Table 1: Performance metrics for different algorithms and models. Results with \dagger are run with our code; with \ast copied from related work. Models with a diamond (\diamondsuit) iterate for the correct amount of steps during train time (may differ between datapoints). Filled diamond (\blacklozenge) means the ground truth number of steps is also given at test time. HCS stands for hardcoded steps to 64 during test time; colour is used if on average 64 steps are more/less than ground truth. LT stands for learnt termination.

Algorithm	$\mathbf{NAR}^{\dagger igodoldsymbol{ h}}$	$\mathbf{NAR}^{\dagger \diamondsuit}_{(\mathrm{HCS})}$	$\begin{array}{c} \mathbf{NAR}^{* \blacklozenge} \\ (\mathrm{Triplet-MPNN}) \end{array}$	$\begin{array}{c} \mathbf{NAR}^{\dagger \blacklozenge} \\ (\mathrm{Triplet-MPNN}) \end{array}$	$\mathbf{NAR}^{\dagger \diamondsuit}_{\mathrm{(LT)}}$	$\mathbf{DEAR}^{\dagger}_{(\mathrm{ours})}$
Bellman-F. Floyd-W. DSP MST Prim	$\begin{array}{c} 97.06\%\pm0.40\\ 52.53\%\pm0.98\\ 94.21\%\pm1.77\\ 93.56\%\pm0.77 \end{array}$	$\begin{array}{c} 68.26\% \pm 13.58 \\ 52.53\% \pm 0.98 \\ 93.56\% \pm 1.16 \\ 93.56\% \pm 0.77 \end{array}$	$\begin{array}{c} 93.26\% \pm 0.04 \\ 40.80\% \pm 2.90 \\ 97.62\% \pm 0.21 \\ 99.24\% \pm 0.21 \end{array}$	$\begin{array}{c} 97.23\% \pm 0.15 \\ 61.86\% \pm 1.57 \\ 93.32\% \pm 1.60 \\ 92.01\% \pm 1.50 \end{array}$	$\begin{array}{c} 95.39\% \pm 1.42 \\ 49.30\% \pm 0.53 \\ 88.30\% \pm 1.04 \\ 87.69\% \pm 1.17 \end{array}$	$\begin{array}{c} 96.78\% \pm 0.43 \\ 55.75\% \pm 2.20 \\ 89.81\% \pm 0.14 \\ 88.67\% \pm 0.74 \end{array}$
BFS DFS SCC	$\begin{array}{c} 99.85\% \pm 0.09 \\ 16.89\% \pm 5.73 \\ 40.70\% \pm 1.39 \end{array}$	$\begin{array}{c} 87.42\% \pm 11.91 \\ 27.54\% \pm 0.52 \\ 41.79\% \pm 0.56 \end{array}$	$\begin{array}{c} 99.89\% \pm 0.03 \\ 47.79\% \pm 4.19 \\ 57.63\% \pm 0.68 \end{array}$	$\begin{array}{c} 99.69\% \pm 0.29 \\ 31.20\% \pm 4.02 \\ 46.84\% \pm 1.70 \end{array}$	$\begin{array}{c} 99.51\% \pm 0.06 \\ 29.07\% \pm 2.32 \\ 39.33\% \pm 1.52 \end{array}$	$\begin{array}{c} 98.73\% \pm 0.37 \\ 40.62\% \pm 0.44 \\ 43.63\% \pm 1.19 \end{array}$
Search (Binary) Minimum Sort (Ins.)	$\begin{array}{c} 94.67\% \pm 2.31 \\ 97.67\% \pm 5.73 \\ 27.07\% \pm 10.3 \end{array}$	$\begin{array}{c} 27.00\% \pm 24.25 \\ 97.67\% \pm 5.73 \\ 27.07\% \pm 10.3 \end{array}$	$\begin{array}{c} 93.21\% \pm 1.10 \\ 99.24\% \pm 0.21 \\ 77.29\% \pm 7.42 \end{array}$	$\begin{array}{c} 93.33\% \pm 2.31 \\ 96.67\% \pm 2.31 \\ 63.67\% \pm 39.97 \end{array}$	$\begin{array}{c} 84.33\%\pm8.33\\ 94.00\%\pm2.00\\ 33.8\%\pm12.04 \end{array}$	$\begin{array}{c} 59.00\% \pm 12.3 \\ 97.22\% \pm 3.82 \\ 86.93\% \pm 3.87 \end{array}$
Overall	71.42%	61.64%	80.60%	77.58%	70.07%	75.42%

