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<action> 

The portrait talks about 

something.

<emotion> 
The portrait looks surprised 

throughout the video clip.

<action> 
The portrait in the video clip 

starts to frown, then sneers, 

wags its head,  and finally 

starts talking.

<emotion> 
The portrait's expression 

remains contemptuous 

throughout the video clip.

<expression> The subject begins with a strong inner brow raise and outer brow raise, with the lips parting widely and the jaw dropping slightly. As the sequence progresses, the inner brow raise remains 

consistent,  . . .  Towards the end of the sequence, the subject displays a mixture of facial movements, including a mouth stretch and tongue show.  <head pose> The portrait maintains a steady head pose 

throughout the video, with no noticeable movements or rotations detected. <scenarios> 1. Finding out he won the lottery; 2. Witnessing a loved one's unexpected return; 3. ...

<expression> The lips initially part with a high intensity, followed by the nostrils compressing slightly. ... As time progresses, the lid tightens, the lips continue to part, and the inner brows maintain a high level 

of intensity ...The nostrils compress periodically, and the cheek on the left side raises slightly. <head pose> The portrait turns its head to the right ... The head then switches direction, turning left gradually while 

also tilting slightly to the right. . . .  The head keeps moving upwards, turning left consistently at an increasing angle. Finally, the head settles in an upturned position with a slight leftward turn remaining. 

<scenarios> 1. The portrait is scrolling through social media and seeing posts from people he Dislike; 2. The portrait is watching a political debate where their least favorite candidate is speaking; 3. ...

Figure 1: We present MMHead, the first multi-modal 3D facial animation dataset with hierarchical text annotations including
abstract descriptions for overall actions and emotions, and fine-grained descriptions for expressions, head poses, as well as
possible scenarios that may cause such emotions.

ABSTRACT
3D facial animation has attracted considerable attention due to its
extensive applications in the multimedia field. Audio-driven 3D
facial animation has been widely explored with promising results.
However, multi-modal 3D facial animation, especially text-guided
3D facial animation is rarely explored due to the lack of multi-modal
3D facial animation dataset. To fill this gap, we first construct a
large-scale multi-modal 3D facial animation dataset, MMHead,
which consists of 49 hours of 3D facial motion sequences, speech
audios, and rich hierarchical text annotations. Each text annotation
contains abstract action and emotion descriptions, fine-grained
facial and head movements (i.e., expression and head pose) descrip-
tions, and three possible scenarios that may cause such emotion.
Concretely, we integrate five public 2D portrait video datasets, and
propose an automatic pipeline to 1) reconstruct 3D facial motion
sequences from monocular videos; and 2) obtain hierarchical text
annotations with the help of AU detection and ChatGPT. Based
on the MMHead dataset, we establish benchmarks for two new
tasks: text-induced 3D talking head animation and text-to-3D facial
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motion generation. Moreover, a simple but efficient VQ-VAE-based
method named MM2Face is proposed to unify the multi-modal
information and generate diverse and plausible 3D facial motions,
which achieves competitive results on both benchmarks. Extensive
experiments and comprehensive analysis demonstrate the signif-
icant potential of our dataset and benchmarks in promoting the
development of multi-modal 3D facial animation.

CCS CONCEPTS
• Computing methodologies→ Animation.

KEYWORDS
3D Facial Animation, Multi-modal Generation, Fine-grained Text
Annotation, Dataset and Benchmark, VQ-VAE

1 INTRODUCTION
3D facial animation is becoming an increasingly popular topic in
computer vision and multimedia due to its numerous applications
in the multimedia field such as AR/VR content creation, games, and
film production. The strong correlation between speech audio and
facial movements makes it possible to automatically generate 3D
facial motion (which can then be used to animate avatars) from au-
dio, which will greatly simplify the animation production pipelines.
Text, as another commonly used modality in human society, plays
an important role in human-controlled AIGC. Recently, text guided
image [3, 47], video [49, 62] and human motion [23, 54, 82] gener-
ation have achieved pleasing results with numerous multimedia
applications. It would also be desirable to generate 3D facial motion

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Dataset
Modality Annotation Scale Property Acquisition

Motion Text Audio RGB Abstract Fine-grained Subj. Dur. FPS Lang. Repr. Env. Tech.Act. Emo. Exp. Pose Scn.
BIWI [18] ✓ - ✓ - - L - - - 14 1.44h 25 EN Mesh

Lab 3D

VOCASET [11] ✓ - ✓ - - - - - - 12 0.5h 60 EN Mesh
MeshTalk [46] ✓ - ✓ - - - - - - 250 13h 30 EN Mesh
Multiface [68] ✓ - ✓ ✓ - - ✓ - - 13 - 30 EN Mesh
MMFace4D [65] ✓ - ✓ - - L - - - 431 36h 30 CN Mesh
D3DFACS [10] ✓ - - ✓ - - L - - 10 - 60 - Mesh
CoMA [45] ✓ - - - - - L - - 12 - 60 - Mesh
4DFAB [6] ✓ - - ✓ - - L - - 180 - 60 - Mesh
3D-ETF [42] ✓ - ✓ ✓ - L - - - 100+ 6.5h - EN Blendshape Mix Mono.
MEAD-3D [13, 27] ✓ - ✓ ✓ - L - - - 60 38h 30 EN FLAME Lab Mono.
TEAD [86] - ✓ - - - ✓ - - ✓ - - - - Blendshape - Gen.
TA-MEAD [37] - ✓ ✓ ✓ - ✓ ✓– - ✓ 60 40h 30 EN - Lab -
MMHead ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 2𝐾+ 49h 25 Mul. FLAME Mix Mono.

