
Supplementary Information: Generalized Shape Metrics on
Neural Representations

This supplement is organized into five sections. First, in Supplement A, we review background material on
metric spaces and other relevant mathematical concepts. In Supplement B, we prove the two propositions that
appear in the main text. Supplement C collects together several miscellaneous results which demonstrate
that generalized shape metrics include similarity measures based on CCA, kernel CCA, and geodesic
distance on Kendall’s shape space. In Supplement D, we outline an extension and reinterpretation of
generalized shape metrics to stochastic random variables. This extension represents a rich opportunity for
future research and also provides a better foundation to interpret the results presented in Fig. 3 of the main
text, which empirically characterize the number of images needed to estimate the distance between two
neural networks. Finally, in Supplement E, we collect additional methodological details about the experiments
we present in the main text.

A Background

A.1 Notation

Vectors in real coordinate space are denoted in boldface with lowercase letters, e.g. x ∈ Rn. Matrices are
denoted in boldface with uppercase letters, e.g. X ∈ Rm×n. We use the same notation to denote linear
operators, e.g. T ∈ G where G is a set of linear operators.

Letters in regular type face, e.g. x or X, may denote scalars or elements of some abstract vector space, with
the distinction being made clear from context. For example, the space of random variables with outcomes
over Rn defines a vector space that we will see is compatible with the basic framework of generalized
shape metrics. This extension of shape metrics to stochastic layers and neural responses is outlined in
Supplement D.

If T is a linear operator on some vector space, and X is a vector within this space, we will use TX to
denote the transformation X 7→ T (X). Further, if T 1 and T 2 are linear operators, we write T 1T 2X in place
of T 1(T 2(X)), and we use T 1T 2 to denote the composition of the two linear operators. These notational
choices intuitively draw parallels with matrix-vector and matrix-matrix multiplication, respectively.

A.2 Metrics

Here we revisit our definition of a metric given in the main text to provide more rigorous details and clarify the
role of the equivalence relation.

Definition 1. A metric on a set S is a function S ×S 7→ R+, which satisfies, for all X,Y,M ∈ S, the following
three conditions:
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• Identity. d(X,Y ) = 0 if and only if X = Y

• Symmetry. d(X,Y ) = d(Y,X)

• Triangle Inequality. d(X,Y ) ≤ d(X,M) + d(M,Y )

We have seen that it is useful to relax the first condition (Identity ) to an equivalence relation. That is, rather
than strict equality, we demand that d(X,Y ) = 0 if and only if X ∼ Y , for some specified equivalence relation
∼. In this scenario, the distance function is not, strictly speaking, a metric on S. However, it still does define
a metric on the appropriate quotient set, which we now define.

Definition 2. Let ∼ denote an equivalence relation defined on some set S. Then given any M ∈ S, we can
define the set of all elements equivalent to M as {X ∈ S | X ∼M}, which is called the equivalence class
of the element M . The set of all equivalence classes, denoted S/ ∼, is called the quotient set of S with
respect to the specified equivalence relation.

For example, the Euclidean distance ‖x− y‖ is a metric on the set of vectors in Rn. The angular distance
arccos(x>y/

√
x>x · y>y) is not a metric on Rn, but it defines a metric between sets of points contained in

rays emanating from the origin (i.e. points in Rn with an equivalence relation given by nonnegative scaling).
These technical distinctions above are not central to our story, so we will often refer to a function as a “metric”
without explicitly defining what set it acts upon. In all cases, it should be understood as the quotient set
defined by the specified equivalence relation.

A.3 Hilbert spaces

A vector space H is a collection of objects (called vectors) that are equipped with two operations: vector
addition (given X ∈ H and Y ∈ H we have X + Y ∈ H) and scalar multiplication (given X ∈ H and α ∈ R
we have αX ∈ H). An inner product space is a vector space that is additionally equipped with a function
H×H 7→ R, called the inner product, which is denoted with angle brackets 〈·, ·〉 and satisfies:

• Symmetry. 〈X,Y 〉 = 〈Y,X〉

• Linearity. 〈Z + αX, Y 〉 = 〈Z, Y 〉+ α〈X,Y 〉

• Positive Definiteness. 〈X,X〉 ≥ 0 with equality if and only if X = 0

A Hilbert space is an inner product space that satisfies an additional technical requirement (all Cauchy
sequences of vectors in H converge to a limit in H).

