

702 A THE USE OF LARGE LANGUAGE MODELS (LLMs)

704 This research employed multiple large language models as test subjects for benchmark development
 705 and validation. Additionally, LLMs were used minimally for sentence-level language refinement
 706 and polishing to improve clarity of expression. All core research contributions, methodology, and
 707 analysis were conducted independently by the authors without AI assistance.

709 B DETAILED EXPERIMENT RESULTS

711 B.1 RESULTS OF PERCEPTION TASKS

714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733	714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733	714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733	714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733								
			714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733				714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733				
			714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733	714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733	714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733	714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733	714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733	714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733			
Gemini-2.5-pro	ACC (↑)	0.88	0.65	0.45	0.65	0.83	0.63	0.46	0.64		
	MSE (↓)	0.39	2.30	27.36	10.02	0.67	3.75	35.81	13.41		
GPT-4o	ACC (↑)	0.75	0.51	0.26	0.51	0.76	0.57	0.30	0.54		
	MSE (↓)	0.80	2.63	53.72	19.05	2.15	6.96	75.44	28.18		
Claude-3.7-sonnet	ACC (↑)	0.72	0.27	0.01	0.36	0.73	0.57	0.35	0.55		
	MSE (↓)	0.56	3.63	50.96	18.38	2.29	6.67	63.57	24.18		
Grok-3	ACC (↑)	0.47	0.14	0.04	0.22	0.70	0.53	0.27	0.50		
	MSE (↓)	3.58	21.50	157.05	60.71	2.49	6.92	68.51	26.48		
Doubao-1.5-vision-pro	ACC (↑)	0.60	0.10	0.01	0.24	0.71	0.53	0.30	0.51		
	MSE (↓)	0.67	5.93	107.78	38.13	2.56	9.14	62.59	24.76		
Kimi-VL-A3B	ACC (↑)	0.23	0.13	0.08	0.15	0.63	0.46	0.23	0.44		
	MSE (↓)	15.68	28.04	103.86	49.19	2.86	13.44	94.38	34.96		
Qwen2.5-VL-72B	ACC (↑)	0.67	0.42	0.21	0.43	0.68	0.47	0.31	0.49		
	MSE (↓)	1.09	3.98	53.90	19.59	1.87	6.55	47.35	18.59		

Table 7: Counting Task Performance Across Different Models

734 735 736 737 738 739 740 741 742 743 744 745 746	734 735 736 737 738 739 740 741 742 743 744 745 746	734 735 736 737 738 739 740 741 742 743 744 745 746				
		734 735 736 737 738 739 740 741 742 743 744 745 746	734 735 736 737 738 739 740 741 742 743 744 745 746	734 735 736 737 738 739 740 741 742 743 744 745 746	734 735 736 737 738 739 740 741 742 743 744 745 746	734 735 736 737 738 739 740 741 742 743 744 745 746
Gemini-2.5-pro	0.96	0.94	0.91	0.94		
GPT-4o	0.93	0.93	0.88	0.91		
Claude-3.7-sonnet	0.90	0.87	0.84	0.83		
Grok-3	0.84	0.84	0.83	0.84		
Doubao-1.5-vision-pro	0.94	0.93	0.91	0.93		
Kimi-VL-A3B	0.69	0.65	0.63	0.66		
Qwen2.5-VL-72B	0.88	0.86	0.83	0.86		

Table 8: Element Classification Task Performance Across Different Models (in decimals)

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

Models	Metric	Interconnect Perception Task							
		Connection Judgment				Connection Identification			
		Easy	Medium	Hard	Total	Easy	Medium	Hard	Total
Gemini-2.5-pro	ACC (↑)	0.86	0.83	0.85	0.85	0.78	0.51	0.50	0.60
	F1 (↑)	-	-	-	-	0.93	0.86	0.86	0.88
GPT-4o	ACC (↑)	0.74	0.71	0.74	0.73	0.27	0.12	0.10	0.16
	F1 (↑)	-	-	-	-	0.74	0.61	0.59	0.65
Claude-3.7-sonnet	ACC (↑)	0.74	0.76	0.77	0.76	0.36	0.25	0.22	0.27
	F1 (↑)	-	-	-	-	0.74	0.71	0.68	0.71
Grok-3	ACC (↑)	0.72	0.72	0.67	0.70	0.25	0.16	0.13	0.18
	F1 (↑)	-	-	-	-	0.70	0.63	0.62	0.65
Douba-1.5-vision-pro	ACC (↑)	0.78	0.74	0.77	0.76	0.30	0.13	0.14	0.19
	F1 (↑)	-	-	-	-	0.72	0.60	0.59	0.64
Kimi-VL-A3B	ACC (↑)	0.55	0.54	0.51	0.53	0.13	0.09	0.10	0.10
	F1 (↑)	-	-	-	-	0.57	0.51	0.52	0.53
Qwen2.5-VL-72B	ACC (↑)	0.75	0.78	0.77	0.77	0.20	0.10	0.13	0.14
	F1 (↑)	-	-	-	-	0.56	0.48	0.53	0.52

Table 9: Interconnect Perception Task Performance Across Different Models

Models	Location Description Task (ACC ↑)			
	Easy	Medium	Hard	Total
Gemini-2.5-pro	0.61	0.60	0.61	0.61
GPT-4o	0.44	0.31	0.37	0.37
Claude-3.7-sonnet	0.49	0.45	0.50	0.48
Grok-3	0.45	0.55	0.49	0.50
Douba-1.5-vision-pro	0.51	0.47	0.38	0.45
Kimi-VL-A3B	0.32	0.33	0.27	0.31
Qwen2.5-VL-72B	0.57	0.59	0.53	0.56

Table 10: Location Description Task Performance Across Different Models

Models	Topology Generation Task (NED ↓)			
	Easy	Medium	Hard	Total
Gemini-2.5-pro	0.73	0.95	1.34	0.91
GPT-4o	1.31	1.56	1.46	1.40
Claude-3.7-sonnet	1.72	1.64	1.51	1.65
Grok-3	2.08	1.71	1.37	1.84
Douba-1.5-vision-pro	1.54	1.52	1.68	1.57
Kimi-VL-A3B	—	—	—	—
Qwen2.5-VL-72B	2.65	2.14	1.95	2.38

Table 11: Topology Generation Task Performance Across Different Models

808

809

B.2 RESULTS OF ANALYSIS TASKS

Models	Function Identification Task (ACC \uparrow)	
	Function (text as options)	Function (image as options)
Gemini-2.5-pro	0.95	0.94
GPT-4o	0.93	0.89
Claude-3.7-sonnet	0.88	0.74
Grok-3	0.77	0.22
Doubaot-1.5-vision-pro	0.94	0.93
Kimi-VL-A3B	0.59	0.28
Qwen2.5-VL-72B	0.78	0.85

Table 12: Function Identification Task Performance Across Different Models

Models	Circuit Partition Task							
	Easy		Medium		Hard		Overall	
	ACC↑	F1↑	ACC↑	F1↑	ACC↑	F1↑	ACC↑	F1↑
Gemini-2.5-pro	0.52	0.81	0.33	0.81	0.20	0.78	0.35	0.80
GPT-4o	0.21	0.55	0.07	0.59	0.06	0.57	0.11	0.57
Claude-3.7-sonnet	0.29	0.66	0.11	0.62	0.08	0.62	0.16	0.64
Grok-3	0.26	0.59	0.17	0.63	0.03	0.56	0.15	0.59
Doubao-1.5-vision-pro	0.26	0.63	0.04	0.61	0.03	0.54	0.11	0.60
Kimi-VL-A3B	0.03	0.29	0.00	0.00	0.00	0.00	0.00	0.28
Qwen2.5-VL-72B	0.06	0.44	0.00	0.49	0.00	0.43	0.02	0.45

Table 13: Circuit Partition Task Performance Across Different Models

Models	Reasoning Task (ACC ↑)			
	Op-amp	LDO	Bandgap	Comparator
Gemini-2.5-pro	0.94	0.90	0.88	0.96
GPT-4o	0.78	0.84	0.64	0.84
Claude-3.7-sonnet	0.95	0.96	0.78	0.96
Grok-3	0.60	0.72	0.52	0.60
Doubao-1.5-vision-pro	0.90	0.84	0.80	0.80
Kimi-VL-A3B	0.81	0.46	0.86	0.84
Qwen2.5-VL-72B	0.81	0.90	0.72	0.84

Table 14: Reasoning Task Performance Across Different Models

864

865

866

867

868

869

870

871

872

Models	Caption Generation Task(ACC ↑)		
	Undergraduate	Graduate	Total
Gemini-2.5-pro	0.63	0.72	0.70
GPT-4o	0.58	0.63	0.61
Claude-3.7-sonnet	0.89	1.00	0.98
Grok-3	0.21	0.47	0.41
Douba-1.5-vision-pro	0.74	0.69	0.70
Kimi-VL-A3B	0.74	0.70	0.71
Qwen2.5-VL-72B	0.89	0.75	0.78