Table 1: Comparison of Relevant Datasets. The abbreviations "Act.", "Emo.", "Exp.", "Scn." stand for abstract action and emotion
annotations, fine-grained expression (facial movement) annotation, and scenarios that may cause such emotion, respectively.
The abbreviations "Subj.”, "Dur.", "Lang.", "Pepr.", "Env." and "Tech." refer to subjects, duration, language, representation, and the
data acquisition environment and the technology used, respectively. "L" indicates that the dataset has labels rather than text
descriptions. "✓–" indicates that such annotation exists but is not complete. "EN", "CN", and "Mul." represent English, Chinese,
and multiple languages, respectively. "Mono." means the 3D facial motion is reconstructed from monocular video, and "Gen."
means the 3D facial motion is generated by neural networks.

from text descriptions. Further, it would be even more inspiring to
achieve fine-grained 3D facial animation under multi-modal signal
control. However, due to the lack of relevant datasets, fine-grained
multi-modal 3D facial animation has been rarely explored.

In the field of 3D facial animation, impressive progress has been
made in audio-driven 3D facial animation [1, 11, 41, 50, 56, 66, 70],
making it possible to generate 3D facial motion sequences with
synchronized lipmovements based on the input talking audio. More-
over, some works [13, 42, 64] have incorporated emotion labels to
achieve explicit control over talking emotions. Recently, [37, 86]
tried to use text descriptions in natural language rather than emo-
tion labels to guide the facial animation. However, they only con-
sider textual descriptions of emotions during talking, while over-
looking the actions other than talking, as well as text descriptions
of fine-grained facial and head movements. Such limitations seri-
ously affect the convenience and flexibility of 3D face animation
in multimedia applications. A major reason for these limitations is
the lack of open-source multi-modal 3D facial animation datasets
with fine-grained text annotations, as shown in Tab. 1.

To alleviate the scarcity of multi-modal 3D facial animation
datasets, we present MMHead, a large and diverse multi-modal 3D
facial animation dataset with rich hierarchical text annotations. To
the best of our knowledge, MMHead is the first 3D facial animation
dataset with both abstract and fine-grained text annotations, includ-
ing abstract action and emotion descriptions, fine-grained facial
and head movement (i.e., expression and head pose) descriptions,
as well as possible scenarios that may cause the person’s emotion
(see Fig. 1 and Tab. 1). Concretely, we build our 3D facial animation
dataset from 2D portrait video datasets [35, 63, 68, 76, 87], consid-
ering the huge amount of 2D videos and satisfactory monocular
3D face reconstruction results [12, 19, 20]. An automatic pipeline
is also proposed to reconstruct 3D facial motion sequences from
monocular videos, and then obtain abstract and fine-grained text

annotations for these facial motions. The data construction pipeline
can be easily scaled up to obtain larger datasets. To be specific,
we first integrate and filter five public 2D portrait video datasets,
i.e., CelebV-HQ [87], CelebV-Text [76], MEAD [63], RAVDESS [35],
Multiface [68], to achieve richer facial actions and emotions. Then,
we reconstruct 3D facial motion represented by FLAME parame-
ters [32] via a state-of-the-art emotion-preserving monocular 3D
reconstruction method named EMOCA [12, 19, 20]. Optimization
and manual screening are then performed to obtain final 3D facial
motion sequences that can achieve comparable precision compared
to the lab-collected 3D facial animation datasets. As for text anno-
tation, we explore the annotation capabilities of the large language
model through well-designed prompts. Specifically, the action and
emotion labels of the portrait video datasets, per frame activated
facial Action Units (AU) [36, 60] and head poses are conditionally
combined with five different prompts to feed into ChatGPT [38]
to obtain natural text descriptions of abstract action, abstract emo-
tion, detailed expression, detailed head pose, and emotion scenarios,
respectively.

Alongwith the proposedmulti-modal 3D facial animation dataset,
we benchmark two novel tasks: 1) text-induced 3D talking head
animation (Benchmark I), which aims at generating 3D facial ani-
mations according to both speech audio and text instructions; 2)
text-to-3D facial motion generation (Benchmark II), i.e., generating
3D facial motion sequences based on the given text descriptions.
We define these tasks as non-deterministic generation tasks [73, 80]
rather than regression tasks [11, 17, 70] to achieve robust and di-
verse 3D facial motion generation. Moreover, we propose a simple
but efficient method named MM2Face to unify the multi-modal
information and generate diverse and plausible 3D facial motions,
which first utilizes a VQ-VAE [16, 58] to compress the 3D facial mo-
tions into a discrete codebook, and then generate plausible results
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in a constrained space by sampling the codebook in an autoregres-
sive fashion through a transformer [59] equipped with specially
designed attention maps. Based on MM2Face, we further explore
the fusion and injection strategies of text and audio modalities to
provide insight for future research.

In summary, our main contributions are:
• We propose the first multi-modal 3D facial animation dataset,
MMHead, which contains rich hierarchical text annota-
tions including abstract action and emotion descriptions,
fine-grained facial and head movements descriptions, and
possible emotion scenarios.

• We benchmark two new tasks: text-induced 3D talking head
animation and text-to-3D facial motion generation to pro-
mote future research on multi-modal 3D facial animation.

• We propose a VQ-VAE-based method to unify the multi-
modal information and generate diverse and plausible 3D
facial motions. The proposed framework achieves competi-
tive results on both benchmarks.