Table 2: Fixing anomalies with CLRS-30's binary search further increases our overall score making our approach competitive to Triplet-MPNN. In the tables below, we will use the fixed version of search (which we reran for all models). Notation taken from Table 1.

Algorithm	$\mathbf{NAR}^{\dagger \blacklozenge}$	$\mathbf{NAR}^{\dagger \diamondsuit}_{(\mathrm{HCS})}$	$\begin{array}{c} \mathbf{NAR}^{\dagger \blacklozenge} \\ (\mathrm{Triplet-MPNN}) \end{array}$	$\mathbf{NAR}^{\dagger \diamondsuit}_{\mathrm{(LT)}}$	$\mathbf{DEAR}^{\dagger}_{(\mathrm{ours})}$
Search	$95.67\% \pm 0.58$	$95.00\% \pm 1.73$	$93.33\% \pm 0.58$	$93.33\% \pm 3.05$	$85.67\% \pm 0.58$
New Overall	71.52%	68.44%	77.58%	70.97%	78.38%

Table 3: Extreme OOD testing of NAR and DEAR. Search may skew the results at larger scales, hence we report the overall without it too.

Algorithm	Size 128 $(8\times)$		Size 250	$6 (16 \times)$	Size 512 $(32\times)$		
	$\mathbf{NAR}^{\dagger \blacklozenge}$	$\mathbf{DEAR}^{\dagger}_{(\mathrm{ours})}$	NAR [†] ♦	$\mathbf{DEAR}^{\dagger}_{(\mathrm{ours})}$	$\mathbf{NAR}^{\dagger \blacklozenge}$	$\mathbf{DEAR}^{\dagger}_{(\mathrm{ours})}$	
Bellman-F. Floyd-W. DSP MST Prim BFS DFS SCC Search Minimum Sort (Ins.)	$\begin{array}{c} 94.98\% \pm 0.52 \\ 28.16\% \pm 1.38 \\ 88.52\% \pm 3.44 \\ 86.95\% \pm 1.11 \\ 99.95\% \pm 0.00 \\ 8.14\% \pm 2.04 \\ 22.93\% \pm 1.48 \\ 87.67\% \pm 5.51 \\ 94.00\% \pm 0.00 \\ 11.59\% \pm 4.85 \end{array}$	$\begin{array}{c} 95.65\% \pm 0.45\\ 31.37\% \pm 2.59\\ 81.21\% \pm 4.29\\ 80.59\% \pm 1.76\\ 98.87\% \pm 0.44\\ 21.67\% \pm 1.64\\ 28.56\% \pm 1.25\\ 71.67\% \pm 11.37\\ 94.00\% \pm 3.46\\ 48.90\% \pm 11.41 \end{array}$	$\begin{array}{c} 91.83\% \pm 1.50 \\ 39.28\% \pm 0.71 \\ 78.65\% \pm 5.04 \\ 75.83\% \pm 2.69\% \\ 99.62\% \pm 0.12 \\ 3.65\% \pm 0.75 \\ \text{OOM} \\ 79.67\% \pm 10.02 \\ 92.33\% \pm 0.58 \\ 3.53\% \pm 1.11 \end{array}$	$\begin{array}{c} 93.09\% \pm 1.33 \\ 41.63\% \pm 1.61 \\ 64.72\% \pm 8.73 \\ 69.59\% \pm 3.13 \\ 97.35\% \pm 0.05 \\ 11.53\% \pm 1.49 \\ OOM \\ 42.67\% \pm 9.71\% \\ 91.67\% \pm 3.06 \\ 16.37\% \pm 10.5 \end{array}$	$\begin{array}{c} 87.29\% \pm 1.89\% \\ OOM \\ 54.38\% \pm 17.71\% \\ 66.18\% \pm 4.08\% \\ 99.71\% \pm 0.21\% \\ 1.24\% \pm 0.20\% \\ OOM \\ 72.00\% \pm 22.07\% \\ 87.00\% \pm 1.0\% \\ 1.63\% \pm 0.71\% \end{array}$	$\begin{array}{c} 89.05\% \pm 2.11\% \\ OOM \\ 43.98\% \pm 9.75\% \\ 59.83\% \pm 3.23\% \\ 97.52\% \pm 0.87\% \\ 4.47\% \pm 0.63\% \\ OOM \\ 20.00\% \pm 5.29\% \\ 86.67\% \pm 2.89\% \\ 5.83\% \pm 4.80\% \end{array}$	
Overall	62.29%	65.25%	62.71%	58.74%	58.68%	50.92%	
Overall w/o search	59.47%	64.54%	60.59%	60.75%	56.78%	55.34%	