881

Table 15: Caption Generation Task Performance Across Different Models

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

Models	TQA Task(ACC ↑)			
	Undergraduate	Graduate	Engineer	Total
Gemini-2.5-pro	0.89	0.89	0.39	0.72
GPT-4o	0.88	0.88	0.58	0.78
Claude-3.7-sonnet	0.90	0.88	0.45	0.74
Grok-3	0.86	0.84	0.53	0.74
Douba-1.5-vision-pro	0.88	0.88	0.52	0.76
Kimi-VL-A3B	0.80	0.82	0.16	0.59
Qwen2.5-VL-72B	0.85	0.85	0.37	0.69
DeepSeek-R1	0.89	0.90	0.58	0.77

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

Table 16: TQA Task Performance Across Different Models (Decimal Format)

918
919

B.3 RESULTS OF DESIGN TASKS

920
921

B.3.1 CIRCUIT DESIGN TASK

922

Id	Type	Circuit Description	Id	Type	Circuit Description
1	Amplifier	Single-stage common-source amp. with R load	15	Op-amp	Telescopic cascode op-amp
2	Amplifier	3-stage common-source amp. with R load	16	Oscillator	RC phase-shift oscillator
3	Amplifier	Common-drain amp. with R load	17	Oscillator	A Wien bridge oscillator
4	Amplifier	Single-stage common-gate amp. with R load	18	Integrator	Op-amp integrator
5	Amplifier	Single-stage cascode amp. with R load	19	Differentiator	Op-amp differentiator
6	Inverter	NMOS inverter with R load	20	Adder	Op-amp adder
7	Inverter	Logical inverter with NMOS and PMOS	21	Subtractor	Op-amp subtractor
8	Current mirror	NMOS constant current source with R load	22	Schmitt trigger	Non-inverting Schmitt trigger
9	Amplifier	2-stage amp. with Miller compensation	23	VCO	Voltage-controlled oscillator
10	Amplifier	Common-source amp. with diode-connected load	24	Bandgap	A classic brokaw bandgap reference
11	Op-amp	Differential op-amp with current mirror load	25	Comparator	A low offset voltage dual comparator
12	Current mirror	Cascode current mirror	26	LDO	1A low dropout voltage regulator
13	Op-amp	Single-stage common-source op-amp with R loads	27	PLL	Phase-locked loop
14	Op-amp	2-stage differential op-amp with active loads	28	SAR-ADC	Successive approximation register ADC

934

Table 17: Circuit block library (two parallel lists), with column-specific background coloring(blue means simple, green means complex, red means system level

937

938

Models	1. Amplifier			2. Amplifier			3. Amplifier			4. Amplifier		
	p@3	p@5	p@10									
Gemini-2.5-pro	1	1	1	1	1	1	0.67	0.67	0.67	1	1	1
Gpt-4o	1	1	1	1	1	1	0	1	1	0.33	0.33	0.33
Claude-3.7-sonnet	1	1	1	1	1	1	0.33	0.67	1	0.67	0.67	0.67
Grok-3	1	1	1	1	1	1	0	1	1	0.67	0.67	0.67
Doubaao-1.5-vision-pro	0.67	0.67	0.67	0.43	0.43	0.43	0.33	0.33	0.33	0.13	0.13	0.13
Kimi-VL-A3B	0	0	0	0	0	0	0	0	0	0	0	0
Qwen2.5-VL-72B	0	0	0	0	0	0	0	0	0	0	0	0

945

946

Table 18: Per-circuit pass@k scores (k = 3, 5, 10) for CKT1–CKT4 across multiple models

947

948

Models	5. Amplifier			6. Inverter			7. Inverter			8. Current mirror		
	p@3	p@5	p@10	p@3	p@5	p@10	p@3	p@5	p@10	p@3	p@5	p@10
Gemini-2.5-pro	1	1	1	1	1	1	1	1	1	1	1	1
GPT-4o	1	1	1	1	1	1	1	1	1	1	1	1
Claude-3.7-sonnet	1	1	1	1	1	1	1	1	1	1	1	1
Grok-3	1	1	1	1	1	1	1	1	1	1	1	1
Doubaao-1.5-vision-pro	0.23	0.23	0.23	0.23	0.23	0.23	0.49	0.49	0.49	1	1	1
Kimi-VL-A3B	0	0	0	0	0	0	0	0	0	0	0	0
Qwen2.5-VL-72B	0	0	0	0	0	0	0	0	0	0	0	0

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

Table 19: Per-circuit pass@k scores (k = 3, 5, 10) for CKT5–CKT8 across multiple models

972

973

Model	9. Amplifier			10. Amplifier			11. Op-amp			12. Current mirror		
	p@3	p@5	p@10	p@3	p@5	p@10	p@3	p@5	p@10	p@3	p@5	p@10
Gemini-2.5-pro	1	1	1	0.61	0.61	0.61	0.48	0.48	0.48	0.24	0.24	0.24
GPT-4o	1	1	1	0.43	0.43	0.43	0.22	0.22	0.22	0	0	0
Claude-3.7-sonnet	1	1	1	0.87	0.87	0.87	0.65	0.65	0.65	0.62	0.62	0.62
Grok-3	1	1	1	0.86	0.86	0.86	0.29	0.29	0.29	0.33	0.33	0.33
Douba-1.5-vision-pro	0.27	0.27	0.27	0.61	0.61	0.61	0.33	0.33	0.33	0.31	0.31	0.31
Kimi-VL-A3B	0	0	0	0	0	0	0	0	0	0	0	0
Qwen2.5-VL-72B	0	0	0	0	0	0	0	0	0	0	0	0

980

981

Table 20: Per-circuit pass@k scores (k = 3, 5, 10) for CKT9–CKT12 across multiple models

982

983

Model	13. Op-amp			14. Op-amp			15. Op-amp			16. Oscillator		
	p@3	p@5	p@10	p@3	p@5	p@10	p@3	p@5	p@10	p@3	p@5	p@10
Gemini-2.5-pro	0.43	0.43	0.43	1	1	1	0.33	0.4	0.1	0	0	0
GPT-4o	0.32	0.32	0.32	0.21	0.21	0.21	0	0.2	0.1	0.33	0.6	0.3
Claude-3.7-sonnet	1	1	1	0.71	0.71	0.71	1	1	0.9	0	0	0
Grok-3	0.69	0.69	0.69	0.89	0.89	0.89	1	1	1	0	0	0
Douba-1.5-vision-pro	0.68	0.68	0.68	0	0	0	0.33	0.2	0.1	0.33	0.2	0.1
Kimi-VL-A3B	0	0	0	0	0	0	0	0	0	0	0	0
Qwen2.5-VL-72B	0	0	0	0	0	0	0	0	0	0	0	0

991

992

Table 21: Per-circuit pass@k scores (k = 3, 5, 10) for CKT13–CKT16 across multiple models

993

994

Model	17. Oscillator			18. Integrator			19. Differentiator			20. Adder		
	p@3	p@5	p@10	p@3	p@5	p@10	p@3	p@5	p@10	p@3	p@5	p@10
Gemini-2.5-pro	0	0	0	0.33	0.4	0.1	0.2	0.1	0.33	0.4	0.1	0.33
GPT-4o	1	0.2	0.1	0.33	0.6	0.1	0.4	0.1	0	0.4	0.5	0.33
Claude-3.7-sonnet	0.33	1	0.3	0.33	0.2	0.1	0.33	0.2	0.1	1	0.6	0.1
Grok-3	0.33	0.6	0.3	0.67	0	0.3	0.67	0.8	0.1	0.33	0.4	0.2
Douba-1.5-vision-pro	0.33	0.2	0.1	1	0.2	0.4	0.67	0.2	0.1	0.33	0.2	0.1
Kimi-VL-A3B	0	0	0	0	0	0	0	0	0	0	0	0
Qwen2.5-VL-72B	0	0	0	0	0	0	0	0	0	0	0	0

1002

1003

Table 22: Per-circuit pass@k scores (k = 3, 5, 10) for CKT17–CKT20 across multiple models

1004

1005

Model	21. Subtractor			22. Schmitt trigger			23. VCO			24. Bandgap		
	p@3	p@5	p@10	p@3	p@5	p@10	p@3	p@5	p@10	p@3	p@5	p@10
Gemini-2.5-pro	0.4	0.1	0.33	0.33	0.4	0.1	0.67	1	0.9	0	0	0
GPT-4o	0.6	0.2	0.33	0.2	0.33	0.4	0.5	0.33	0.6	0	0	0
Claude-3.7-sonnet	1	0.8	0.2	0.33	0.4	0.1	0.33	0.2	0.2	0	0	0
Grok-3	0.33	0.2	1	0.33	0.2	0.1	0.6	0.5	0.33	0	0	0
Douba-1.5-vision-pro	0.33	0.2	0.1	0.33	0.2	0.1	0.67	0.2	0.1	0	0	0
Kimi-VL-A3B	0	0	0	0	0	0	0	0	0	0	0	0
Qwen2.5-VL-72B	0	0	0	0	0	0	0	0	0	0	0	0

1013

1014

Table 23: Per-circuit pass@k scores (k = 3, 5, 10) for CKT21–CKT24 across multiple models

1015

1016

Model	25. Comparator			26. LDO			27. PLL			28. SAR-ADC		
	p@3	p@5	p@10	p@3	p@5	p@10	p@3	p@5	p@10	p@3	p@5	p@10
Gemini-2.5-pro	0	0	0	0	0	0	0	0	0	0	0	0
GPT-4o	0	0	0	0	0	0	0	0	0	0	0	0
Claude-3.7-sonnet	0	0	0	0	0	0	0	0	0	0	0	0
Grok-3	0	0	0	0	0	0	0	0	0	0	0	0
Douba-1.5-vision-pro	0	0	0	0	0	0	0	0	0	0	0	0
Kimi-VL-A3B	0	0	0	0	0	0	0	0	0	0	0	0
Qwen2.5-VL-72B	0	0	0	0	0	0	0	0	0	0	0	0

