∥2.

Using α defined by (33) and ν defined by (34) we get

1

η
∥xk+1 − x∗∥2 ≤ 1

η
∥xk − x∗∥2 − α∥xk+1 − x∗∥2 + 2(1− τ2/2)

τ2

(
DF (x

k
f , x

∗)− ν

2
∥xk

f − x∗∥2
)

− 2

τ2

(
Df (x

k+1
f , x∗)− ν

2
∥xk+1

f − x∗∥2
)
+ 2⟨yk+1 − y∗, xk+1 − x∗⟩

−
(
DF (x

k
g , x

∗)− ν

2
∥xk

g − x∗∥2
)
.

After rearranging and using Ψk
x definition (35) we get

Ψk+1
x ≤ max {1− τ2/2, 1/(1 + ηα)}Ψk

x + 2⟨yk+1 − y∗, xk+1 − x∗⟩ −
(
DF (x

k
g , x

∗)− ν

2
∥xk

g − x∗∥2
)

≤

(
1−

√
µ

√
µ+ 2

√
L

)
Ψk

x + 2⟨yk+1 − y∗, xk+1 − x∗⟩ −
(
DF (x

k
g , x

∗)− ν

2
∥xk

g − x∗∥2
)
.

Lemma 4. The following inequality holds:

−∥yk+1 − y∗∥2 ≤ (1− σ1)

σ1
∥ykf − y∗∥2 − 1

σ2
∥yk+1

f − y∗∥2

−
(

1

σ1
− 1

σ2

)
∥ykg − y∗∥2 + (σ2 − σ1) ∥yk+1 − yk∥2

(37)

Proof. Lines 7 and 9 of Algorithm 1 imply

yk+1
f = ykg + σ2(y

k+1 − yk)

= ykg + σ2y
k+1 − σ2

σ1

(
ykg − (1− σ1)y

k
f

)
=

(
1− σ2

σ1

)
ykg + σ2y

k+1 +

(
σ2

σ1
− σ2

)
ykf .
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After subtracting y∗ and rearranging we get

(yk+1
f − y∗) +

(
σ2

σ1
− 1

)
(ykg − y∗) = σ2(y

k+1 − y∗) +

(
σ2

σ1
− σ2

)
(ykf − y∗).

Multiplying both sides by σ1

σ2
gives

σ1

σ2
(yk+1

f − y∗) +

(
1− σ1

σ2

)
(ykg − y∗) = σ1(y

k+1 − y∗) + (1− σ1) (y
k
f − y∗).

Squaring both sides gives

σ1

σ2
∥yk+1

f − y∗∥2 +
(
1− σ1

σ2

)
∥ykg − y∗∥2 − σ1

σ2

(
1− σ1

σ2

)
∥yk+1

f − ykg∥2 ≤ σ1∥yk+1 − y∗∥2 + (1− σ1)∥ykf − y∗∥2.

Rearranging gives

−∥yk+1 − y∗∥2 ≤ −
(

1

σ1
− 1

σ2

)
∥ykg − y∗∥2 + (1− σ1)

σ1
∥ykf − y∗∥2 − 1

σ2
∥yk+1

f − y∗∥2 + 1

σ2

(
1− σ1

σ2

)
∥yk+1

f − ykg∥2.

Using Line 9 of Algorithm 1 we get

−∥yk+1 − y∗∥2 ≤ −
(

1

σ1
− 1

σ2

)
∥ykg − y∗∥2 + (1− σ1)

σ1
∥ykf − y∗∥2 − 1

σ2
∥yk+1

f − y∗∥2 + (σ2 − σ1) ∥yk+1 − yk∥2.
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Lemma 5. Let β be defined as follows:

β = 1/(2L). (38)

Let σ1 be defined as follows:
σ1 = (1/σ2 + 1/2)−1. (39)

Then the following inequality holds:(
1

θ
+

β

2

)
∥yk+1 − y∗∥2 + β

2σ2
∥yk+1

f − y∗∥2

≤ 1

θ
∥yk − y∗∥2 + β(1− σ2/2)

2σ2
∥ykf − y∗∥2 +DF (x

k
g , x

∗)− ν

2
∥xk

g − x∗∥2 − 2⟨xk+1 − x∗, yk+1 − y∗⟩

− 2ν−1⟨ykg + zkg − (y∗ + z∗), yk+1 − y∗⟩ − β

4
∥ykg − y∗∥2 +

(
βσ2

2

4
− 1

θ

)
∥yk+1 − yk∥2.

(40)

Proof.

1

θ
∥yk+1 − y∗∥2 =

1

θ
∥yk − y∗∥2 + 2

θ
⟨xk+1 − xk, xk+1 − x∗⟩ − 1

θ
∥yk+1 − yk∥2.