The set of vectors in Rn defines a Hilbert space, where the inner product corresponds to the usual dot product.
Similarly, the set of matrices in Rm×n, equipped with the Frobenius inner product 〈X,Y 〉 = Tr[X>Y ] also
defines a Hilbert space. In Supplement D, we will exploit the fact that random vectors over Rn also define
a Hilbert space where the inner product is given by the expectation of the dot product. This enables us to
extend the framework of generalized shape metrics to stochastic neural layers.

A.4 Euclidean and Angular Distances in Hilbert Spaces

One of the most fundamental properties of a Hilbert space is the Cauchy-Schwarz inequality,

|〈X,Y 〉| ≤ ‖X‖‖Y ‖ for all (X,Y ) ∈ H ×H, (1)
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which can be derived from the properties of the inner product. Using this, we can verify that the norm is
sub-additive:

‖X + Y ‖ ≤ ‖X‖+ ‖Y ‖ for all (X,Y ) ∈ H ×H, (2)

Defining deuc(X,Y ) = ‖X − Y ‖ to be the generalization of Euclidean distance to Hilbert spaces, we see that
triangle inequality follows immediately:

deuc(X,Y ) = ‖X − Y ‖ = ‖X −M +M − Y ‖ ≤ ‖X −M‖+ ‖M − Y ‖ = deuc(X,M) + deuc(M,Y ) (3)

for all choices of X, Y , and M in H. Euclidean distance evidently satisfies the remaining two properties of a
metric—symmetry and nonnegativity.

The angular distance is defined as:

dθ(X,Y ) = arccos

[
〈X,Y 〉
‖X‖‖Y ‖

]
(4)

The Cauchy-Schwarz inequality implies that the argument to arccos(·) is always within its domain (i.e. on the
interval [−1, 1]). The angular distance is a metric over equivalence classes defined by nonnegative scaling:
formally, X ∼ Y if and only if there exists an s > 0 such that X = sY . Geometrically, one can think of
dθ(X,Y ) as the geodesic path length between points on a sphere. Intuitively, this is nonnegative, symmetric,
and obeys the triangle inequality. We provide a short proof that the triangle inequality is indeed satisfied
below.

Proof: Angular distance satisfies the triangle inequality. Consider three unit-norm vectors: X, Y , and Z.
The triangle inequality trivially holds if any pair of X, Y , and Z are equal, so we can assume X, Y , and Z
are distinct. Now define two vectors U and V as follows:

U = X − Y 〈X,Y 〉 (5)

V = Z − Y 〈Z, Y 〉 (6)

Note that 〈U, Y 〉 = 0 and 〈V, Y 〉 = 0. Thus, we can interpret U as the part of X that is orthogonal to Y .
Likewise, we can interpret V as the part Z that is orthogonal to Y . Further, we have:

X = Y 〈X,Y 〉+ U〈X,U〉 = Y cos θXY + U sin θXY (7)

Z = Y 〈Z, Y 〉+ V 〈Z, V 〉 = Y cos θZY + V sin θZY (8)

where we introduced the shorthand θXY = dθ(X,Y ) for concision. Now,

cos θXZ = 〈X,Z〉 = 〈Y cos θXY + U sin θXY , Y cos θZY + V sin θZY 〉 (9)

= cos θXY cos θZY + 〈U, V 〉 sin θXY sin θZY (10)

≥ cos θXY cos θZY − sin θXY sin θZY (11)

= cos(θXY + θZY ) (12)

On line (10), many terms simplify since 〈Y, Y 〉 = 1, and 〈U, Y 〉 = 〈V, Y 〉 = 0. To introduce the inequality
on line (11), notice that the Cauchy-Schwarz inequality implies 〈U, V 〉 ≥ −1. Thus, replacing 〈U, V 〉 with
−1 produces a lower bound on cos θXZ since sin θXY sin θZY ≥ 0. The final step on line (12) applies an
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elementary identity from trigonometry. Overall, we have cos θXZ ≥ cos(θXY + θZY ). This directly implies the
desired triangle inequality, θXZ ≤ θXY + θZY , since arccos(·) is a monotonically decreasing function.