1024

1025

Table 24: Per-circuit pass@k scores (k = 3, 5, 10) for CKT25–CKT28 across multiple models

1026

B.3.2 TESTBENCH DESIGN TASK

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

ID	Circuit Type	# Metrics	ID	Circuit Type	# Metrics
1	Cross-coupled differential amplifier	CMRR, DC gain, GBW, Phase margin, Power, PSR, SR	7	LDO	LDR, LNR, Drop voltage, DC gain, Phase margin, PSR, Offset
2	Comparator	Delay, Offset	8	VCO	Jitter, Phase noise
3	Bootstrap	ENOB	9	Unit capacitor	MC-mismatch
4	Telescopic cascode OTA	CMRR, DC gain, GBW, Phase margin, Power, PSR, SR	10	Folded cascode OTA	DC gain, SR, Phase margin, GBW, Power
5	PLL	Jitter, Phase noise	11	SAR-ADC	ENOB
6	MOS_Ron	Ron	12	Bandgap	BuildingupV, Noise, PSR, TC

Table 25: Testbench design tasks with metrics to be simulated.

Models	1. Cross-coupled differential amplifier						2. Comparator		3. Bootstrap	
	CMRR	DC gain	GBW	Phase margin	Power	PSR	SR	Delay	Offset	ENOB
Gemini-2.5-pro	0	0	0	0	0	0	0	0	0	0
GPT-4o	0 (1)	0	0	0	0(4)	0(2)	0	0(2)	0(2)	0
Claude-3.7-sonnet	0	0	0	0	0	0	0	0	0	0
Grok-3	0	0	0	0	0	0	0	0	0	0
Douba-1.5-vision-pro	0	0	0	0	0	0	0	0	0	0
Kimi-VL-A3B	0	0	0	0	0	0	0	0	0	0
Qwen2.5-VL-72B	0	0	0	0	0	0	0	0	0	0

Table 26: Cross-coupled differential amplifier, Comparator, and Bootstrap Circuit Design Performance Across Different Models

Models	4. Telescopic cascode OTA						5. PLL		6. MOS_Ron	
	CMRR	DC gain	GBW	Phase margin	Power	PSR	SR	Jitter	Phase noise	Ron
Gemini-2.5-pro	0	0	0	0	0	0	0	0	0	0
GPT-4o	0	0	0	0	0	0	0	0	0	0
Claude-3.7-sonnet	0	0	0	0	0	0	0	0	0	0
Grok-3	0	0	0	0	0	0	0	0	0	0
Douba-1.5-vision-pro	0	0	0	0	0	0	0	0	0	0
Kimi-VL-A3B	0	0	0	0	0	0	0	0	0	0
Qwen2.5-VL-72B	0	0	0	0	0	0	0	0	0	0

Table 27: Telescopic cascode OTA, PLL, and MOS_Ron Performance Across Different Models

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

Models	7. LDO						8. VCO		9. Unit capacitor
	LDR	LNR	Drop voltage	DC gain	Phase margin	PSR	Offset	Jitter	
Gemini-2.5-pro	0	0	0	0	0	0	0	0	0
GPT-4o	0	0	0	0	0	0	0	0	0(3)
Claude-3.7-sonnet	0	0	0	0	0	0	0	0	0
Grok-3	0	0	0	0	0	0	0	0	0
Douba-1.5-vision-pro	0	0	0	0	0	0	0	0	0
Kimi-VL-A3B	0	0	0	0	0	0	0	0	0
Qwen2.5-VL-72B	0	0	0	0	0	0	0	0	0

Table 28: LDO, VCO, and Unit Capacitor Performance Across Different Models

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

Models	10. Folded cascode OTA					11. SAR-ADC		12. Bandgap		
	DC gain	SR	Phase margin	GBW	Power	ENOB	BuildupV	Noise	PSR	TC
Gemini-2.5-pro	0	0	0	0	0	0	0	0	0	0
GPT-4o	0	0	0	0	0	0	0	0(1)	0	0
Claude-3.7-sonnet	0	0	0	0	0	0	0	0	0	0
Grok-3	0	0	0	0	0	0	0	0	0	0
Douba-1.5-vision-pro	0	0	0	0	0	0	0	0	0	0
Kimi-VL-A3B	0	0	0	0	0	0	0	0	0	0
Qwen2.5-VL-72B	0	0	0	0	0	0	0	0	0	0

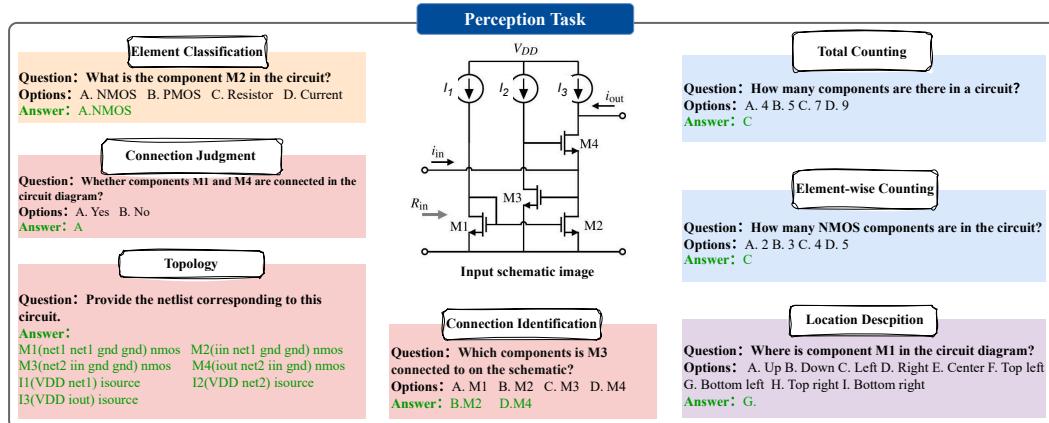
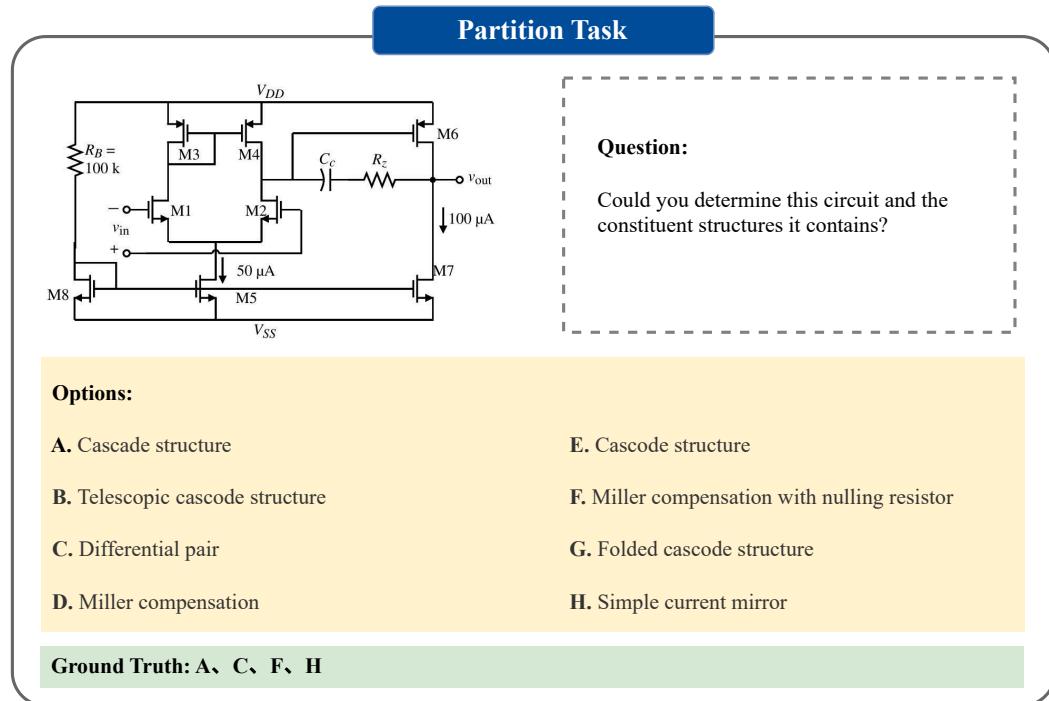
Table 29: Folded Cascode OTA, SAR-ADC, and Bandgap Performance Across Different Models