Using Line 8 of Algorithm 1 we get

1

θ
∥yk+1 − y∗∥2 =

1

θ
∥yk − y∗∥2 + 2β⟨∇F (xk

g)− νxk
g − yk+1, yk+1 − y∗⟩

− 2⟨ν−1(ykg + zkg ) + xk+1, yk+1 − y∗⟩ − 1

θ
∥yk+1 − yk∥2.

Using optimality condition (12) we get

1

θ
∥yk+1 − y∗∥2 =

1

θ
∥yk − y∗∥2 + 2β⟨∇F (xk

g)− νxk
g − (∇F (x∗)− νx∗) + y∗ − yk+1, yk+1 − y∗⟩

− 2⟨ν−1(ykg + zkg ) + xk+1, yk+1 − y∗⟩ − 1

θ
∥yk+1 − yk∥2

=
1

θ
∥yk − y∗∥2 + 2β⟨∇F (xk

g)− νxk
g − (∇F (x∗)− νx∗), yk+1 − y∗⟩ − 2β∥yk+1 − y∗∥2

− 2⟨ν−1(ykg + zkg ) + xk+1, yk+1 − y∗⟩ − 1

θ
∥yk+1 − yk∥2

≤ 1

θ
∥yk − y∗∥2 + β∥∇F (xk

g)− νxk
g − (∇F (x∗)− νx∗)∥2 − β∥yk+1 − y∗∥2

− 2⟨ν−1(ykg + zkg ) + xk+1, yk+1 − y∗⟩ − 1

θ
∥yk+1 − yk∥2.

Function F (x)− ν
2∥x∥

2 is convex and L-smooth, which implies

1

θ
∥yk+1 − y∗∥2 ≤ 1

θ
∥yk − y∗∥2 + 2βL

(
DF (x

k
g , x

∗)− ν

2
∥xk

g − x∗∥2
)
− β∥yk+1 − y∗∥2

− 2⟨ν−1(ykg + zkg ) + xk+1, yk+1 − y∗⟩ − 1

θ
∥yk+1 − yk∥2.

Using β definition (38) we get

1

θ
∥yk+1 − y∗∥2 ≤ 1

θ
∥yk − y∗∥2 +DF (x

k
g , x

∗)− ν

2
∥xk

g − x∗∥2 − β∥yk+1 − y∗∥2

− 2⟨ν−1(ykg + zkg ) + xk+1, yk+1 − y∗⟩ − 1

θ
∥yk+1 − yk∥2.

Using optimality condition (13) we get

1

θ
∥yk+1 − y∗∥2 ≤ 1

θ
∥yk − y∗∥2 +DF (x

k
g , x

∗)− ν

2
∥xk

g − x∗∥2 − β∥yk+1 − y∗∥2

− 2ν−1⟨ykg + zkg − (y∗ + z∗), yk+1 − y∗⟩ − 2⟨xk+1 − x∗, yk+1 − y∗⟩ − 1

θ
∥yk+1 − yk∥2.
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Using (37) together with σ1 definition (39) we get

1

θ
∥yk+1 − y∗∥2 ≤ 1

θ
∥yk − y∗∥2 +DF (x

k
g , x

∗)− ν

2
∥xk

g − x∗∥2 − β

2
∥yk+1 − y∗∥2

+
β(1− σ2/2)

2σ2
∥ykf − y∗∥2 − β

2σ2
∥yk+1

f − y∗∥2 − β

4
∥ykg − y∗∥2 + β (σ2 − σ1)

2
∥yk+1 − yk∥2

− 2ν−1⟨ykg + zkg − (y∗ + z∗), yk+1 − y∗⟩ − 2⟨xk+1 − x∗, yk+1 − y∗⟩ − 1

θ
∥yk+1 − yk∥2

≤ 1

θ
∥yk − y∗∥2 − β

2
∥yk+1 − y∗∥2 + β(1− σ2/2)

2σ2
∥ykf − y∗∥2 − β

2σ2
∥yk+1

f − y∗∥2

+DF (x
k
g , x

∗)− ν

2
∥xk

g − x∗∥2 − β

4
∥ykg − y∗∥2 +

(
βσ2

2

4
− 1

θ

)
∥yk+1 − yk∥2

− 2ν−1⟨ykg + zkg − (y∗ + z∗), yk+1 − y∗⟩ − 2⟨xk+1 − x∗, yk+1 − y∗⟩.