2 RELATEDWORK
Audio-driven 3D Facial Animation. Audio-driven 3D facial an-
imation aims at generating 3D facial motion sequences accord-
ing to the input speech audio. In recent years, it has attracted
much attention due to its potential use in virtual avatar anima-
tion [61, 67, 85], film, and game production. Audio-driven 3D facial
animation methods can be roughly divided into two categories:
rule-based methods [9, 15, 52, 72] and learning-based methods
[1, 11, 13, 17, 41, 42, 46, 50, 51, 55, 66, 70]. Rule-based methods
[9, 15, 52, 72] typically establish complex mapping rules between
pronunciations and lip motions. This kind of method makes it easy
to ensure the accuracy of the lip motion, however, requires a lot of
manual effort and cannot generate the motion of the entire head.
Learning-base methods solve the 3D facial animation problem in
a data-driven way, and have made impressive progress in recent
years [1, 11, 17, 41, 46, 50, 51, 55, 66, 70]. Furthermore, EmoTalk
[42] and EMOTE [13] introduce emotion labels and achieve explicit
control over talking emotions. ExpCLIP [86] goes one step further
and uses emotion text descriptions rather than labels to control
the emotion of audio-driven 3D facial animation. However, it only
considers the textual control of emotions during talking, while ig-
noring the fine-grained control over facial and head movements. In
addition, text-to-3D facial motion generation without input speech
audio has never been explored except for expression generation
[39, 88], which affects the convenience and flexibility of 3D face
animation in multimedia applications. To fill this gap and promote
the research on fine-grained multi-modal 3D facial animation, we
present the first large-scale multi-modal 3D facial animation dataset
with rich hierarchical text descriptions in this paper.
Text-guided Generation. Incorporating text descriptions into
generative models has been a popular topic in AIGC areas such as
text-to-image/video/motion generation. In the common setting of
text to image task, generative models [21, 28, 31, 58] are widely used
to capture themulti-modal distributions of images, and can generate
diverse and plausible images compared to the regression models.
Earlywork [25, 30, 53, 57, 69, 78] often uses GANs or VAEswithwell-
designed networks for text-guided generation. Recently, denoising

diffusion models [5, 14, 47, 49, 54, 74, 77, 79, 82] and VQ-VAE have
been explored with superior performance. VQ-VAE is first explored
in text to image with numerous researches [4, 16, 75]. In recent
years, lots of works [22, 24, 29, 44, 81] also focus on text-to-3D
human motion generation and achieve promising results. Despite
the impressive progress of text-guided generation in numerous
areas, text-guided 3D facial animation has been rarely explored
before. To this end, we explore text-to-3D facial motion generation
based on the proposed MMHead dataset in this paper.
3D Facial Animation Datasets. 3D facial animation datasets play
an important role in both researches and multimedia applications,
which can be roughly divided into audio-driven 3D facial animation
dataset and 3D facial expression dataset. Audio-driven 3D facial
animation datasets [11, 18, 46] collects dynamic 3D facial motions
with synchronized speech audios and gradually seek to construct
larger, higher quality datasets. However, due to the high cost of col-
lecting dynamic 3D data, such datasets are hard to scale up, which
has prompted numerous works [13, 27, 42, 51] to reconstruct 3D
facial motion from portrait video datasets. Recently, other control
signals have begun to emerge in audio-driven 3D facial anima-
tion datasets. EmoTalk [42] and EMOTE [13] present datasets with
emotion labels. ExpCLIP [86] proposes a text-expression alignment
dataset, however, it only contains static facial expressions and ig-
nores facial actions other than talking as well as the corresponding
text descriptions. As for 3D facial expression datasets, some works
[6, 10, 40, 45, 68, 83, 84] capture someone’s 3D face sequences when
asking him to make a given expression, which lack of fine-grained
text annotations and other facial actions other than the specified ex-
pressions. Different from existing 3D facial animation datasets, our
MMHead dataset contains both speech audio and rich hierarchical
text annotations of diverse facial actions.

3 MMHEAD DATASET
Considering the absence of a fine-grained multi-modal 3D facial
animation dataset, we present MMHead, a large-scale dataset with
both speech audio and fine-grained text annotations. As shown in
Fig. 2, we first collect a portrait video candidate set from five pub-
licly available portrait video datasets (Sec. 3.1), and then reconstruct
3D facial motion from this candidate set through monocular 3D
face reconstruction technologies [12, 19, 20] followed by optimiza-
tion and manual check (Sec. 3.2 part 1). In addition, we propose an
automatic text annotation pipeline to obtain rich text annotations
including abstract action and emotion descriptions, fine-grained fa-
cial and head movements descriptions, and three possible scenarios
that may cause the person’s emotion (Sec. 3.2 part 2). The statistics
analysis of the MMHead dataset, and dataset partitioning for the
two benchmarks are detailed in Sec. 3.3.

3.1 Data Collection
Dataset Integration.We integrate five commonly used portrait
video datasets with rich facial action and emotion to obtain the
candidate video set for our 3D facial motion. (1) CelebV-HQ [87],
a large-scale and high-quality in-the-wild face video dataset with
manually labeled facial action and emotion labels. We remove
videos with actions that are hard to see on 3D head, including
"kiss", "listen to music", "play instrument", "smoke", and "whisper",
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Filter
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Reconstruction
Smooth

Audio-visual Dataset Video Facial Motion
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Activate Speaker’s 
Talking video

SyncNet

Filtering

Mono. 3D 

Face Recon.
Optimization

3D Face Motion

θ,ψ
FLAME

β'

θ',ψ'