1125

1126

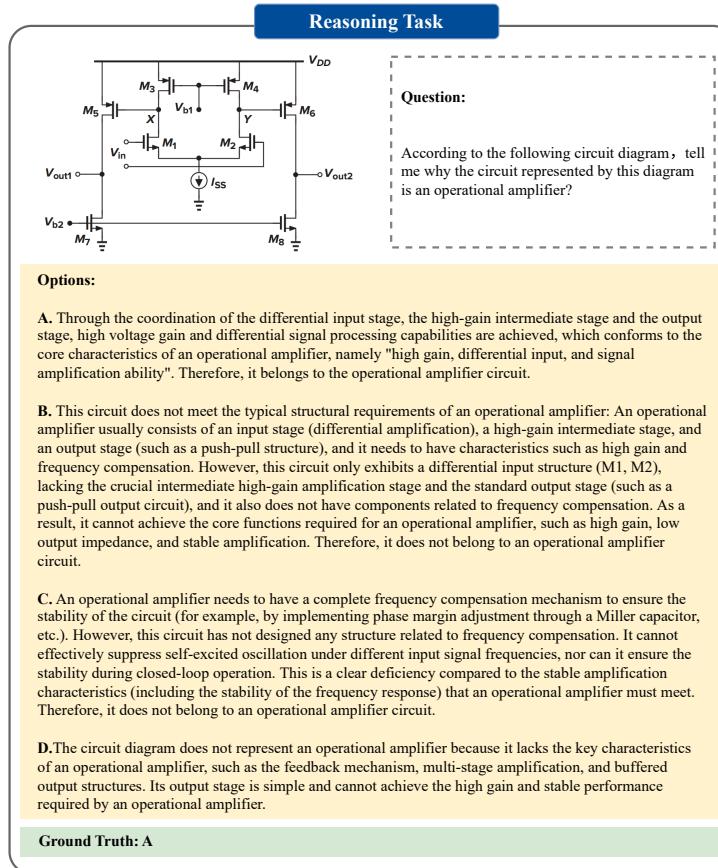
1127

1128

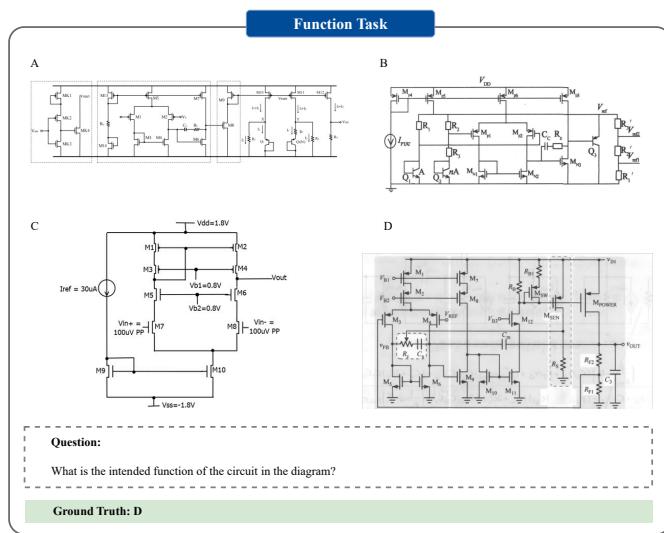


1129

1130

1131


1132

1133


1134 **C TEST EXAMPLES**1135 **C.1 EXAMPLES OF PERCEPTION TASKS**1153 Figure 7: Example of **Perception** task in AMSbench1178 Figure 8: Example of **Partition** task in AMSbench

1188
1189

C.2 EXAMPLES OF ANALYSIS TASKS

1190
1191
1192
1193
1194
1195
1196
1197
1198

1217

1218
1219Figure 9: Examples of **Reasoning** task in AMSbench1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
12371238
1239
1240
1241Figure 10: Example of **Function(image as options)** task in AMSbench

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

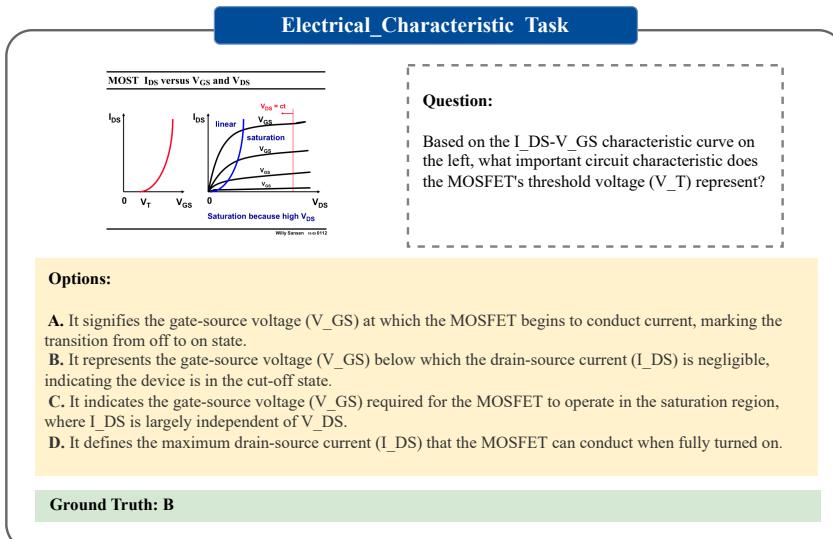
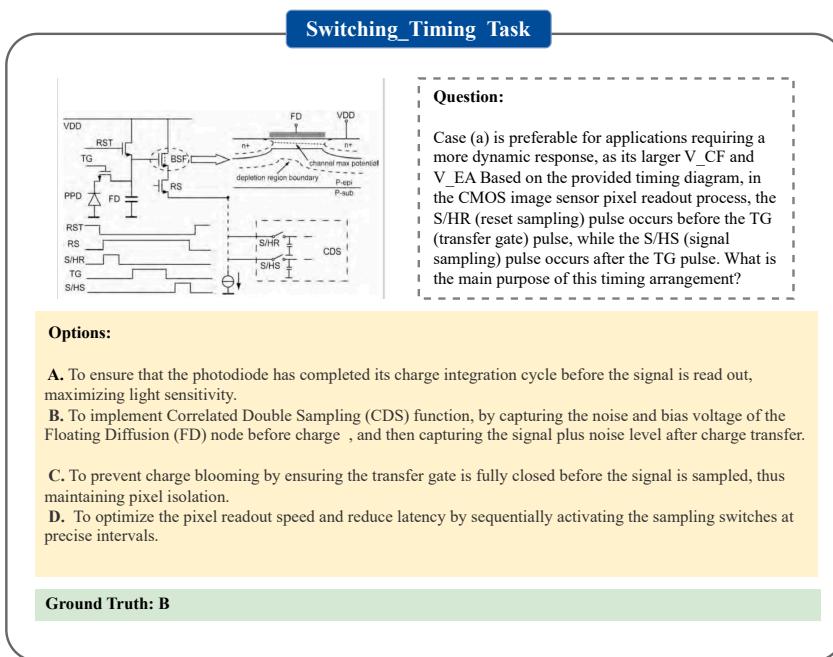
1340

1341

1342

1343

1344



1345

1346

1347

1348

1349

Figure 13: Example of **Electrical Characteristic** task in AMSbenchFigure 14: Example of **Switching Timing** task in AMSbench

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

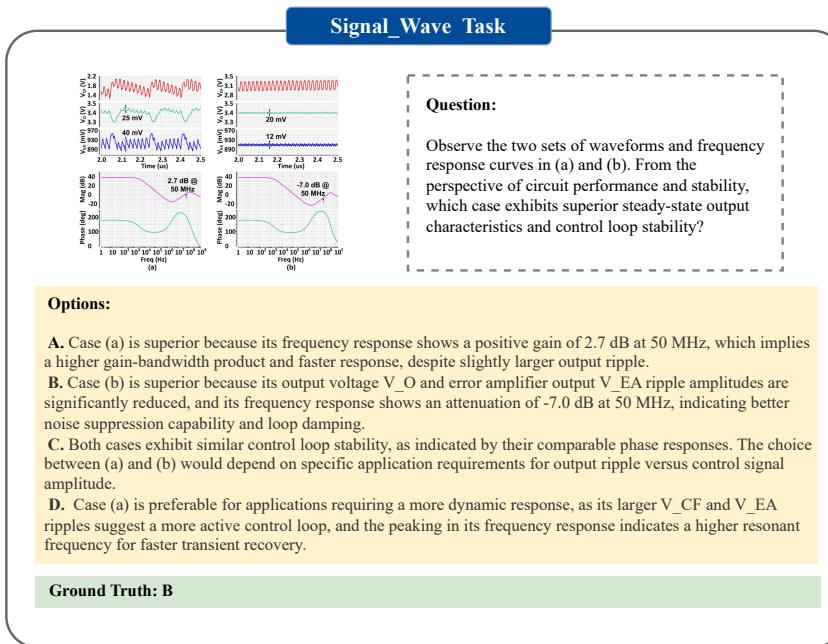
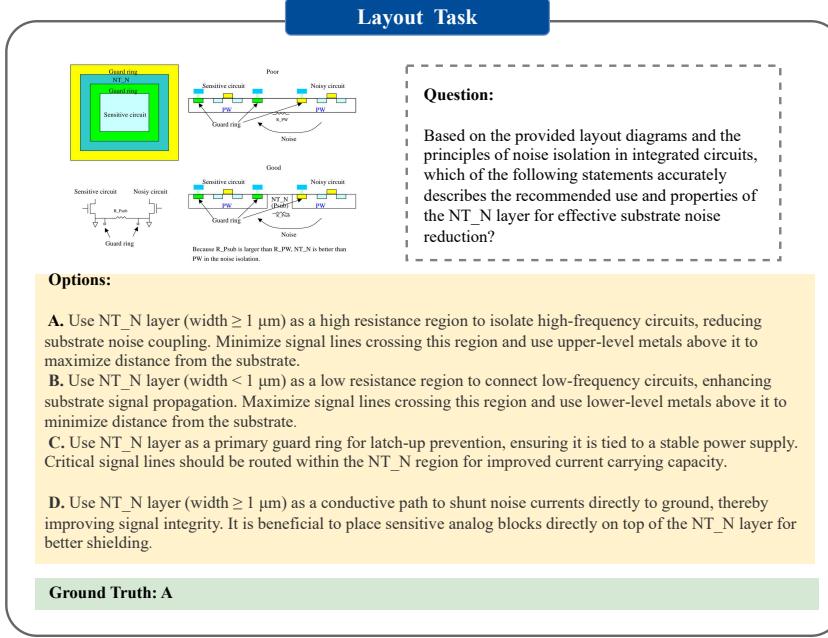
1394