Rearranging gives(
1

θ
+

β

2

)
∥yk+1 − y∗∥2 + β

2σ2
∥yk+1

f − y∗∥2

≤ 1

θ
∥yk − y∗∥2 + β(1− σ2/2)

2σ2
∥ykf − y∗∥2 +DF (x

k
g , x

∗)− ν

2
∥xk

g − x∗∥2 − 2⟨xk+1 − x∗, yk+1 − y∗⟩

− 2ν−1⟨ykg + zkg − (y∗ + z∗), yk+1 − y∗⟩ − β

4
∥ykg − y∗∥2 +

(
βσ2

2

4
− 1

θ

)
∥yk+1 − yk∥2.
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Lemma 6. The following inequality holds:

∥mk∥2P ≤ 8χ2γ2ν−2∥ykg + zkg∥2P + 4χ(1− (4χ)−1)∥mk∥2P − 4χ∥mk+1∥2P. (41)

Proof. Using Line 12 of Algorithm 1 we get

∥mk+1∥2P = ∥γν−1(ykg + zkg ) +mk − (W(k)⊗ Id)
[
γν−1(ykg + zkg ) +mk

]
∥2P

= ∥P
[
γν−1(ykg + zkg ) +mk

]
− (W(k)⊗ Id)P

[
γν−1(ykg + zkg ) +mk

]
∥2.

Using property (3) we obtain

∥mk+1∥2P ≤ (1− χ−1)∥mk + γν−1(ykg + zkg )∥2P.

Using inequality ∥a+ b∥2 ≤ (1 + c)∥a∥2 + (1 + c−1)∥b∥2 with c = 1
2(χ−1) we get

∥mk+1∥2P ≤ (1− χ−1)

[(
1 +

1

2(χ− 1)

)
∥mk∥2P + (1 + 2(χ− 1)) γ2ν−2∥ykg + zkg∥2P

]
≤ (1− (2χ)−1)∥mk∥2P + 2χγ2ν−2∥ykg + zkg∥2P.

Rearranging gives

∥mk∥2P ≤ 8χ2γ2ν−2∥ykg + zkg∥2P + 4χ(1− (4χ)−1)∥mk∥2P − 4χ∥mk+1∥2P.

Lemma 7. Let ẑk be defined as follows:

ẑk = zk −Pmk. (42)

Then the following inequality holds:

1

γ
∥ẑk+1 − z∗∥2 + 4

3γ
∥mk+1∥2P ≤

(
1

γ
− δ

)
∥ẑk − z∗∥2 +

(
1− (4χ)−1 +

3γδ

2

)
4

3γ
∥mk∥2P

− 2ν−1⟨ykg + zkg − (y∗ + z∗), zk − z∗⟩+ γν−2 (1 + 6χ) ∥ykg + zkg∥2P
+ 2δ∥zkg − z∗∥2 +

(
2γδ2 − δ

)
∥zkg − zk∥2.

(43)

Proof.

1

γ
∥ẑk+1 − z∗∥2 =

1

γ
∥ẑk − z∗∥2 + 2

γ
⟨ẑk+1 − ẑk, ẑk − z∗⟩+ 1

γ
∥ẑk+1 − ẑk∥2.

Lines 11 and 12 of Algorithm 1 together with ẑk definition (42) imply

ẑk+1 − ẑk = γδ(zkg − zk)− γν−1P(ykg + zkg ).

Hence,

1

γ
∥ẑk+1 − z∗∥2 =

1

γ
∥ẑk − z∗∥2 + 2δ⟨zkg − zk, ẑk − z∗⟩ − 2ν−1⟨P(ykg + zkg ), ẑ

k − z∗⟩+ 1

γ
∥ẑk+1 − ẑk∥2

=
1

γ
∥ẑk − z∗∥2 + δ∥zkg −Pmk − z∗∥2 − δ∥ẑk − z∗∥2 − δ∥zkg − zk∥2

− 2ν−1⟨P(ykg + zkg ), ẑ
k − z∗⟩+ γ∥δ(zkg − zk)− ν−1P(ykg + zkg )∥2

≤
(
1

γ
− δ

)
∥ẑk − z∗∥2 + 2δ∥zkg − z∗∥2 + 2δ∥mk∥2P − δ∥zkg − zk∥2

− 2ν−1⟨P(ykg + zkg ), ẑ
k − z∗⟩+ 2γδ2∥zkg − zk∥2 + γ∥ν−1P(ykg + zkg )∥2

≤
(
1

γ
− δ

)
∥ẑk − z∗∥2 + 2δ∥zkg − z∗∥2 +

(
2γδ2 − δ

)
∥zkg − zk∥2

− 2ν−1⟨P(ykg + zkg ), z
k − z∗⟩+ γ∥ν−1P(ykg + zkg )∥2 + 2δ∥mk∥2P + 2ν−1⟨P(ykg + zkg ),m

k⟩.
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Using the fact that zk ∈ L⊥ for all k = 0, 1, 2 . . . and optimality condition (14) we get
1