β

β, θ, ψ: Shape, Pose, 

Expression Parameters

63  30  -  30  36

Filtering

Portrait Video Datasets Candidate Videos

Mono. 3D 

Face Recon.
Optimize

Manual

Check

AU Detection

Text 

Annotator

3D Facial Motion

Pose

Activated AUs

<action>
<emotion>

<head pose>
<expression>
<scenarios>

Abstract
<action>

<emotion>
Fine-grained
<head pose>
<expression>
<scenarios>

Prompts

Text Annotations

Figure 2: Dataset construction pipeline. We first integrate five portrait video datasets, and filter the data to obtain the candidate
videos for constructing our 3D facial animation dataset. Then, high-precision 3D facial motion sequences are obtained from
candidate videos through monocular 3D face reconstruction, FLAME parameter optimization, and manual screening in turn.
Finally, we utilize ChatGPT with well-designed prompts to obtain abstract and fine-grained text annotations.

and reuse the remaining action and emotion labels in our automatic
text annotation pipeline for abstract text descriptions. (2) CelebV-
Text [76], a large-scale and high-quality in-the-wild dataset with
facial text-video pairs. Although it has text descriptions for dynamic
actions and emotions, it often contains useless descriptions and
emotion annotations that change too frequently. To this end, we re-
move those videos with emotion changes more than four times, and
only use the action and emotion labels of the CelebV-Text dataset.
Similar to CelebV-HQ, we remove videos with inconspicuous ac-
tion labels, here "squint" action is also removed. (3)MEAD [63], a
lab-collected high-quality multi-view emotional talking head video
dataset, in which each speaker speaks with 8 emotions in three
intensity levels. Here we only use the frontal videos. To balance
talking with other actions as well as achieve more obvious emo-
tion labels, we only use the level-3 data for each emotion in the
dataset. (4) RAVDESS [35], a lab-collected high-quality emotional
talking and singing video dataset with 8 emotions. Here we use
all of its data. (5)Multiface [68], a lab-collected multi-view facial
animation dataset with various facial expressions and several talk-
ing sequences. Here we only use the frontal videos of recognizable
expressions.
Video Filtering.We first unify all the portrait videos we got above
into 25 FPS, and then remove videos with more than 200 frames.
Moreover, we filter out videos with poor audio quality, since the
synchronization between audio and facial motion, especially mouth
motion, is of great importance, however, out-of-sync sound and
picture, excessive background noise or background music, and
multiple people speaking together in one video are common in in-
the-wild videos. We follow VoxCeleb [7] and utilize SyncNet [8], a
pre-trained model for determining the audio-video synchronization,
to get the confidence score of each in-the-wild portrait video, and
then filter out videos with confidence score lower than a specified
threshold.

3.2 Automatic Annotation Pipeline
3D Facial Motion Reconstruction.We utilize sequences of ex-
pression (50 dimensions) and pose (6 dimensions) parameters of a
commonly used parametric head model, FLAME [32], to represent
3D facial motion. To reconstruct FLAME parameters from portrait
videos, we select a state-of-the-art emotion-preserving monocular
3D face reconstruction method, EMOCA [12, 19, 20], to estimate
FLAME parameters for each frame. However, due to the shaking of
the people and complex background in the videos, frame-by-frame

ChatGPT

<action>

The portrait looks 

happy...

The portrait starts  

with a slight tilt to 

the left...

The portrait starts  

with a raised inner 

brow...

Reconnecting with 

a long lost friend...

I'll give you a [sequence of head pose descriptions] . . . , and 

your task is to summarize the head movements of the portrait 

into a fluent description which describes the head pose 

dynamics in chronological order...

I'll give you an [emotion label set] . . . , and your task is to 

string the emotion labels in order into a descriptive statement 

that describes the emotions of the portrait in the video clip...

I'll give you an [action label set]..., and your task is to string 

the action labels together into a statement that describe the 

portrait's act ion in chronological order. To help you figure 

out the chronological order, I'll also give you a [sequence of 

activated facial action units and head pose descriptions] that 

reflects the detail of the portrait's facial and head movement...

I'll give you a [text description] which describes the emotion 

of the person, and your task is to imagine three possible 

scenarios that could cause such emotion...

The portrait looks 

around and then 

talks while...

<emotion>

<head pose>

I'll give you a [sequence of activated facial action 

descriptions].. ., and your task is to summarize the portrait’s 

detailed facial movements into a description which describes 

the facial movement dynamics in chronological order...

<expression>

<scenarios>

Figure 3: Text annotation pipeline with well-designed
prompts. We use different prompts and input information
to annotate each data with five types of text descriptions
separately by ChatGPT.

reconstruction results may exhibit instability, such as incorrect
shapes and jittery motions. To solve this problem, we first sieve
out the outliers of the estimated FLAME parameters through Box
Plot and replace them with the values of neighboring points, and
then smooth the expression and pose parameters via per-video
optimization. All 3D facial motion sequences are manually checked
to guarantee quality. For more details, please refer to the Sup. Mat.
Text Annotation. We annotate each 3D facial motion with rich
text descriptions including abstract action and emotion descriptions,
fine-grained facial and head movements descriptions, and three
possible scenarios that may cause such emotion. These five types
of text descriptions are annotated separately as illustrated in Fig. 3.
For full content and format of the well-designed prompts, please
refer to the Sup. Mat. (1) Abstract action. Since the lab-collected
part of our candidate video set only contains one action in "talking",
"singing" and "making a facial expression", we predefine seven text
descriptions for each of these three actions, and then randomly
select one of the seven predefined texts as the abstract action text
description for each 3D facial motion from lab-collected videos. As
for 3D facial motions from in-the-wild videos, multiple actions may
occur in one motion sequence and we only have the action labels
that are not strictly in chronological order, so we feed ChatGPT [38]
additional information including per frame activated AU [36, 60]
and head pose labels with their intensity values, and let ChatGPT
deduce the chronological order of the action labels, and then give
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Figure 4: Overview of our MM2Face framework. In stage I, we utilize a VQ-VAEV to tokenize the FLAME facial motions 𝑭 1:𝑇 to
a sequence of motion tokens. Then in stage II, we utilize a causal auto-regressive transformer MM2Face G to generate discrete
motion tokens 𝑭 sequentially from audio and text inputs.