1395

1396

1397

1398



1399

1400

1401

1402

1403

Figure 15: Example of **Signal Wave** task in AMSbenchFigure 16: Example of **Layout** task in AMSbench

1404 C.3 EXAMPLES OF DESIGN TASKS
1405

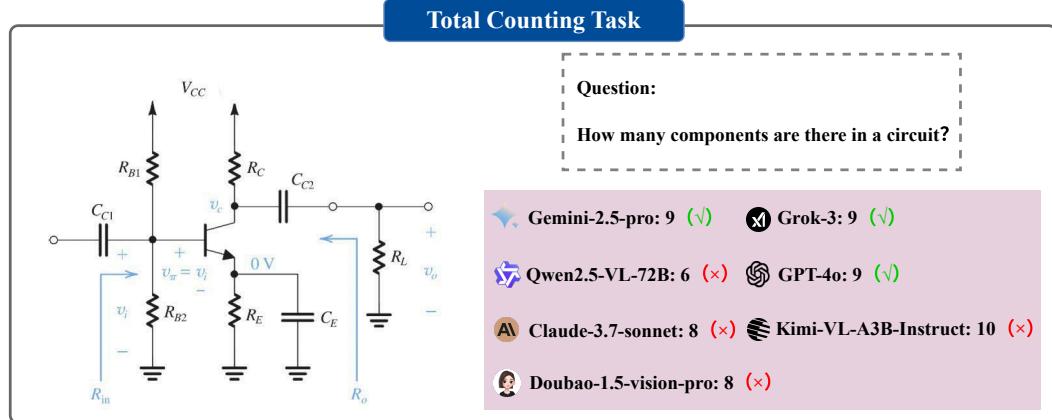
User	Assistant (Circuit Design Prompt)
<p>You are an analog integrated circuits expert.</p> <p>Assistant (Circuit Design Prompt)</p> <p>You aim to design a topology for a given circuit described in the text. Please ensure your designed circuit topology works properly and achieves the design requirements.</p> <p>Here is an example:</p> <p>Question: Design a 2-stage amplifier (first stage: a common-source stage with current-source load, second stage: a common-source stage with resistor load).</p> <p>Input node name: Vin, Vbias.</p> <p>Output node name: Vout.</p> <p>Answer:</p> <p>Task 1</p> <p>Components Needed</p> <ul style="list-style-type: none"> - NMOS Transistors: M1 and M3 - PMOS Transistors: M2 (used as the current source in the first stage) - Resistors: R1 for the second stage load - Power Supply: Vdd for DC supply - Input Signal Source: Vin, Vbias for biasing and signal input - Capacitors: Not specified but can be included for coupling and bypass applications if required <p>Stage 1: Common-Source Amplifier with Current Source Load</p> <ol style="list-style-type: none"> 1. Transistor Setup: <ul style="list-style-type: none"> - M1(NMOS) as the main amplifying transistor. - Gate of M1 is connected to the input node Vin. - Source of M1 connected to the ground. - Drain of M1 connected to the drain of M2. 2. Biasing: <ul style="list-style-type: none"> - Vin provides the input signal. - Vbias is used to bias M2 (PMOS), ensuring it operates as a current source. 3. Current Source Load (M2): <ul style="list-style-type: none"> - M2, a PMOS transistor, is configured as a current source. - The source of M2 is connected to Vdd, and its gate is connected to Vbias. - Drain of M2 is connected to the drain of **M1**, providing a high-impedance load. <p>Stage 2: Common-Source Amplifier with Resistor Load</p> <ol style="list-style-type: none"> 1. Transistor Setup: <ul style="list-style-type: none"> - M3 (NMOS) as the main amplifying transistor for the second stage. - Gate of M3 connected to the drain of M1. - Source of M3 connected to the ground. - Drain of M3 connected to Vout through resistor R1. 2. Load and Coupling: <ul style="list-style-type: none"> - R1 connects the drain of M3 to Vdd. This resistor converts the current through M3 into an output voltage. 	<p>Task 2</p> <pre>from PySpice.Spice.Netlist import Circuit from PySpice.Unit import * circuit = Circuit('Two-Stage Amplifier') # Define the MOSFET models circuit.model('nmos_model', 'nmos', level=1, kp=100e-6, vto=0.5) circuit.model('pmos_model', 'pmos', level=1, kp=50e-6, vto=-0.5) # Power Supplies for the power and input signal circuit.V('dd', 'Vdd', circuit.gnd, 5.0) # 5V power supply circuit.V('in', 'Vin', circuit.gnd, 1.0) # 1V input for bias voltage circuit.V('bias', 'Vbias', circuit.gnd, 4.0) # 4V input for bias voltage # First Stage: Common-Source with Active Load # parameters: name, drain, gate, source, bulk, model, w, l circuit.MOSFET('1', 'Drain1', 'Vin', circuit.gnd, circuit.gnd, model='nmos_model', w=50e-6, l=1e-6) circuit.MOSFET('2', 'Drain1', 'Vbias', 'Vdd', 'Vdd', model='pmos_model', w=100e-6, l=1e-6) # Second Stage: Common-Source with Resistor Load circuit.MOSFET('3', 'Vout', 'Drain1', circuit.gnd, circuit.gnd, model='nmos_model', w=100e-6, l=1e-6) circuit.R('1', 'Vout', 'Vdd', 1@u_kQ) # Analysis Part simulator = circuit.simulator() As you have seen, the output of your designed topology should consist of two tasks: 1. Give a detailed design plan about all devices and their interconnectivity nodes and properties. 2. Write a complete Python code, describing the topology of integrated analog circuits according to the design plan. Please make sure your Python code is compatible with PySpice. Please give the runnable code without any placeholders. Do not write other redundant codes after 'simulator = circuit.simulator()'. There are some tips you should remember all the time: 1. For the MOSFET definition circuit.MOSFET(name, drain, gate, source, bulk, model, w=w, l=l), be careful about the parameter sequence. 2. You should connect the bulk of a MOSFET to its source. 3. Please use the MOSFET threshold voltage, when setting the bias voltage. 4. Avoid giving any AC voltage in the sources, just consider the operating points. 5. Make sure the input and output node names appear in the circuit. 6. Avoid using subcircuits. 7. Use nominal transistor sizing. 8. Assume the Vdd = 5.0 V. Question: Design [TASK]. Input node name: [INPUT]. Output node name: [OUTPUT]. Answer: (.....)</pre>

1442 Figure 17: Prompt of Circuit Design task in AMSbench
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

1458
 1459
 1460
 1461
 1462
 1463 **User**
 1464
 1465 You are an analog integrated circuits expert.
 1466
 1467
 1468 **Assistant (Testbench Design Prompt)**
 1469
 1470
 1471 You are an analog circuit design engineer with over 10 years of experience, familiar
 1472 with the Cadence Spectre simulation environment, CMOS circuit modeling, and
 1473 various circuit performance testing methods.
 1474
 1475 I will provide a netlist file and schematic diagram of a "certain circuit" (given in both
 1476 text and image formats). Based on the netlist file, please write a complete Spectre
 1477 simulation input file (.cir format) to test the "certain performance" of the circuit,
 1478 while keeping the core structure of the circuit unchanged.
 1479
 1480 **Requirements:**
 1481
 1482 Add the necessary excitation sources (such as voltage sources, current sources, etc.)
 1483 and appropriate simulation analysis statements (such as ac, dc, tran, noise, etc.) to
 1484 test the target performance.
 1485
 1486 The generated .cir file should be directly runnable in Spectre without any additional
 1487 modifications.
 1488
 1489 Briefly explain your test configuration approach (including input signals, biasing
 1490 methods, load, power supply, etc.).
 1491
 1492 **Please output exactly five separate Spectre testbench code blocks. Each block**
 1493 **must be wrapped in triple backticks, like:**
 1494 // testbench #1
 1495 ...
 1496 // testbench #2
 1497 ...
 1498
 1499 **The example of the writing format of the testbench is referred to as follows:**
 1500 <testbench_format.cir>
 1501
 1502
 1503
 1504
 1505
 1506
 1507