γ
∥ẑk+1 − z∗∥2 ≤

(
1

γ
− δ

)
∥ẑk − z∗∥2 + 2δ∥zkg − z∗∥2 +

(
2γδ2 − δ

)
∥zkg − zk∥2

− 2ν−1⟨ykg + zkg − (y∗ + z∗), zk − z∗⟩+ γν−2∥ykg + zkg∥2P
+ 2δ∥mk∥2P + 2ν−1⟨P(ykg + zkg ),m

k⟩.
Using Young’s inequality we get

1

γ
∥ẑk+1 − z∗∥2 ≤

(
1

γ
− δ

)
∥ẑk − z∗∥2 + 2δ∥zkg − z∗∥2 +

(
2γδ2 − δ

)
∥zkg − zk∥2

− 2ν−1⟨ykg + zkg − (y∗ + z∗), zk − z∗⟩+ γν−2∥ykg + zkg∥2P

+ 2δ∥mk∥2P + 3γχν−2∥ykg + zkg∥2P +
1

3γχ
∥mk∥2P.

Using (41) we get
1

γ
∥ẑk+1 − z∗∥2 ≤

(
1

γ
− δ

)
∥ẑk − z∗∥2 + 2δ∥zkg − z∗∥2 +

(
2γδ2 − δ

)
∥zkg − zk∥2

− 2ν−1⟨ykg + zkg − (y∗ + z∗), zk − z∗⟩+ γν−2∥ykg + zkg∥2P

+ 2δ∥mk∥2P + 6γν−2χ∥ykg + zkg∥2P +
4(1− (4χ)−1)

3γ
∥mk∥2P − 4

3γ
∥mk+1∥2P

=

(
1

γ
− δ

)
∥ẑk − z∗∥2 + 2δ∥zkg − z∗∥2 +

(
2γδ2 − δ

)
∥zkg − zk∥2

− 2ν−1⟨ykg + zkg − (y∗ + z∗), zk − z∗⟩+ γν−2 (1 + 6χ) ∥ykg + zkg∥2P

+

(
1− (4χ)−1 +

3γδ

2

)
4

3γ
∥mk∥2P − 4

3γ
∥mk+1∥2P.

Lemma 8. The following inequality holds:

2⟨ykg + zkg − (y∗ + z∗), yk + zk − (y∗ + z∗)⟩

≥ 2∥ykg + zkg − (y∗ + z∗)∥2 + (1− σ2/2)

σ2

(
∥ykg + zkg − (y∗ + z∗)∥2 − ∥ykf + zkf − (y∗ + z∗)∥2

)
.

(44)

Proof.

2⟨ykg + zkg − (y∗ + z∗), yk + zk − (y∗ + z∗)⟩
= 2∥ykg + zkg − (y∗ + z∗)∥2 + 2⟨ykg + zkg − (y∗ + z∗), yk + zk − (ykg + zkg )⟩.

Using Lines 7 and 10 of Algorithm 1 we get

2⟨ykg + zkg − (y∗ + z∗), yk + zk − (y∗ + z∗)⟩

= 2∥ykg + zkg − (y∗ + z∗)∥2 + 2(1− σ1)

σ1
⟨ykg + zkg − (y∗ + z∗), ykg + zkg − (ykf + zkf )⟩

= 2∥ykg + zkg − (y∗ + z∗)∥2

+
(1− σ1)

σ1

(
∥ykg + zkg − (y∗ + z∗)∥2 + ∥ykg + zkg − (ykf + zkf )∥2 − ∥ykf + zkf − (y∗ + z∗)∥2

)
≥ 2∥ykg + zkg − (y∗ + z∗)∥2 + (1− σ1)

σ1

(
∥ykg + zkg − (y∗ + z∗)∥2 − ∥ykf + zkf − (y∗ + z∗)∥2

)
.

Using σ1 definition (39) we get

2⟨ykg + zkg − (y∗ + z∗), yk + zk − (y∗ + z∗)⟩

≥ 2∥ykg + zkg − (y∗ + z∗)∥2 + (1− σ2/2)

σ2

(
∥ykg + zkg − (y∗ + z∗)∥2 − ∥ykf + zkf − (y∗ + z∗)∥2

)
.
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Lemma 9. Let ζ be defined by
ζ = 1/2. (45)

Then the following inequality holds:

− 2⟨yk+1 − yk, ykg + zkg − (y∗ + z∗)⟩

≤ 1

σ2
∥ykg + zkg − (y∗ + z∗)∥2 − 1

σ2
∥yk+1

f + zk+1
f − (y∗ + z∗)∥2

+ 2σ2∥yk+1 − yk∥2 − 1

2σ2χ
∥ykg + zkg∥2P.