an abstract action text description according to the chronological
order. (2)Abstract emotion. We let ChatGPT string the given emo-
tion labels (borrow from original video datasets) into a natural text
description which will serve as our abstract emotion annotation.
(3) Fine-grained facial movements (i.e., expression). We find
that letting ChatGPT annotate detailed facial and head movements
separately can achieve better performance than annotating them
together. Here we feed ChatGPT per frame-activated AU labels
together with their intensity values, and ask ChatGPT to summa-
rize them in chronological order to obtain the fine-grained facial
movements text descriptions. (4) Fine-grained head movements
(i.e., head pose). We define seven types of head pose state labels
according to the neck rotation vector of the FLAME [32] model,
and feed ChatGPT per frame head pose labels with corresponding
rotation angles to obtain the fine-grained head movements text
descriptions. (5) Scenarios. We finally ask ChatGPT to imagine
three possible scenarios that may cause the person to experience
the emotions annotated in (2). Note that these hierarchical text
descriptions can be automatically annotated in batches, which can
be easily extended to larger datasets.

3.3 Dataset Analysis
Data Statistics. As described above, we construct MMHead from
five online portrait video datasets and end up with 35903 3D facial
motion sequences up to 49 hours in total. Specifically, there are
10505, 11128, 11313, 2452, 505 motion sequences from CelebV-HQ
[87], CelebV-Text [76], MEAD [63], RAVDESS [35], Multiface [68],
respectively. Each 3D facial motion is annotated with five types
of text annotations including abstract action and emotion, fine-
grained facial and head movements, and three possible scenarios.
For more details about the motion duration, action and emotion
categories statistics, please refer to the Sup. Mat.
Dataset partitioning for Two Benchmarks.We benchmark two
tasks based on the MMHead dataset. For text-induced talking head
animation (Benchmark I), we use a total of 28466 3D facial motion

sequences related to "talk", "sing", and "read". For text-to-3D facial
motion generation (Benchmark II), we use 7937 sequences in total,
including 505 sequences with various facial expressions from the
Multiface dataset, 250 talking, and 250 singing sequences randomly
sampled from the data used in benchmark I, and a total of 6932
sequences for all actions other than "talk", "sing", and "read".

4 MM2FACE METHOD
We explore a simple but efficient two-stage methodMM2Face that
can handle both newly proposed text-induced 3D talking head ani-
mation and text-to-3D facial motion generation tasks. MM2Face can
synthesize diverse and plausible 3D facial motions given a speech
audio sequence (optional) and a fine-grained text description.

Our MM2Face framework consisting of two stages is illustrated
in Fig. 4. In the first stage (section. 4.1), given a 3D facial motion
sequence, we utilize a motion tokenizer to extract discrete and
compact 3D facial motion tokens. In the second stage (section.
4.2), we conduct an auto-regressive token modeling task in discrete
token space using our MM2Face transformer [59]. During inference,
MM2Face iteratively predicts the likelihood of motion tokens in
each step hence allows for non-deterministic motion generation.

4.1 Facial Motion Tokenization
In stage I, we utilize VQ-VAE to extract meaningful discrete fa-
cial motion representations. We utilize a 1D CNN-based network
[26] to train a facial motion VQ-VAE V on diverse 3D facial mo-
tion data, which consists of a motion encoder E, a vector quan-
tization network Q, a codebook B, a motion decoder D. Given
a motion sequence 𝑭 1:𝑇 = (𝑭 1, 𝑭 2, ..., 𝑭𝑇 ) ∈ R𝑇×𝑑 , where 𝑇 de-
notes the motion frame number and 𝑑 denotes the dimension of
FLAME parameters. The encoder E extract meaningful feature vec-
tors 𝒛 = (𝒛1, 𝒛2, ..., 𝒛𝑇 ′ ) from 𝐹 , where 𝑇

′
= 𝑇 /𝑟 , 𝑟 is the temporal

downsampling rate (𝑟 = 4 in our paper). Then the feature vector 𝒛
is processed by the vector quantization network to get quantized
features �̂� = (�̂�1, ..., �̂�𝑇 ′ ) via searching nearest neighbors in the
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codebook B, which can be written as:

�̂� 𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑏𝑘 ∈B | |𝒛 𝑗 − 𝒃𝑘 | |. (1)

Finally, the quantized feature �̂� is fed into the motion decoder D to
reconstruct humanmotions 𝑭 . Through the process, we can convert
facial motion data to discrete features and their corresponding
codebook indices 𝐼 , i.e., motion tokens.
Training Loss.We adopt the motion reconstruction loss, embed-
ding commitment loss for training. The reconstruction loss is:

L𝑟𝑒𝑐 = L𝑚𝑠𝑒 (𝑭 1:𝑇 , 𝑭 1:𝑇 ) + 𝛼L𝑚𝑠𝑒 (𝑉 (𝑭 1:𝑇 ),𝑉 (𝑭 1:𝑇 )), (2)

where L𝑚𝑠𝑒 denotes the MSE loss function, 𝑉 (𝑭 1:𝑇 ) = 𝑭 2:𝑇 −
𝑭 1:𝑇−1 denotes the velocity of 𝑭 . 𝛼 is a hyper-parameter.