Figure 18: Prompt of **Testbench Design** task in AMSbench

1512 **D CASE STUDY**


1513

1514 **D.1 PERCEPTION TASK FOR ERROR ANALYSIS**

1515

1516

1517

1518

1519

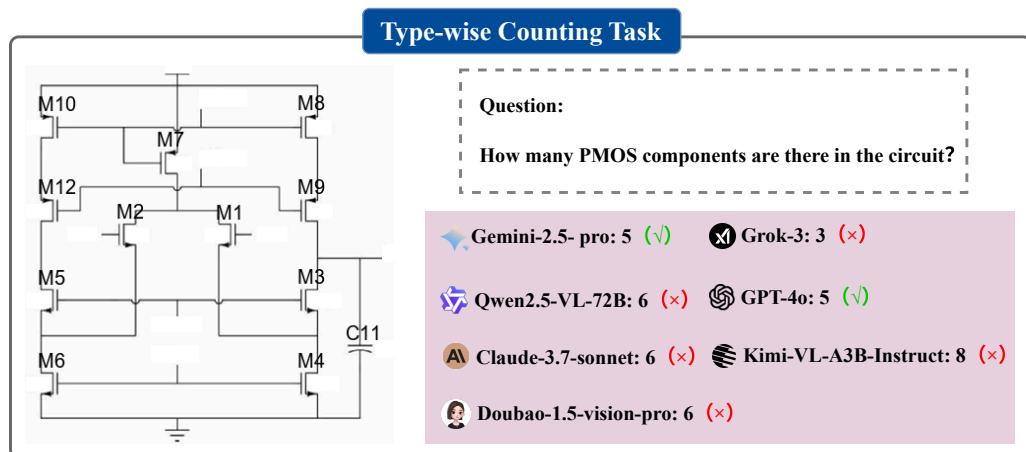
1520

1521

1522

1523

1524


1525

1526

1527

1528

1529

Figure 19: Example of **Total Counting** task across models

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

Figure 20: Example of **Type-wise Counting** task across models

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

Connection Identification Task

Question:
Which components is R15 connected to?

Options:

- A. "Q9"
- B. "R3"
- C. "C2"
- D. "Q28"
- E. "Q31"
- F. "R17"
- G. "R18"
- H. "R15"

Ground Truth : A, E, G

◆ Gemini-2.5-pro: A, E, G ◆ Qwen2.5-VL-72B: G ◆ Claude-3.7-sonnet: A, E, G ◆ Kimi-VL-A3B-Instruct: A, D, E, F, G, H	◆ Grok-3: A, G ◆ GPT-4o: B, F, G ◆ Doubao-1.5-vision-pro: A, E, G
--	--

Figure 23: Example of **Connection Identification** task across models

Location Description Task

Question:
What part of the circuit does the C4 occupy?

Options:

- A. Bottom
- B. Center
- C. Bottom Left
- D. Right
- E. Top right
- F. Left
- G. Top left
- H. Top

Ground Truth : A

◆ Gemini-2.5-pro: I ◆ Qwen2.5-VL-72B: G ◆ Claude-3.7-sonnet: I ◆ Kimi-VL-A3B-Instruct: C	◆ Grok-3: A ◆ GPT-4o: C ◆ Doubao-1.5-vision-pro: B
---	---

Figure 24: Example of **Location Description** task across models

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

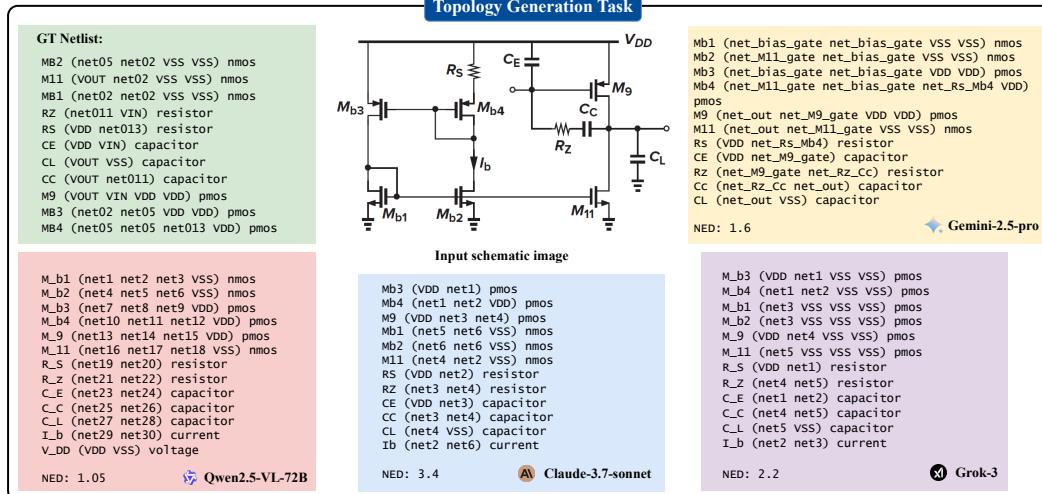
1718

1719

1720

1721

1722


1723

1724

1725

1726

1727

Figure 25: Example of **Topology Generation** task across models

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

Partition Task

Question:
Which structural elements does the circuit include?

Options:

- A. Diode-connected load
- B. Wilson current mirror
- C. Cascode current mirror
- D. Source degenerated differential pair
- E. Active load(current mirror load) .
- F. Differential pair .
- G. Simple current mirror.
- H. Common-source amplifier .

Groud Truth: A, E, F, G, H

Gemini-2.5-pro: E, F, G, H

Grok-3: E, F

Qwen2.5-VL-72B: A, C, D, E

GPT-4o: E, F, H

Claude-3.7-sonnet: C, F

Kimi-VL-A3B-Instruct: D

Doubao-1.5-vision-pro: E, F

Figure 28: Example of **Partition Identification** task across models

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

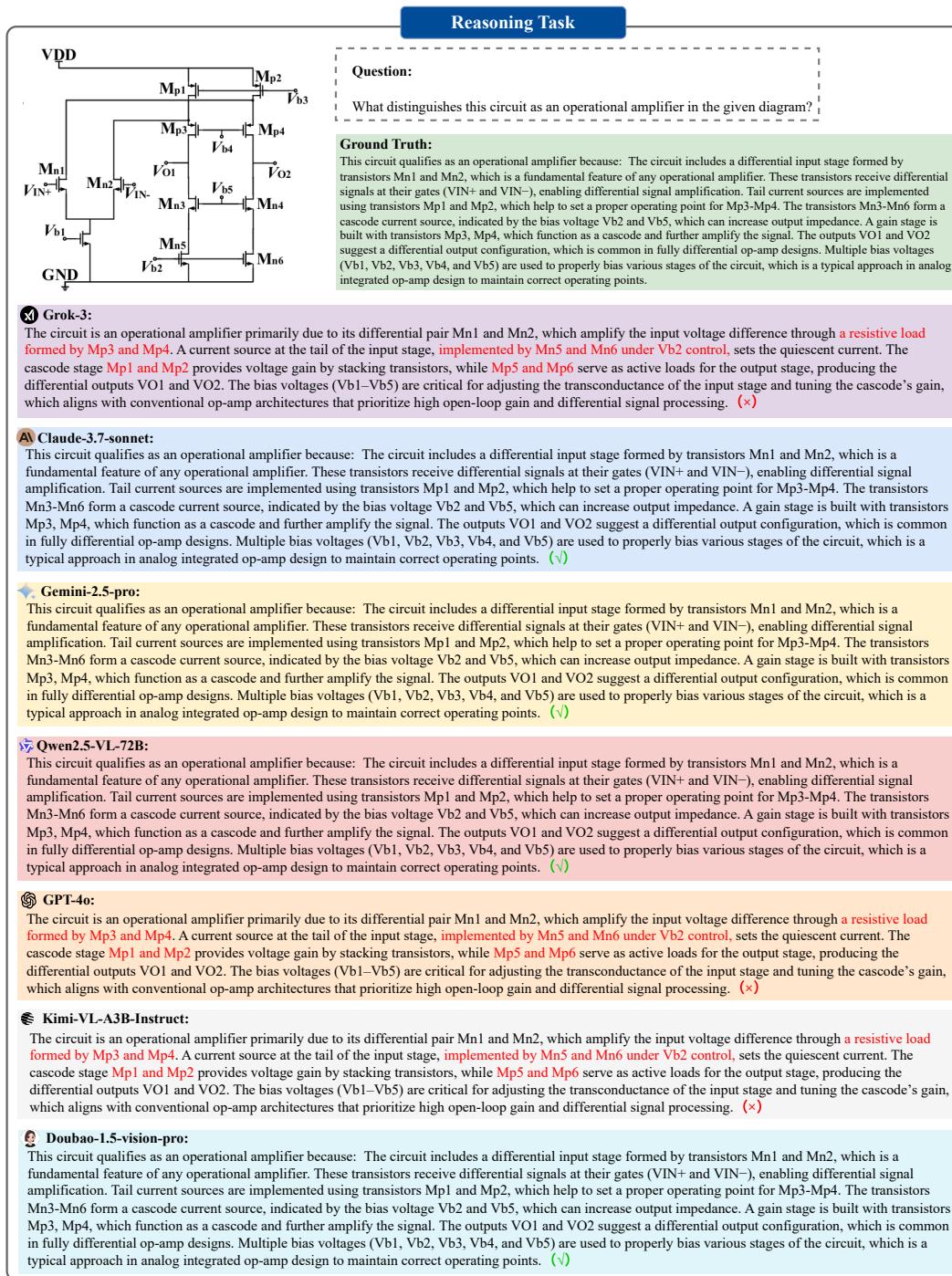
1880

1881

1882

1883

1884


1885

1886

1887

1888

1889

Figure 29: Example of **Reasoning** task across models

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

Caption Generation Task

Question:

Give a detailed description of the following circuit.