(46)

Proof.

∥yk+1
f + zk+1

f − (y∗ + z∗)∥2

= ∥ykg + zkg − (y∗ + z∗)∥2 + 2⟨yk+1
f + zk+1

f − (ykg + zkg ), y
k
g + zkg − (y∗ + z∗)⟩

+ ∥yk+1
f + zk+1

f − (ykg + zkg )∥2

≤ ∥ykg + zkg − (y∗ + z∗)∥2 + 2⟨yk+1
f + zk+1

f − (ykg + zkg ), y
k
g + zkg − (y∗ + z∗)⟩

+ 2∥yk+1
f − ykg∥2 + 2∥zk+1

f − zkg∥2.

Using Line 9 of Algorithm 1 we get

∥yk+1
f + zk+1

f − (y∗ + z∗)∥2

≤ ∥ykg + zkg − (y∗ + z∗)∥2 + 2σ2⟨yk+1 − yk, ykg + zkg − (y∗ + z∗)⟩+ 2σ2
2∥yk+1 − yk∥2

+ 2⟨zk+1
f − zkg , y

k
g + zkg − (y∗ + z∗)⟩+ 2∥zk+1

f − zkg∥2.

Using Line 13 of Algorithm 1 and optimality condition (14) we get

∥yk+1
f + zk+1

f − (y∗ + z∗)∥2

≤ ∥ykg + zkg − (y∗ + z∗)∥2 + 2σ2⟨yk+1 − yk, ykg + zkg − (y∗ + z∗)⟩+ 2σ2
2∥yk+1 − yk∥2

− 2ζ⟨(W(k)⊗ Id)(y
k
g + zkg ), y

k
g + zkg − (y∗ + z∗)⟩+ 2ζ2∥(W(k)⊗ Id)(y

k
g + zkg )∥2

= ∥ykg + zkg − (y∗ + z∗)∥2 + 2σ2⟨yk+1 − yk, ykg + zkg − (y∗ + z∗)⟩+ 2σ2
2∥yk+1 − yk∥2

− 2ζ⟨(W(k)⊗ Id)(y
k
g + zkg ), y

k
g + zkg ⟩+ 2ζ2∥(W(k)⊗ Id)(y

k
g + zkg )∥2.

Using ζ definition (45) we get

∥yk+1
f + zk+1

f − (y∗ + z∗)∥2

≤ ∥ykg + zkg − (y∗ + z∗)∥2 + 2σ2⟨yk+1 − yk, ykg + zkg − (y∗ + z∗)⟩+ 2σ2
2∥yk+1 − yk∥2

− ⟨(W(k)⊗ Id)(y
k
g + zkg ), y

k
g + zkg ⟩+

1

2
∥(W(k)⊗ Id)(y

k
g + zkg )∥2

= ∥ykg + zkg − (y∗ + z∗)∥2 + 2σ2⟨yk+1 − yk, ykg + zkg − (y∗ + z∗)⟩+ 2σ2
2∥yk+1 − yk∥2

− 1

2
∥(W(k)⊗ Id)(y

k
g + zkg )∥2 −

1

2
∥ykg + zkg∥2 +

1

2
∥(W(k)⊗ Id)(y

k
g + zkg )− (ykg + zkg )∥2

+
1

2
∥(W(k)⊗ Id)(y

k
g + zkg )∥2

≤ ∥ykg + zkg − (y∗ + z∗)∥2 + 2σ2⟨yk+1 − yk, ykg + zkg − (y∗ + z∗)⟩+ 2σ2
2∥yk+1 − yk∥2

− 1

2
∥ykg + zkg∥2P +

1

2
∥(W(k)⊗ Id)(y

k
g + zkg )− (ykg + zkg )∥2P.

= ∥ykg + zkg − (y∗ + z∗)∥2 + 2σ2⟨yk+1 − yk, ykg + zkg − (y∗ + z∗)⟩+ 2σ2
2∥yk+1 − yk∥2

− 1

2
∥ykg + zkg∥2P +

1

2
∥(W(k)⊗ Id)P(ykg + zkg )−P(ykg + zkg )∥2.

Using condition (3) we get

∥yk+1
f + zk+1

f − (y∗ + z∗)∥2
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≤ ∥ykg + zkg − (y∗ + z∗)∥2 + 2σ2⟨yk+1 − yk, ykg + zkg − (y∗ + z∗)⟩+ 2σ2
2∥yk+1 − yk∥2

− (2χ)−1∥ykg + zkg∥2P.