The commitment loss is:

L𝑐𝑜𝑚𝑚𝑖𝑡 = | |𝑠𝑔(�̂�) − 𝒛 | | + 𝛽 | |𝑠𝑔(𝒛) − �̂� | |, (3)

where 𝛽 is a hyper-parameter, 𝑠𝑔 denotes the stop gradient oper-
ation. Finally, we combine these losses L𝑣𝑞 = L𝑟𝑒𝑐 + L𝑐𝑜𝑚𝑚𝑖𝑡 to
optimize the VQ-VAE network.

4.2 Auto-regressive Token Modeling
After converting all the facial motions to discrete tokens, auto-
regressive token modeling is conducted to train our MM2Face trans-
former model G. The MM2Face transformer, as shown in Fig. 4,
consists of an audio encoder A, a full text encoder T𝑓 𝑢𝑙𝑙 , hierarchi-
cal text encoders Tℎ1:ℎ5 and a MM2Face transformer C.

Specifically, the audio 𝑨1:𝑇 is fed into A to extract dense audio
features, we concatenate all fine-grained text descriptions into a
full text and feed it into T𝑓 𝑢𝑙𝑙 to obtain full text feature, fine-grained
texts are separately fed into hierarchical text encoders Tℎ1:ℎ5 to ob-
tain hierarchical text features, then audio features and hierarchical
text features are concatenated together as cross attention inputs.
The MM2Face transformer C takes the ground truth motion tokens,
audios, full and hierarchical text features as inputs and sequentially
predicts the generated motion tokens 𝐼 . Then 𝐼 can be decoded to
final generated facial motions 𝑭 .
Architecture. Our audio encoder A is a pre-trained state-of-the-
art speech model wav2vec 2.0 [2], which is composed of a temporal
convolution-based network and a multi-layer transformer encoder.
A takes the audio inputs 𝑨1:𝑇 and output the audio feature. The
text encoder T is a pre-trained distilbert [48] model. The MM2Face
transformer C is a multi-layer transformer decoder. Each layer of
C is composed of normalization layers, a self-attention layer, a
feed-forward layer, and a cross-attention layer.
Biased Cross-attention.Giving the concatenated hierarchical text
features and audio features as inputs for cross-attention calculation,
we specifically design a biased cross-attention mask𝑚𝑎𝑠𝑘 in Fig. 4
to align the motion tokens with inputs:

𝐴𝑡𝑡 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑄𝐹 (𝐾)𝑇 ×𝑚𝑎𝑠𝑘√︁

𝑑𝑘

)
, (4)

where 𝐾 ∈ 𝑅𝑇×𝑑𝑘 is the key of the concatenated hierarchical text
features and audio features.
Training Loss. During training, we adopt the teacher-forcing strat-
egy and directly maximize the log-likelihood of the facial motion
token representations:

𝐿𝑀𝑀2𝐹𝑎𝑐𝑒 = 𝐸𝑥∼𝑝 (𝑥 ) [−𝑙𝑜𝑔𝑝 (𝑥 |𝑐)] . (5)

<action>: The portrait performs a facial expression 

movement.

<emotion>: ... remains neutral throughout ... 

<scenarios>: The portrait ... 

<head pose>: The portrait remains in a neutral head 

position throughout the video, ... 

<expression>: The portrait stretches the mouth open 

while wrinkling the nose.

Crop 

& 

Extract

Head Pose

Face Region 
Mesh

Motion 

Decoder

Contrastive 
Loss

…
…

Text 

Encoder

Motion 

Encoder…

Figure 5: Overview of text-to-facial motion retrieval method.

Dataset R@1 ↑ R@2 ↑ R@3 ↑
HumanML3D [23] 0.511 0.703 0.797
Motion-X [34] 0.573 0.765 0.850
Inter-X [71] 0.429 0.626 0.736
Inter-human [33] 0.452 0.610 0.701
MMHead bench I subset 0.843 0.941 0.970
MMHead bench II subset 0.678 0.842 0.904

Table 2: Text-to-3D facial motion retrieval performance
against other text-to-3D motion datasets.

Diverse Probabilistic Facial Motion Inference. Different from
previous deterministic methods [17, 70], our method can generate
diverse facial motions with various head poses and expressions
given input audio and text descriptions. Specifically, MM2Face
iteratively predicts the likelihood of motion tokens in each step,
then can stochastically generate the motion token in each step
through predicted likelihood.

5 EXPERIMENTS
In this section, we first validate quality of our collected MMHead
dataset. Then we conduct experiments of MM2Face and other com-
parison methods on our proposed two benchmark tasks.

5.1 Evaluation of MMHead Dataset Quality
Text-to-3D Facial Motion Alignment Evaluation. We perform
a text-to-motion retrieval task to evaluate the text-to-3D facial
motion alignment degree in MMHead dataset. Concretely, we select
TMR [43] which is a state-of-the-art retrieval method in 3D human
motion area as the baseline method, and calculate the performance
on both text-induced 3D talking head animation (benchmark I)
and text-to-3d facial motion generation (benchmark II) subsets. We
follow the common protocol [23, 33, 34, 71] by using the R-Precision
which calculates the average top-1 to top-3 text-to-motion retrieval
accuracy in each data batch as evaluation metrics.

Our detailed text-to-3D facial motion retrieval method is shown
in Fig. 5. The fine-grained texts from different perspectives are
concatenated together and fed into a transformer-based text en-
coder. The 3D facial motions are cropped and extracted to masked
face region mesh sequences and 3D head poses, then are fed into a
transformer-based motion encoder.