A.5 The Orthogonal Group

Another important feature of Hilbert spaces is the notion of an orthogonal transformation. These are linear
transformations which preserve the inner product. Below, we also define the familiar transpose operator for a
general Hilbert space.

Definition 3. An orthogonal transformation on a Hilbert space H is any linear transformation Q, which
satisfies 〈QX,QY 〉 = 〈X,Y 〉 for any choice of X ∈ H and Y ∈ H.

Definition 4. Let W : V 7→ V be a linear transformation on a Hilbert space V. For any choice of W , there
is a unique linear transformation W>, called the transpose (or adjoint) of W , which is denoted W> and
which satisfies 〈WX,Y 〉 = 〈X,W>Y 〉 for any choice of X ∈ V and Y ∈ V.

Let Q be orthogonal. Since 〈X,Y 〉 = 〈QX,QY 〉 = 〈X,Q>QY 〉, we see that Q>Q is the identity trans-
formation and thus Q> and Q are inverses. One can show that these inverses commute, and thus Q>

is also orthogonal since 〈Q>X,Q>Y 〉 = 〈QQ>X,QQ>Y 〉 = 〈X,Y 〉. Finally, let Q1 and Q2 be any pair
of orthogonal transformations on V. Then, the composition of these transformations Q2Q1 is evidently
orthogonal, since: 〈X,Y 〉 = 〈Q1X,Q1Y 〉 = 〈Q2Q1X,Q2Q1Y 〉.

In summary, we have just shown that the inverse of every orthogonal matrix is also orthogonal and orthogonal
transformations are closed under composition. This shows that the set of orthogonal transformations on a
Hilbert space fulfills the axioms of a group, as defined below:

Definition 5. A group is a set G equipped with a binary operation that maps two elements of G onto another
element of G, which satisfies:

1. Associativity: For all T 1,T 2,T 3 in G, one has (T 1T 2)T 3 = T 1(T 2T 3).

2. Identity element: There exists a unique element I ∈ G such that IT = TI = T for all T ∈ G.

3. Invertibility: For every T ∈ G there exists another element T−1 ∈ G such that TT−1 = T−1T = I.

Here, we are only interested in groups of linear functions, so the “binary operation” referred to above is
function composition (see section A.1 for notational conventions regarding linear operators).

We are particularly interested in groups of (linear) transformations that preserve distances. Such transforma-
tions are called (linear) isometries, which we define below.

Definition 6. Let S be a set and let d : S ×S 7→ R+ be a metric on this set. Then a transformation T : S 7→ S,
is called an isometry on the metric space (d,S) if d(TX,TY ) = d(X,Y ) for all X,Y ∈ S.

It is easy to see that the orthogonal group is a group of isometries with respect to the (generalized) Euclidean
and angular distance metrics. For the Euclidean distance we have:

d2euc(X,Y ) = ‖X − Y ‖2 = 〈X,X〉+ 〈Y, Y 〉 − 2〈X,Y 〉

= 〈QX,QX〉+ 〈QY,QY 〉 − 2〈QX,QY 〉

= ‖QX −QY ‖2 = d2euc(QX,QY )

(13)
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For the angular distance we have:

cos [dθ(X,Y )] =
〈X,Y 〉
‖X‖‖Y ‖

=
〈QX,QY 〉
‖QX‖‖QY ‖

= cos [dθ(QX,QY )] (14)

B Proof of Propositions 1 & 2

Both propositions in the main text follow immediately as special cases of the following result, which states
that minimizing any metric over a group of isometries results in a metric on the corresponding quotient space.
After proving this result we conclude this section by briefly outlining these special cases.

Proposition (A generalization of Propositions 1 & 2). Let (g,H) be a metric space, where g : H×H 7→ R+

denotes the distance function. Let G be a group of isometries on this metric space. Then the function:

h(X,Y ) = min
T∈G

g(X,TY ) (15)

defines a metric over the quotient spaceH/ ∼ where the equivalence relation is X ∼ Y if and only if X = TY

for some T ∈ G.

Proof. First, define TXY = argminT∈G g(X,TY ). So, h(X,Y ) = g(X,TXY Y ). Since g is a metric, g(X,Y ) =

0 if and only if X = Y . Thus, h(X,Y ) = 0 if and only if X = TXY Y , or equivalently if X ∼ Y by the stated
equivalence relation.