Rearranging gives

− 2⟨yk+1 − yk, ykg + zkg − (y∗ + z∗)⟩

≤ 1

σ2
∥ykg + zkg − (y∗ + z∗)∥2 − 1

σ2
∥yk+1

f + zk+1
f − (y∗ + z∗)∥2

+ 2σ2∥yk+1 − yk∥2 − 1

2σ2χ
∥ykg + zkg∥2P.

Lemma 10. Let δ be defined as follows:

δ =
1

17L
. (47)

Let γ be defined as follows:
γ =

ν

14σ2χ2
. (48)

Let θ be defined as follows:
θ =

ν

4σ2
. (49)

Let σ2 be defined as follows:

σ2 =

√
µ

16χ
√
L
. (50)

Let Ψk
yz be the following Lyapunov function

Ψk
yz =

(
1

θ
+

β

2

)
∥yk − y∗∥2 + β

2σ2
∥ykf − y∗∥2 + 1

γ
∥ẑk − z∗∥2

+
4

3γ
∥mk∥2P +

ν−1

σ2
∥ykf + zkf − (y∗ + z∗)∥2.

(51)

Then the following inequality holds:

Ψk+1
yz ≤

(
1−

√
µ

32χ
√
L

)
Ψk

yz +DF (x
k
g , x

∗)− ν

2
∥xk

g − x∗∥2 − 2⟨xk+1 − x∗, yk+1 − y∗⟩. (52)

Proof. Combining (40) and (43) gives(
1

θ
+

β

2

)
∥yk+1 − y∗∥2 + β

2σ2
∥yk+1

f − y∗∥2 + 1

γ
∥ẑk+1 − z∗∥2 + 4

3γ
∥mk+1∥2P

≤
(
1

γ
− δ

)
∥ẑk − z∗∥2 +

(
1− (4χ)−1 +

3γδ

2

)
4

3γ
∥mk∥2P +

1

θ
∥yk − y∗∥2 + β(1− σ2/2)

2σ2
∥ykf − y∗∥2

− 2ν−1⟨ykg + zkg − (y∗ + z∗), yk + zk − (y∗ + z∗)⟩ − 2ν−1⟨ykg + zkg − (y∗ + z∗), yk+1 − yk⟩

+ γν−2 (1 + 6χ) ∥ykg + zkg∥2P +

(
βσ2

2

4
− 1

θ

)
∥yk+1 − yk∥2 + 2δ∥zkg − z∗∥2 − β

4
∥ykg − y∗∥2

+DF (x
k
g , x

∗)− ν

2
∥xk

g − x∗∥2 − 2⟨xk+1 − x∗, yk+1 − y∗⟩+
(
2γδ2 − δ

)
∥zkg − zk∥2.

Using (44) and (46) we get(
1

θ
+

β

2

)
∥yk+1 − y∗∥2 + β

2σ2
∥yk+1

f − y∗∥2 + 1

γ
∥ẑk+1 − z∗∥2 + 4

3γ
∥mk+1∥2P

≤
(
1

γ
− δ

)
∥ẑk − z∗∥2 +

(
1− (4χ)−1 +

3γδ

2

)
4

3γ
∥mk∥2P +

1

θ
∥yk − y∗∥2 + β(1− σ2/2)

2σ2
∥ykf − y∗∥2
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− 2ν−1∥ykg + zkg − (y∗ + z∗)∥2 + ν−1(1− σ2/2)

σ2

(
∥ykf + zkf − (y∗ + z∗)∥2 − ∥ykg + zkg − (y∗ + z∗)∥2

)
+

ν−1

σ2
∥ykg + zkg − (y∗ + z∗)∥2 − ν−1

σ2
∥yk+1

f + zk+1
f − (y∗ + z∗)∥2 + 2ν−1σ2∥yk+1 − yk∥2

− ν−1

2σ2χ
∥ykg + zkg∥2P + γν−2 (1 + 6χ) ∥ykg + zkg∥2P +

(
βσ2

2

4
− 1

θ

)
∥yk+1 − yk∥2 + 2δ∥zkg − z∗∥2

− β

4
∥ykg − y∗∥2 +DF (x

k
g , x

∗)− ν

2
∥xk

g − x∗∥2 − 2⟨xk+1 − x∗, yk+1 − y∗⟩+
(
2γδ2 − δ

)
∥zkg − zk∥2

=

(
1

γ
− δ

)
∥ẑk − z∗∥2 +

(
1− (4χ)−1 +

3γδ

2

)
4

3γ
∥mk∥2P +

1

θ
∥yk − y∗∥2 + β(1− σ2/2)

2σ2
∥ykf − y∗∥2

+
ν−1(1− σ2/2)

σ2
∥ykf + zkf − (y∗ + z∗)∥2 − ν−1

σ2
∥yk+1

f + zk+1
f − (y∗ + z∗)∥2

+ 2δ∥zkg − z∗∥2 − β

4
∥ykg − y∗∥2 + ν−1

(
1

σ2
− (1− σ2/2)