The results are shown in Table. 2, we compare our text-to-motion
retrieval accuracy with other text-to-motion datasets. We can ob-
serve that our MMHead dataset subsets achieve the highest ac-
curacy compared to other published text-to-3D human motion
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Methods Text R-Precision ↑ FID ↓ Audio-Match ↓ Diversity→ LVE (mm) ↓ FVE (mm) ↓Top-1 Top-2 Top-3

Real facial motion 0.843 0.941 0.970 0 31.70 50.84 0 0
Our VQ-VAE (Recons.) 0.777 0.892 0.934 14.62 35.03 50.37 2.855 0.807

Faceformer [17] 0.353 0.477 0.548 667.7 34.53 44.17 6.790 1.692
CodeTalker [70] 0.303 0.409 0.471 579.8 43.32 47.14 9.057 2.097
Selftalk [41] 0.286 0.399 0.478 708.4 33.19 43.23 6.766 1.680
Imitator [56] 0.328 0.471 0.555 763.3 37.11 45.31 6.792 1.693
Facediffuser [50] 0.703 0.853 0.905 72.03 32.78 50.53 7.905 1.903
Our MM2Face 0.718 0.854 0.909 41.19 34.57 50.09 6.736 1.692

Table 3: Experimental Results for benchmark I: Text-induced 3DTalkingHeadAnimation. The best and runner-up performances
are bold and underlined, respectively.

datasets [23, 33, 34, 71], demonstrating that our text descriptions
are accurate enough to conduct multi-modal generation tasks.
Audio-to-3D Facial Motion Alignment Evaluation. Similarly,
we slightly modify the text-to-motion retrieval method in Fig. 5
by changing the text encoder to a Wav2Vec [2] audio encoder, and
removing the 3D head pose as motion inputs. After conducting
the experiments, the Top-1 to Top-3 R-Precision accuracy is 0.885,
0.942, and 0.962, demonstrating the great audio-3D face motion
matching performance.

5.2 Text-induced 3D Talking Head Animation
The provided fine-grained textual annotations combined with corre-
sponding audio 3d facial motions lead to a new task, i.e. text-induced
3D talking head animation. Since there are no methods designed for
this task, we select 5 state-of-the-art 3D talking head methods, i.e.
Faceformer [17], CodeTalker [70], Facediffuser [50], Imitator [56],
Selftalk [41] and modify them by adding a text encoder. Concretely,
for mesh-based methods [17, 41, 56, 70], we replace the template
feature with the text feature, for parameter-based methods [50], we
concatenate the text feature with the audio feature.
Experiment setup. We adopt the common protocol to split our
dataset into training, validation, and test sets with a ratio of 0.8,
0.05, and 0.15. We select the 56 dimensions FLAME parameters as
the input of our method and evaluate the generation performance
on generated mesh sequences for fair comparison with other mesh-
based methods.
Metrics. Previous approaches [17, 70] treat this task as a determin-
istic prediction task instead of a generative task, hence only the
accuracy-related metrics are calculated. To evaluate the diversity
and plausibility of generated motions, we follow the previous text
to human motion task [23, 24] and select Frechet Inception Dis-
tance (FID), text R-Precision, audio matching score, diversity and lip
vertices error [17] as our evaluation metrics: (1) FID, which is the
distribution distance between the extracted features of generated
motion and real motion by our pre-trained text-motion retrieval
network introduced in Fig. 5. (2) Text R-Precision: we calculate
the top-1 and top-3 text to motion retrieval accuracy as reported
metrics. We specifically compute them by ranking the Euclidean dis-
tance between the facial motion and text embeddings in a batch of
32 motion-text pairs. (3) Audio Matching Score is the average Eu-
clidean distances between each gt audio feature and the generated
motion feature extracted by our audio-motion retrieval network

Self-atten. Cross-atten. Top1-3 R-pre↑ FID↓ LVE↓
FT A [0.610, 0.776, 0.840] 45.68 6.985

FT, HT A [0.714, 0.851, 0.906] 40.65 6.742
FT, HT, A - [0.656, 0.798, 0.864] 72.65 8.073

- FT, HT, A [0.699, 0.846, 0.908] 35.57 6.824
FT HT, A [0.718, 0.854, 0.909] 41.19 6.736

Table 4: Ablation study of different multi-modal information
fusion strategies in MM2Face. ‘FT’, ‘HT’, ‘A’ denote full text,
hierarchical text and audio respectively.

trained by the method mentioned in section. 5.1. (4) Diversity. We
randomly select 300 motion pairs from generated motions. Then
We extract motion features and compute the average Euclidean
distances of each motion pair to compute motion diversity in test
set. (5) Lip Vertex Error (LVE) [46] calculates the maximum L2
error across all lip vertices for each frame. (6) Face Vertex Error
(FVE) calculates the average L2 error across all face region vertices
for each frame.
Quantitative Evaluation. The quantitative results are summa-
rized in Tab. 3 on MMHead dataset. For motion reconstruction,
our VQ-VAE achieves considerable reconstruction performance
against the real facial motion, demonstrating the excellent discrete
representations. For motion generation, we can observe that our
MM2Face achieves the best performance against other state-of-the-
art methods in almost all metrics. Concretely, the excellent Text
R-Precision accuracy demonstrates that MM2Face is able to syn-
thesize plausible 3D facial motions while correctly following the
fine-grained text descriptions. The excellent Audio matching score,
LVE and FVE demonstrate MM2Face’s ability for precise motion
generation. The FID score also indicates the generative distribution
modeling performance of our MM2Face method.
Qualitative Evaluation.We also provide the qualitative results in
Fig. 6. Our approach exhibits superior text and face alignment with
accurate audio-visual correspondence. More qualitative results can
be seen in supplementary material.
Ablation Study. Since our MM2Face method focuses on the multi-
modal generation of facial motions, we perform an ablation study of
various modality fusion strategies. Considering self-attention and
cross-attention are the two most popular fusion mechanisms, we
conducted a detailed study. The experiment results are summarized
in Table. 4. First, we can observe that merely utilizing full text results
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<action> The portrait talks about something in the video clip.  <emotion> The portrait looks happy throughout the video clip. <scenarios> 

The portrait watches their child take their first steps. <head pose> The portrait starts with no head pose for a while, then gradually starts to tilt 

upwards in a consistent manner. It remains in an upward position for some time before transitioning into a slight left turn. <expression> The 

person's cheeks raise, lids tighten, upper lip raises, lip corners pull, and  …… Towards the end, the cheeks continue to raise with maintained 

lid tightening, upper lip raising, and lip corner pulling, leading to a final relaxing expression with slight dimpling and parted lips.