Next, we prove that h(X,Y ) = h(Y,X). By the group axioms, every element in G is invertible by another
element in the set, so T−1XY ∈ G. Further, every element of G is an isometry with respect to g. Thus,

h(X,Y ) = g(X,TXY Y ) = g(T−1XYX,T
−1
XY TXY Y ) = g(Y,T−1XYX) ≥ g(Y,T Y XX) = h(Y,X) , (16)

where the inequality follows from replacing T−1XY with the optimal T Y X = argminT∈G g(Y,TX). However, by
the same chain of logic, we also have:

h(Y,X) = g(Y,T Y XX) = g(T−1Y XY,T
−1
Y XT Y XX) = g(X,T−1Y XY ) ≥ g(X,TXY Y ) = h(X,Y ) . (17)

Thus, we have h(X,Y ) ≥ h(Y,X), but also h(Y,X) ≥ h(X,Y ). We conclude h(X,Y ) = h(Y,X) and
T−1XY = T Y X .

It remains to prove the triangle inequality. This is done by the following sequence:

h(X,Y ) = g(X,TXY Y ) (18)

≤ g(X,TXZTZY Y ) (19)

≤ g(X,TXZZ) + g(TXZZ,TXZTZY Y ) (20)

= g(X,TXZZ) + g(Z,TZY Y ) (21)

= h(X,Z) + h(Z, Y ) (22)

The first inequality follows from replacing the optimal alignment, TXY , with a sub-optimal alignment TXZTZY .
The second inequality follows from the triangle inequality on g, after choosing TXZZ as the midpoint. The
penultimate step follows from TXZ being an isometry on g.
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Relation to Proposition 1 The spaceH corresponds to Rm×p, which is equipped with the typical Frobenius
inner product. The distance function g is Euclidean distance, see eq. (3). The group G corresponds to
any group of linear isometries which can be expressed as a matrix multiplication on the right. That is, any
transformation from Rm×p 7→ Rm×p that can be expressed as X 7→XM for some M ∈ Rp×p.

Relation to Proposition 2 The space H corresponds to Sm×p (the “sphere” of m× p matrices with unit
Frobenius norm). The distance function g is the angular distance, see eq. (4). The group G is defined as
done directly above in our discussion of Proposition 1.

C Connections to Other Methods

This section describes the connections between generalized shape metrics and existing representational
similarity measures in greater detail. For simplicity, we consider quantifying the similarity between two
networks with n neurons or hidden layer units. We use X ∈ Rm×n and Y ∈ Rm×n to denote matrices
holding the hidden layer activations of two networks over m common test inputs. In many cases, networks
have distinct numbers of neurons or hidden units; however, this can be accommodated by applying PCA or
zero-padding representations to achieve a common dimension.

For further simplicity, we will assume that X and Y are mean-centered such that X>1n = Y >1n = 0n,
where 0n and 1n respectively denote an n-dimensional vector of zeros and ones. Intuitively, this mean-
centering removes the effect of translations in neural activation space when computing distances between
neural representations. In the main text, we show this mean-centering step explicitly as a centering matrix
C ∈ Rm×m that is included in the feature map, φ. The mean-centering step is not strictly required, but is a
typical preprocessing step in canonical correlations analysis [17] and Procrustes analysis [5].

C.1 Permutation Invariance & Linear Assignment Problems

Consider the problem of finding the best permutation matrix which matches two sets of neural activations in
terms of Euclidean distance. That is, we seek to find

Π∗ = argmin
Π∈P

∥∥X − Y Π
∥∥ , (23)

where P is the set of n × n permutation matrices. Note that this is equivalent to finding the permutation
matrix that minimizes squared Euclidean distance, and that:∥∥X − Y Π

∥∥2 = 〈X,X〉+ 〈Y ,Y 〉 − 2〈X,Y Π〉 . (24)

Since 〈X,X〉 and 〈Y ,Y 〉 are constant terms, the minimization in (23) is equivalent to:

Π∗ = argmin
Π∈P

−2〈X,Y Π〉 = argmax
Π∈P

〈X,Y Π〉 = argmin
Π∈P

dθ(X,Y Π). (25)

The final equality holds since the angular distance is given by a monotonically decreasing function (i.e., arccos)
of the maximized inner product. Finally, using the definition of the Frobenius inner product, 〈X,Y Π〉 =
Tr[X>Y Π], and so,

Π∗ = argmax
Π∈P

Tr[X>Y Π] . (26)
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This final reformulation is the well-known linear assignment problem [1]. This can be solved efficiently in O(n3)

time using standard algorithms [4], which are readily available in standard scientific computing environments.
For example, the function scipy.optimize.linear sum assignment provides an implementation in Python
[18].