σ2
− 2

)
∥ykg + zkg − (y∗ + z∗)∥2

+

(
γν−2 (1 + 6χ)− ν−1

2σ2χ

)
∥ykg + zkg∥2P +

(
βσ2

2

4
+ 2ν−1σ2 −

1

θ

)
∥yk+1 − yk∥2

+
(
2γδ2 − δ

)
∥zkg − zk∥2 +DF (x

k
g , x

∗)− ν

2
∥xk

g − x∗∥2 − 2⟨xk+1 − x∗, yk+1 − y∗⟩

=

(
1

γ
− δ

)
∥ẑk − z∗∥2 +

(
1− (4χ)−1 +

3γδ

2

)
4

3γ
∥mk∥2P +

1

θ
∥yk − y∗∥2 + β(1− σ2/2)

2σ2
∥ykf − y∗∥2

+
ν−1(1− σ2/2)

σ2
∥ykf + zkf − (y∗ + z∗)∥2 − ν−1

σ2
∥yk+1

f + zk+1
f − (y∗ + z∗)∥2

+ 2δ∥zkg − z∗∥2 − β

4
∥ykg − y∗∥2 − 3ν−1

2
∥ykg + zkg − (y∗ + z∗)∥2 +

(
2γδ2 − δ

)
∥zkg − zk∥2

+

(
γν−2 (1 + 6χ)− ν−1

2σ2χ

)
∥ykg + zkg∥2P +

(
βσ2

2

4
+ 2ν−1σ2 −

1

θ

)
∥yk+1 − yk∥2

+DF (x
k
g , x

∗)− ν

2
∥xk

g − x∗∥2 − 2⟨xk+1 − x∗, yk+1 − y∗⟩.

Using β definition (38) and ν definition (34) we get(
1

θ
+

β

2

)
∥yk+1 − y∗∥2 + β

2σ2
∥yk+1

f − y∗∥2 + 1

γ
∥ẑk+1 − z∗∥2 + 4

3γ
∥mk+1∥2P

≤
(
1

γ
− δ

)
∥ẑk − z∗∥2 +

(
1− (4χ)−1 +

3γδ

2

)
4

3γ
∥mk∥2P +

1

θ
∥yk − y∗∥2 + β(1− σ2/2)

2σ2
∥ykf − y∗∥2

+
ν−1(1− σ2/2)

σ2
∥ykf + zkf − (y∗ + z∗)∥2 − ν−1

σ2
∥yk+1

f + zk+1
f − (y∗ + z∗)∥2

+ 2δ∥zkg − z∗∥2 − 1

8L
∥ykg − y∗∥2 − 3

µ
∥ykg + zkg − (y∗ + z∗)∥2 +

(
2γδ2 − δ

)
∥zkg − zk∥2

+

(
γν−2 (1 + 6χ)− ν−1

2σ2χ

)
∥ykg + zkg∥2P +

(
βσ2

2

4
+ 2ν−1σ2 −

1

θ

)
∥yk+1 − yk∥2

+DF (x
k
g , x

∗)− ν

2
∥xk

g − x∗∥2 − 2⟨xk+1 − x∗, yk+1 − y∗⟩.

Using δ definition (47) we get(
1

θ
+

β

2

)
∥yk+1 − y∗∥2 + β

2σ2
∥yk+1

f − y∗∥2 + 1

γ
∥ẑk+1 − z∗∥2 + 4

3γ
∥mk+1∥2P

≤
(
1

γ
− δ

)
∥ẑk − z∗∥2 +

(
1− (4χ)−1 +

3γδ

2

)
4

3γ
∥mk∥2P +

1

θ
∥yk − y∗∥2 + β(1− σ2/2)

2σ2
∥ykf − y∗∥2

+
ν−1(1− σ2/2)

σ2
∥ykf + zkf − (y∗ + z∗)∥2 − ν−1

σ2
∥yk+1

f + zk+1
f − (y∗ + z∗)∥2
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+

(
γν−2 (1 + 6χ)− ν−1

2σ2χ

)
∥ykg + zkg∥2P +

(
βσ2

2

4
+ 2ν−1σ2 −

1

θ

)
∥yk+1 − yk∥2

+
(
2γδ2 − δ

)
∥zkg − zk∥2 +DF (x

k
g , x

∗)− ν

2
∥xk

g − x∗∥2 − 2⟨xk+1 − x∗, yk+1 − y∗⟩.