GT

MM2Face

<action> The portrait talks and frowns in quick succession. <emotion> The portrait starts with fear and remains fearful throughout the video 

clip. <scenarios> The portrait is watching a horror movie alone in a dark room. <head pose> The portrait initially starts with no head pose 

and then gradually starts turning the head to the left. The head continues to turn left, with slight variations in the angle, …… After a series of 

left turns and left tilts, the head movements stabilize briefly and slightly turn right. <expression> The face starts with an inner brow raise, 

outer brow raise, and chin raise. …… Finally, slight lid tightening, chin raises, and left dimples are seen.

GT

MM2Face

Figure 6: Qualitative results of MM2Face on benchmark I:
text-induced 3D talking head animation.

Methods Text R-Precision ↑ FID ↓ Text-Match ↓ Diversity→Top-1 Top-2 Top-3

Real motion 0.678 0.842 0.904 0 19.14 33.39
VQ-VAE (Recons.) 0.492 0.667 0.763 21.29 21.72 33.48

TM2T [24] 0.316 0.481 0.559 77.21 25.35 32.17
T2M-GPT [81] 0.331 0.495 0.598 22.36 24.62 32.91
MDM [54] 0.214 0.327 0.404 64.45 27.82 31.82
Our MM2Face 0.405 0.601 0.698 35.80 23.17 33.30

Table 5: Experimental Results for benchmark II: Text-to-3D
Facial Motion Generation. The best and runner-up perfor-
mances are bold and underlined, respectively.

in poor generation performance, demonstrating the necessity of
separating fine-grained texts. Second, fusing all text features and
audio features through self-attention mechanism also produces bad
results, it is because that self-attention is difficult to model the dense
alignment between generated motion tokens and corresponding
audio. Third, we can see that the remaining ablations produce
slightly similar results but full text self-attention, hierarchical text,
and audio cross-attention yield the best R-precision, hence our
MM2Face method adopts this architecture.

5.3 Text-to-3D Facial Motion Generation
MMHead contains diverse facial expression sequences from specific
face expression datasets and general facial motion datasets. Hence
we explore a new text-to-3D facial motion generation task. We
conduct experiments with the state-of-the-art text-to-3D human
motion methods, i.e., MDM [54], TM2T [24] and T2M-GPT [81].
We re-implement these methods to adapt to our dataset format.
Experiment Setup andMetrics. Similar to benchmark I, we select
56 dimensions FLAME parameters as motion representations and

<action> The portrait performs a facial expression movement during the video clip. <emotion> The portrait remains neutral throughout the video clip.  

<scenarios> The portrait is listening to a boring lecture but doesn't want to appear disinterested. <head pose> The portrait maintains a consistent head 

position without any movements throughout the video. <expression> The portrait moves the mouth and nose to the left direction.

<action> The portrait starts to frown and then slowly begins to turn. <emotion> The portrait remains neutral ……  <scenarios> …… controlling their 

emotions ……  <head pose> The portrait slowly turns its head to the left, gradually increasing the angle. As it continues, the head starts tilting 

downwards while maintaining the left turn …… Eventually, the head settles in a position where it is slightly turned left, …… <expression> The person 

starts tightens their lids, raises their right inner brow, and lifts their chin slightly ……  As time progresses, the brow lower decreases, …… Towards the 

end, the person's facial movements stabilize with a lowered brow ……

GT

MM2Face

GT

MM2Face

Figure 7: Qualitative results of MM2Face on benchmark II:
text-to-3D facial motion generation.

adopt the Frechet Inception Distance, R-precision, diversity, and
text matching score for evaluation. We re-train a text-to-3D facial
motion retrieval network as introduced in Section. 5.1 in benchmark
II subset for metric calculation.
Quantitative Evaluation. The quantitative results are summa-
rized in Tab. 5 on the benchmark II subset of the MMHead dataset.
We can derive that our method achieves the best performance
against all metrics. T2M-GPT [81] achieves the second-best per-
formance in FID, matching score, diversity and R-precision. MDM
[54] achieves considerable FID performance but fails to capture
the text-to-motion consistency according to R-precision. From the
results, we derive that our MMHead dataset has the potential for
further explorations.
Qualitative Evaluation.We also provide the qualitative results
in Fig. 7. Our approach exhibits superior text and face alignment.
More results are in the supplementary material.

6 CONCLUSION
In this paper, we push forward the 3D facial animation task, and
present MMHead, the first multi-modal 3D facial animation dataset
with rich hierarchical text annotations including abstract action
and emotion descriptions, fine-grained facial and head movements
descriptions, and possible emotion scenarios. With MMHead, we
benchmark two new tasks: text-induced 3D talking head animation
and text-to-3D facial motion generation. Moreover, we propose
a simple but efficient VQ-VAE-based method named MM2Face to
explore the multi-modal information fusion strategies and generate
diverse and plausible 3D facial motions, which achieves competitive
performance on both benchmarks. We hope that the MMHead
dataset and the corresponding benchmarks will promote in-depth
research works on multi-modal 3D facial animation.
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