C.2 Orthogonal Procrustes Problems

Instead of optimizing over permutations, we may wish to optimize over orthogonal transformations. Given
two matrices X ∈ Rm×n and Y ∈ Rm×n, we seek to find

Q∗ = argmin
Q∈O

‖X − Y Q‖ , (27)

where O is the set of n× n orthogonal matrices. This is known as the orthogonal Procrustes problem [6].
Following the same steps as above in section C.1, we can see that Q∗ also minimizes the angular distance
between two matrices, and maximizes their inner product:

Q∗ = argmax
Q∈O

〈X,Y Q〉 = argmin
Q∈O

dθ(X,Y Q) . (28)

The following lemma states the well-known solution to this problem, which is due to Schönemann [14].

Lemma 1 (Schönemann [14]). Let USV > denote the singular value decomposition of X>Y . Then
Q∗ = UV >. Furthermore, 〈

X,Y Q∗
〉
= ‖X>Y ‖∗ =

∑
i

σi (29)

where ‖ · ‖∗ denotes the nuclear matrix norm and σ1 ≥ σ2,≥ . . . ≥ σn ≥ 0 are the singular values of X>Y .

Proof. Let Z = V >QU , and note that Z is orthogonal because orthogonal transformations are closed under
composition. The cyclic property of the trace operator implies,

max
Q∈Q

〈
X,Y Q

〉
= max

Q∈Q
Tr[X>Y Q] = max

Q∈Q
Tr[SV >QU ] = max

Z∈Q
Tr[SZ] = max

Z∈Q

n∑
i=1

σizii (30)

where {zii}ni=1 are the diagonal elements of Z. Since Z is orthogonal, we must have zii ≤ 1 for all
i ∈ {1, . . . , n}. Since the singular values are nonnegative, the maximum is obtained when each zii = 1.
That is, at optimality we have Z = V >Q∗U = I, which implies Q∗ = V U>. Plugging zii = 1 into the final
expression of eq. (30) shows that the optimal objective is given by the sum of the singular values (i.e. the
nuclear norm of X>Y ).

C.3 Canonical Correlation Analysis (CCA)

CCA identifies matrices W x ∈ Rn×n and W y ∈ Rn×n which maximize the correlation between XW x and
Y W y. Formally, this corresponds to the optimization problem:

maximize
W x,W y

Tr[W>
xX

>Y W y]

subject to W>
xX

>XW x = W>
y Y

>Y W y = I .
(31)
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The maximized objective function, 〈XW x,Y W y〉 = Tr[W>
xX

>Y W y], generalizes the dot product between
two vectors to the Frobenius inner product between XW x and Y W y. The constraints of the optimization
problem constrain the magnitude of the solution—without these constraints, the objective function could
be infinitely large, since multiplying W x or W y by a real number larger than one proportionally increases
〈XW x,Y W y〉. Intuitively, the typical (Pearson) correlation is equal to the normalized inner product of two
vectors, and CCA generalizes this to matrix-valued datasets.

CCA can be transformed into the Procrustes problem by a change of variables. Assuming that X>X and
Y >Y are full rank, define Hx = (X>X)1/2W x and Hy = (Y >Y )1/2W y. Then, (31) can be reformulated
as:

maximize
Hx,Hy

Tr
[
H>x (X

>X)−1/2X>Y (Y >Y )−1/2Hy

]
subject to H>xHx = H>y Hy = I .

(32)

By this change of variables, we simplified the constraints of the problem so that Hx and Hy are constrained
to be orthogonal matrices. By applying the cyclic property of the trace operator, and defining Q = HyH

>
x ,

Xφ = X(X>X)−1/2, Y φ = Y (Y >Y )−1/2, we can simplify the problem further:

maximize
Q∈O

Tr[(Xφ)>Y φQ] . (33)

Thus, we see that CCA is equivalent to solving the Procrustes problem on Xφ and Y φ. Note that (Xφ)>Xφ =

(Y φ)>Y φ = I, and so this change of variables can be interpreted as a whitening operation [10].