Using γ definition (48) we get(
1

θ
+

β

2

)
∥yk+1 − y∗∥2 + β

2σ2
∥yk+1

f − y∗∥2 + 1

γ
∥ẑk+1 − z∗∥2 + 4

3γ
∥mk+1∥2P

≤
(
1

γ
− δ

)
∥ẑk − z∗∥2 +

(
1− (4χ)−1 +

3γδ

2

)
4

3γ
∥mk∥2P +

1

θ
∥yk − y∗∥2 + β(1− σ2/2)

2σ2
∥ykf − y∗∥2

+
ν−1(1− σ2/2)

σ2
∥ykf + zkf − (y∗ + z∗)∥2 − ν−1

σ2
∥yk+1

f + zk+1
f − (y∗ + z∗)∥2

+

(
βσ2

2

4
+ 2ν−1σ2 −

1

θ

)
∥yk+1 − yk∥2 +

(
2γδ2 − δ

)
∥zkg − zk∥2

+DF (x
k
g , x

∗)− ν

2
∥xk

g − x∗∥2 − 2⟨xk+1 − x∗, yk+1 − y∗⟩.

Using θ definition together with (34), (38) and (50) gives(
1

θ
+

β

2

)
∥yk+1 − y∗∥2 + β

2σ2
∥yk+1

f − y∗∥2 + 1

γ
∥ẑk+1 − z∗∥2 + 4

3γ
∥mk+1∥2P

≤
(
1

γ
− δ

)
∥ẑk − z∗∥2 +

(
1− (4χ)−1 +

3γδ

2

)
4

3γ
∥mk∥2P +

1

θ
∥yk − y∗∥2 + β(1− σ2/2)

2σ2
∥ykf − y∗∥2

+
ν−1(1− σ2/2)

σ2
∥ykf + zkf − (y∗ + z∗)∥2 − ν−1

σ2
∥yk+1

f + zk+1
f − (y∗ + z∗)∥2

+
(
2γδ2 − δ

)
∥zkg − zk∥2 +DF (x

k
g , x

∗)− ν

2
∥xk

g − x∗∥2 − 2⟨xk+1 − x∗, yk+1 − y∗⟩.

Using γ definition (48) and δ definition (47) we get(
1

θ
+

β

2

)
∥yk+1 − y∗∥2 + β

2σ2
∥yk+1

f − y∗∥2 + 1

γ
∥ẑk+1 − z∗∥2 + 4

3γ
∥mk+1∥2P

≤
(
1

γ
− δ

)
∥ẑk − z∗∥2 +

(
1− (8χ)−1

) 4

3γ
∥mk∥2P +

1

θ
∥yk − y∗∥2 + β(1− σ2/2)

2σ2
∥ykf − y∗∥2

+
ν−1(1− σ2/2)

σ2
∥ykf + zkf − (y∗ + z∗)∥2 − ν−1

σ2
∥yk+1

f + zk+1
f − (y∗ + z∗)∥2

+DF (x
k
g , x

∗)− ν

2
∥xk

g − x∗∥2 − 2⟨xk+1 − x∗, yk+1 − y∗⟩.

After rearranging and using Ψk
yz definition (51) we get

Ψk+1
yz ≤ max

{
(1 + θβ/2)−1, (1− γδ), (1− σ2/2), (1− (8χ)−1)

}
Ψk

yz

+DF (x
k
g , x

∗)− ν

2
∥xk

g − x∗∥2 − 2⟨xk+1 − x∗, yk+1 − y∗⟩

≤
(
1−

√
µ

32χ
√
L

)
Ψk

yz +DF (x
k
g , x

∗)− ν

2
∥xk

g − x∗∥2 − 2⟨xk+1 − x∗, yk+1 − y∗⟩.
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Proof of Theorem 4. Combining (36) and (52) gives

Ψk+1
x +Ψk+1

yz ≤

(
1−

√
µ

√
µ+ 2

√
L

)
Ψk

x +

(
1−

λmin
√
µ

32λmax

√
L

)
Ψk

yz

≤
(
1−

λmin
√
µ

32λmax

√
L

)
(Ψk

x +Ψk
yz).

This implies

Ψk
x +Ψk

yz ≤
(
1−

λmin
√
µ

32λmax

√
L

)k

(Ψ0
x +Ψ0

yz).

Using Ψk
x definition (35) we get

∥xk − x∗∥2 ≤ ηΨk
x ≤ η(Ψk

x +Ψk
yz) ≤

(
1−

λmin
√
µ

32λmax

√
L

)k

η(Ψ0
x +Ψ0

yz).

Choosing C = η(Ψ0
x +Ψ0

yz) and using the number of iterations

k = 32χ
√

L/µ log
C

ε
= O

(
χ
√

L/µ log
1

ϵ

)
.

we get
∥xk − x∗∥2 ≤ ϵ,

which concludes the proof.
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