Ground Truth:

An example of CMFB with MOS transistors in the linear region is shown in this diagram. It is a high-speed amplifier. A GBW of 850MHz in two 5pF capacitors can be reached thanks to the large currents, despite the old $1.2\text{upmu\mathrm{m}}\text{CMOS}$ technology. It is a folded cascode for a differential operation. The only additional feature is the feedforward around the slower PMOS cascode through capacitors C_f . The outputs are around 0V , because the gates of the NMOSs providing DC current to the input pair are at zero ground.

Grok-3:

This high-speed folded cascode amplifier employs a $1.2\text{upmu\mathrm{m}}$ CMOS process to achieve a GBW of 850MHz with 5pF loads, primarily due to the low threshold voltages of the transistors. The CMFB circuit uses NMOS devices in the triode region to adjust the tail current, while feedforward capacitors C_f are connected around the NMOS cascode transistors to bypass their high-impedance nodes. The output DC level is stabilized at 0V because the PMOS current mirror gates are referenced to ground, ensuring proper biasing. The design avoids slow PMOS cascode by relying on dynamic current steering through the feedforward path. (x)

Claude-3.7-sonnet:

An example of CMFB with MOS transistors in the linear region is shown in this diagram. It is a high-speed amplifier. A GBW of 850MHz in two 5pF capacitors can be reached thanks to the large currents, despite the old $1.2\text{upmu\mathrm{m}}\text{CMOS}$ technology. It is a folded cascode for a differential operation. The only additional feature is the feedforward around the slower PMOS cascode through capacitors C_f . The outputs are around 0V , because the gates of the NMOSs providing DC current to the input pair are at zero ground. (v)

Gemini-2.5-pro:

An example of CMFB with MOS transistors in the linear region is shown in this diagram. It is a high-speed amplifier. A GBW of 850MHz in two 5pF capacitors can be reached thanks to the large currents, despite the old $1.2\text{upmu\mathrm{m}}\text{CMOS}$ technology. It is a folded cascode for a differential operation. The only additional feature is the feedforward around the slower PMOS cascode through capacitors C_f . The outputs are around 0V , because the gates of the NMOSs providing DC current to the input pair are at zero ground. (v)

Qwen2.5-VL-72B:

This high-speed folded cascode amplifier employs a $1.2\text{upmu\mathrm{m}}$ CMOS process to achieve a GBW of 850MHz with 5pF loads, primarily due to the low threshold voltages of the transistors. The CMFB circuit uses NMOS devices in the triode region to adjust the tail current, while feedforward capacitors C_f are connected around the NMOS cascode transistors to bypass their high-impedance nodes. The output DC level is stabilized at 0V because the PMOS current mirror gates are referenced to ground, ensuring proper biasing. The design avoids slow PMOS cascode by relying on dynamic current steering through the feedforward path. (x)

GPT-4o:

This high-speed folded cascode amplifier employs a $1.2\text{upmu\mathrm{m}}$ CMOS process to achieve a GBW of 850MHz with 5pF loads, primarily due to the low threshold voltages of the transistors. The CMFB circuit uses NMOS devices in the triode region to adjust the tail current, while feedforward capacitors C_f are connected around the NMOS cascode transistors to bypass their high-impedance nodes. The output DC level is stabilized at 0V because the PMOS current mirror gates are referenced to ground, ensuring proper biasing. The design avoids slow PMOS cascode by relying on dynamic current steering through the feedforward path. (x)

Kimi-VL-A3B-Instruct:

This circuit implements a folded cascode operational amplifier optimized for high-speed performance, achieving a GBW of 850MHz with two 5pF capacitors due to the use of advanced biasing techniques in a $1.2\text{upmu\mathrm{m}}$ CMOS process. The common-mode feedback (CMFB) mechanism employs NMOS transistors operating in the saturation region to stabilize the output common-mode voltage. A key feature is the feedforward path through capacitors C_f bypassing the slower NMOS cascode transistors, which enhances phase margin. The output DC level is maintained near 0V because the gates of the PMOS current sources are biased at the supply voltage, ensuring symmetric current distribution. (x)

Doubao-1.5-vision-pro:

This high-speed folded cascode amplifier employs a $1.2\text{upmu\mathrm{m}}$ CMOS process to achieve a GBW of 850MHz with 5pF loads, primarily due to the low threshold voltages of the transistors. The CMFB circuit uses NMOS devices in the triode region to adjust the tail current, while feedforward capacitors C_f are connected around the NMOS cascode transistors to bypass their high-impedance nodes. The output DC level is stabilized at 0V because the PMOS current mirror gates are referenced to ground, ensuring proper biasing. The design avoids slow PMOS cascodes by relying on dynamic current steering through the feedforward path. (x)

Figure 30: Example of Caption Generation task across models

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

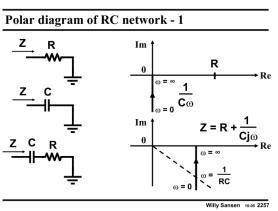
1959

1960

1961

1962

1963


1964

1965

1966

Electrical_Characteristic Task

Polar diagram of RC network - 1

Question:

Observe the impedance polar plot of the series RC circuit ($Z = R + 1/(j\omega C)$) in the figure. As the angular frequency ω increases from 0 to infinity, how does the impedance Z of this circuit change its trajectory on the complex plane?

Options:

A. The trajectory moves vertically upwards from the point $(R, 0)$ on the complex plane, eventually reaching the point $(R, +\infty)$.
 B. The trajectory moves vertically downwards from the point R on the real axis, eventually reaching the point $(R, -\infty)$.
 C. The trajectory moves vertically upwards from the point $(R, -\infty)$ on the complex plane, eventually reaching the point R on the real axis.
 D. The trajectory forms a semicircle in the lower half of the complex plane, starting from the origin $(0,0)$ and ending at the point $(R,0)$.

Ground Truth: C

◆ Gemini-2.5-pro: C

✖ Grok-3: C

✖ Qwen2.5-VL-72B: C

✖ GPT-4o: D

✖ Claude-3.7-sonnet: C

✖ Kimi-VL-A3B-Instruct: D

✖ Doubao-1.5-vision-pro: B

Figure 31: Example of **ElectricalCharacteristic** task across models

1986

1987

1988

1989

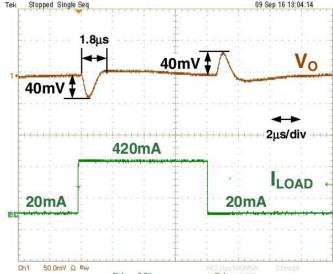
1990

1991

1992

1993

1994


1995

1996

1997

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029

Signal Wave Task

Question:

Based on the provided waveform plot, what is the peak-to-peak output voltage deviation observed for this voltage regulator during load transient changes?

Options:

- A. 40mV.
- B. 80mV.
- C. 20mV.
- D. 60mV.

Ground Truth: B

◆ Gemini-2.5-pro: **B**

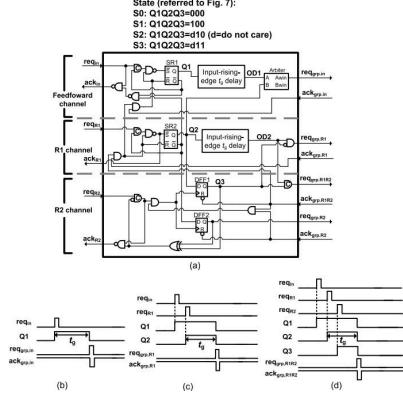
✖ Grok-3: **A**

⚡ Qwen2.5-VL-72B: **B**

✖ GPT-4o: **A**

Ⓐ Claude-3.7-sonnet: **B**

✖ Kimi-VL-A3B-Instruct: **A**


👩 Doubao-1.5-vision-pro: **B**

2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Figure 32: Example of **Signal Wave** task across models

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073

Switch Timing Task

Question:

In timing diagrams (b), (c), and (d), the delay labeled t_g exists between the rising edge of signals $Q1$, $Q2$, or $Q3$ and the rising edge of their corresponding req_{rp} signals (e.g., $req_{rp} \in req_{rp}, R1$, or $req_{rp}, R1R2$). Analyzing circuit diagram (a), what role does this t_g delay play in the circuit?

Options:

A. It signifies the delay from the rising edge of the input request signal (req_{ϵ} , req_{R1} , req_{R2}) until the internal state signals ($Q1$, $Q2$, $Q3$) begin to change.

B. It represents the inherent processing delay required for the circuit to generate the external request signal after the internal state signals ($Q1$, $Q2$, $Q3$) have stabilized.

C. It is merely the cumulative propagation delay of the combinational logic gates (OD1, OD2, and others) that directly follow the Q signals to produce the req_{rp} outputs.

D. It is a fixed delay added to prevent race conditions between the req_{rp} signals and their corresponding ack_{rp} signals in the handshake protocol.