From Lemma 1, we see that the optimal objective value to (33) is given by the sum of the singular values
of (Xφ)>Y φ. These singular values, which we denote here as 1 ≥ σ1 ≥ ... ≥ σn ≥ 0, are called canonical
correlation coefficients. They are bounded above by one since the singular values of Xφ and Y φ are all
equal to one, due to the whitening step, and the operator norm1 is sub-multiplicative:

‖(Xφ)>Y φ‖op ≤ ‖Xφ‖op‖Y φ‖op = 1 . (34)

Putting these pieces together, we see:

min
Q∈O

arccos
〈Xφ,Y φQ〉
‖Xφ‖‖Y φ‖

= arccos
‖(Xφ)>Y φ‖∗√

n ·
√
n

= arccos

(
1
n

n∑
i=1

σi

)
(35)

which coincides with equation 10 in the main text, since σi = ρi/n for the case of CCA. Proposition 2
implies that this defines a metric since Xφ/‖Xφ‖ and Y φ/‖Y φ‖ are matrices with unit Frobenius norm, and
because the set of orthogonal transformations is a group of isometries, as established in section A.5.

C.4 Ridge CCA

Next, we consider metrics based on regularized CCA, which essentially interpolate between the orthogonally
invariant metrics discussed in section C.2, and the linearly invariant metrics discussed in section C.3. This
interpolation is accomplished by specifying a hyperparameter 0 ≤ α ≤ 1, where α = 0 corresponds to
unregularized CCA and α = 1 corresponds to Procrustes alignment (i.e. fully regularized). We formulate this

1The operator norm of a matrix M , denoted ‖M‖op, is equal to the largest singular value of M .
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family of optimization problems as:

maximize
W x,W y

Tr[W>
xX

>Y W y]

subject to W>
x ((1− α)X

>X + αI)W x = W>
y ((1− α)Y

>Y + αI)W y = I .
(36)

Notice that when α = 1, the constraints reduce to W x and W y being orthogonal, and thus the objective
function can be viewed as maximizing 〈X,Y Q〉 over orthogonal matrices Q = W yW

>
x . Thus, we recover

Procrustes alignment in the limit of α = 1. Clearly, when α = 0, eq. (36) reduces to the usual formulation of
CCA (see eq. (31)).

We can solve eq. (36) by following essentially the same procedure outlined in section C.3, in which we
reduce the problem to Procrustes alignment by a change of variables. In this case, the change of variables
corresponds to a partial whitening transformation:

Hx = ((1− α)(X>X) + αI))1/2 and Hy = ((1− α)(Y >Y ) + αI))1/2 . (37)

Then, reformulate the optimization problem as:

maximize
Hx,Hy

Tr[H>x ((1− α)(X
>X) + αI))−1/2X>Y ((1− α)(Y >Y ) + αI))−1/2Hy]

subject to H>xHx = H>y Hy = I .
(38)

Let Q = HyHx, and let

Xφ = X((1− α)(X>X) + αI))−1/2 and Y φ = Y ((1− α)(Y >Y ) + αI))−1/2 . (39)

Then, by Proposition 2 and lemma 1, we have the following metric:

min
Q∈O

arccos
〈Xφ,Y φQ〉
‖Xφ‖‖Y φ‖

= arccos

∥∥∥∥∥
(

Xφ

‖Xφ‖

)>(
Y φ

‖Y φ‖

)∥∥∥∥∥
∗

= arccos

( n∑
i=1

ρi

)
. (40)

C.5 Nonlinear Alignments and Kernel CCA

We can also consider metrics based on kernel CCA [7], which generalizes CCA to account for nonlinear
alignments. As its name suggests, this approach belongs to a more general class of kernel methods
that operate implicitly in high-dimensional (even infinite-dimensional) feature spaces through inner product
evaluations. For a broader review of kernel methods in machine learning, see [9].