Table 4: Mean runtime per sample in seconds (A100 80GB GPU). OOM indicates out-of-memory. Rows and columns correspond to Table 3. Vertical bar | is used to separate the symbols (up/down arrows) across the three sizes. Double symbol is used for substantial differences.

- •	(-1		,			*	
Algorithm		Size 128 $(8\times)$		Size 256 $(16 \times)$		Size 512 $(32 \times)$	
		NAR	DEAR	NAR	DEAR	NAR	DEAR
Bellman-F.	$\uparrow \uparrow \uparrow$	0.0340	0.0575	0.0413	0.0912	0.0710	0.1256
Floyd-W.	$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow -$	0.5856	0.1578	2.9694	0.3850	OOM	OOM
DSP		0.6756	0.1339	1.5654	0.1632	8.2327	0.3279
MST Prim		0.3883	0.0766	0.9941	0.1203	4.1825	0.1790
BFS	$\uparrow \uparrow \uparrow$	0.0223	0.0310	0.0283	0.0380	0.0450	0.0765
DFS		1.2965	0.1186	3.8432	0.1511	21.4690	0.3256
SCC	$\downarrow\downarrow$	2.1008	0.0908	OOM	OOM	OOM	OOM
Search	$\uparrow \approx \approx$	0.0365	0.0426	0.0725	0.0787	0.1809	0.1778
Minimum		0.3451	0.0413	1.3009	0.0798	7.6732	0.2022
Sort (Ins.)	$\downarrow\downarrow \downarrow\downarrow \downarrow\downarrow \downarrow\downarrow$	2.9813	0.0643	6.9552	0.1100	33.1898	0.2747

Table 5: DEAR is architecture invariant and can run with any type of processor. Notation taken from Table 1.

	Floyd-W.	DFS	SCC	Search	Sort (Ins.)	$\begin{array}{c} \mathbf{Overall} \\ (\mathrm{subset}) \end{array}$
$\begin{array}{l} \mathbf{NAR}^{\dagger \blacklozenge} \\ (\text{Triplet-MPNN}) \end{array}$	$61.86\% \pm 1.57$	$31.20\% \pm 4.02$	${\bf 46.84\% \pm 1.70}$	${\bf 93.33\% \pm 0.58}$	$63.67\% \pm 39.97$	59.18%
\mathbf{DEAR}^{\dagger} (ours; Triplet-MPNN)	${\bf 62.29\% \pm 2.71}$	${\bf 42.73\% \pm 2.79}$	$45.12\% \pm 1.52$	$87.00\% \pm 5.57$	$\mathbf{82.34\%} \pm 9.46$	$\boldsymbol{63.90\%}$