Ground Truth: B

Gemini-2.5-pro: B

Qwen2.5-VL-72B: B

Claude-3.7-sonnet: C

Doubao-1.5-vision-pro: C

Grok-3: B

GPT-4o: B

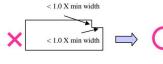
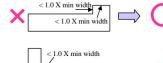

Kimi-VL-A3B-Instruct: A

Figure 33: Example of **Switching Timing** task across models

2099
2100
2101
2102
2103
2104
2105

2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121

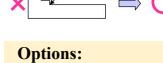
Layout Task


$< 1.0 X \text{ min width}$

$< 1.0 X \text{ min width}$

$< 1.0 X \text{ min width}$

$> 1.0 X \text{ min width}$


$< 1.0 X \text{ min width}$

$< 1.0 X \text{ min width}$

$< 1.0 X \text{ min width}$

$> 1.0 X \text{ min width}$

$< 1.0 X \text{ min width}$

$< 1.0 X \text{ min width}$

$> 1.0 X \text{ min width}$

$< 1.0 X \text{ min width}$

Question:

The provided image illustrates a common Design Rule Check (DRC) principle applied to OPC (Optical Proximity Correction) layers in integrated circuit layout. Based on the visual examples and typical DRC considerations for manufacturability, which of the following statements accurately describes a forbidden geometric configuration for these layers??

Options:

A. For the OPC layers, any edge of length $< 1.0 \times \text{minimum width}$ must be adjacent to an edge of length greater than $1.0 \times \text{minimum width}$.
 B. For the OPC layers, any edge of length $< 1.0 \times \text{minimum width}$ cannot have another adjacent edge of length $< 1.0 \times \text{minimum width}$.
 C. For the OPC layers, any edge of length $< 1.0 \times \text{minimum width}$ cannot have more than one adjacent edge of length $< 1.0 \times \text{minimum width}$.
 D. For the OPC layers, any edge of length $< 1.0 \times \text{minimum width}$ cannot have another adjacent edge of length equal to or greater than $1.0 \times \text{minimum width}$.

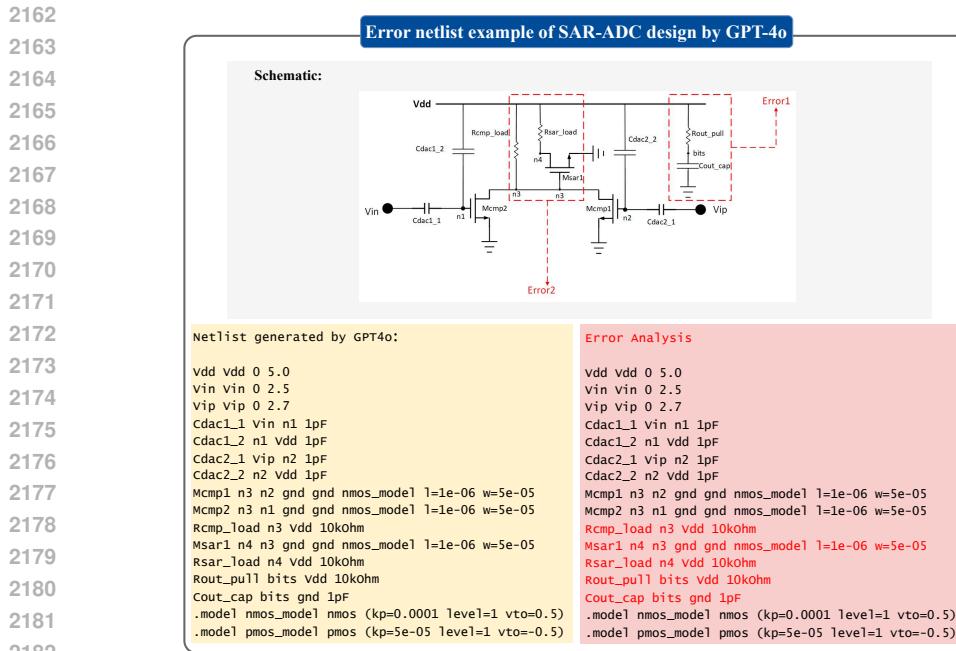
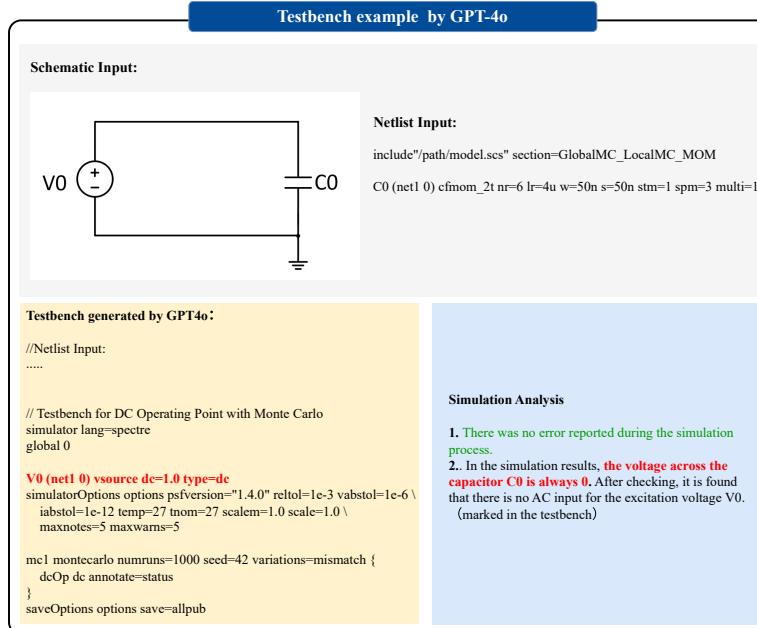
Ground Truth: B

 Gemini-2.5-pro: B

 Grok-3: B

 Qwen2.5-VL-72B: B

 GPT-4o: B



 Claude-3.7-sonnet: B, C

 Kimi-VL-A3B-Instruct: B

 Doubaao-1.5-vision-pro: B

2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159

Figure 34: Example of **Layout** task across models

2160 D.3 DESIGN TASK FOR ERROR ANALYSIS
2161Figure 35: Example of **Circuit Design** task by GPT-4oFigure 36: Example of **Testbench Design** task by GPT-4o

2214 D 4 EXAMPLE OF DEVICE GROUNDING

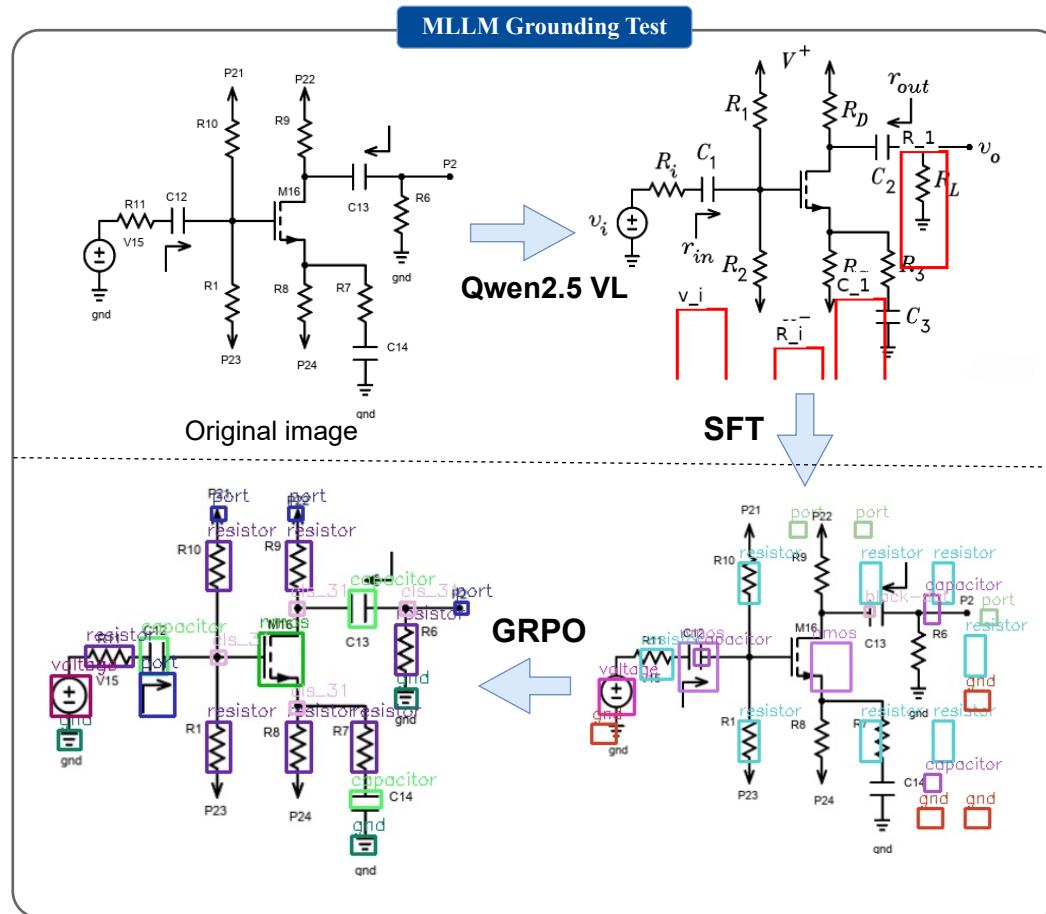


Figure 37: Example of Post-training with Qwen on device grounding.