First, we recall the inner product between two matrices in a finite dimensional feature space Rm×p:

〈Xφ,Y φ〉 = Tr[(Xφ)>Y φ] =

m∑
i=1

(xφi )
>(yφi ) . (41)

Here we have introduced notation xφi and yφi to denote the p-dimensional vectors holding features to the ith

network input. In kernel CCA, we consider more general feature mappings xi 7→ xφi and yi 7→ yφi , where
each xφi ∈ H and yφi ∈ H are vectors in some Reproducing Kernel Hilbert Space (RKHS). That is, instead of
having two matrices Xφ and Y φ to represent the network representations in the feature space, we instead
consider the collections of vectors: Xφ = {xφ1 , . . . , xφm} and Y φ = {yφ1 , . . . , yφm}.
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Given a choice of a positive-definite kernel function k, we begin by computing two m×m un-centered kernel
matrices:

[K̃x]ij = k(xi,xj) = 〈xφi , x
φ
j 〉 and [K̃y]ij = k(yi,yj) = 〈y

φ
i , y

φ
j 〉 (42)

for i, j ∈ {1, . . . ,m}. Then, we define the centered kernel matrices: Kx = CK̃xC and Ky = CK̃yC, where
C = I − 1

m11> is the centering matrix.

The classic form of CCA (31) can then be reformulated terms of purely kernel operations [7, 17]:

maximize
W x,W y

Tr
[
W>

xKxKyW y

]
subject to W>

xK
2
xW x = W>

y K
2
yW y = I .

(43)

One can show that this optimization problem is equivalent (up to a change of variables) from the classic
CCA problem when a linear kernel function, k(xi,xj) = x>i xj , is used. Furthermore, one can generalize the
regularization scheme for CCA (see section C.4),

maximize
W x,W y

Tr
[
W>

xKxKyW y

]
subject to W>

x ((1− α)K
2
x + αKx)W x = W>

y ((1− α)K
2
y + αKy)W y = I .

(44)

C.6 Geodesic Distances on Kendall’s Shape Space

We now consider a modification of the Procrustes alignment problem, where we optimize over the special
orthogonal group (i.e. the set of orthogonal matrices with det(Q) = +1)

R∗ = argmin
R∈SO

‖X − Y R‖ = argmax
R∈SO

Tr[X>Y R] . (45)

We can obtain the solution by a minor modification of Lemma 1. We let X>Y = Ũ S̃Ṽ
>

denote the “optimally
signed” singular value decomposition of X>Y in which Ũ ∈ SO, Ṽ ∈ SO, and S̃ is a diagonal matrix
of signed singular values: σ̃1 ≥ . . . ≥ σ̃n−1 ≥ |σ̃n| ≥ 0. Thus, all optimally signed singular values are
positive except if det(X>Y ) < 0, in which case the final singular value is negated, σ̃n = −σn, so that
det(Ũ) = det(Ṽ ) = +1. Then the optimal rotation is given by R∗ = Ṽ Ũ

>
. See Le [13] for a proof.

We refer the reader to Chapters 4 and 5 of Dryden and Mardia [5] for further details. When G = SO, our
Proposition 1 corresponds to Riemannian distance in size-and-shape space (sec. 5.3, [5]). Likewise, G = SO,
our Proposition 2 corresponds to Riemannian distance Kendall’s shape space (sec. 4.1.4, [5]).

C.7 Centered Kernel Alignment (CKA) and Representational Similarity Analysis
(RSA)

Linear CKA [11] and RSA [12] are two closely related methods that, in essence, evaluate the similarity
between XX> and Y Y > to capture the similarity of neural representations. When the data are mean-
centered as a preprocessing step, these are m×m covariance matrices capturing the correlations in neural
activations over the m test images. Several variants of RSA exist. For example, one can compute the pairwise
Euclidean distances between all m hidden layer activation patterns, resulting in representational distance
matrices (RDMs) instead of the covariance matrices mentioned above. Likewise, nonlinear extensions of
CKA use nonlinear kernel functions to compute centered kernel matrices Kx and Ky, as defined above in
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section C.5. When a linear kernel function is used (i.e. in linear CKA), the centered kernel matrices reduce
to the usual covariance matrices Kx = XX> and Ky = Y Y >.

In essence, these methods proceed by computing the similarity between Kx and Ky. Kriegeskorte et al.
[12] proposed taking the Spearman correlation between the upper-triangular entries of these matrices. This
measure of similarity does not produce a metric, as we verified empirically in the main text. Kornblith et al.
[11] proposed to use the following quantity (assuming centered kernels):

CKA(Kx,Ky) =
Tr[KxKy]√

Tr[K2
x] · Tr[K

2
y]

(46)

which is known as centered kernel alignment (originally defined in [3, 2]).

While CKA as originally formulated does not produce a metric, we can modify it to satisfy the requirements of
a metric space. First, note that:

CKA(Kx,Ky) = cos
[
dθ(Kx,Ky)

]
(47)

where dθ is the angular distance (see eq. (4)) over Rm×m matrices. Thus, one can apply arccos(·) to CKA
achieve a proper metric. For example, a metric based on linear CKA can be calculated as follows:

dθ(XX>,Y Y >) = arccos

[
‖X>Y ‖2

‖XX>‖‖Y Y >‖

]
(48)

where, as before, all norms denote the Frobenius matrix norm. Note that this calculation bears some similarity
to the fully regularized CCA distance:

θ1(X,Y ) = min
Q∈O

arccos

[
〈X,Y Q〉
‖X‖ · ‖Y ‖

]
= arccos

[
‖X>Y ‖∗
‖X‖‖Y ‖

]
(49)

The two differences between these metrics are that (a) CKA uses the squared Frobenius norm instead of the
nuclear norm to measure the scale of X>Y in the numerator, and (b) CKA normalizes by the norms of the
covariances, XX> and Y Y >, rather than the norms of the matrices themselves.

While this manuscript was undergoing review, Shahbazi et al. [15] published a different modification of CKA
and RSA to satisfy the properties of a metric space. They advocate using the Riemannian metric over
positive-definite matrices:

d(Kx,Ky) =

√√√√ m∑
i=1

log2(λi) , (50)

where λ1, . . . , λm are the eigenvalues of K−1x Ky. This calculation is appealing because it exploits the fact
that Kx and Ky are positive-definite matrices by construction. The extension of CKA discussed above utilizes
the generic angular distance between m×m matrices, which are not necessarily positive-definite.

D Probabilistic interpretations of generalized shape metrics

To extend generalized shape metrics to stochastic neural representations, we must introduce some additional
notation and formalize network representations as random variables (rather than m× n matrices). We can
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model neural representations as independent random variables when conditioned on the input. That is, let X
and Y denote random variables on Rn, which correspond to n-dimensional neural responses to a stochastic
input.2 Further, let Z be some random variable corresponding to process of sampling an input to the network
(e.g. choosing one of m input images at random). Then, the joint distribution over representations and inputs
decomposes as P (X,Y, Z) = P (X | Z)P (Y | Z)P (Z) for any pair of networks X and Y .

The goal of this section is to define functions d(X,Y ) that are metrics over the set of random variables
with outcomes on Rn, and which are natural extensions of Proposition 1 and 2 in the main text. The key
step towards achieving this goal is to establish a Hilbert space for random vectors. We provide a short and
informal demonstration of this below, but refer the reader to Chapter 2 of Tsiatis [16] for a more complete
treatment.

First, we establish that the set of random vectors is a vector space. The zero vector corresponds to a random
vector that is equal to the zero vector on Rn almost surely. Vector addition X + Y creates a new random
vector from two inputs X and Y . Intuitively, we can draw samples from X + Y by first sampling X and Y and
then adding their outcomes. Scalar multiplication αX creates a new random vector given the input X and a
scalar α ∈ R. Intuitively, we can sample αX by first drawing a sample from X and multiplying this outcome
by α. We can then define the inner product between two random vectors in the following lemma.

Lemma. Let X and Y be random vectors associated with some joint probability density function p(x,y) for
all x ∈ Rn and y ∈ Rn. Then,

〈X,Y 〉 = E[x>y] , (51)

is an inner product over the set of random vectors, where the expectation is taken over joint samples of X
and Y .

Proof. Using the linearity of expectation and the inner product on Rn, it is easy to prove that the inner product
is symmetric,

〈X,Y 〉 = E[x>y] = E[y>x] = 〈Y,X〉 , (52)

and linear,
〈M + αX, Y 〉 = E[(z + αx)>y] = E[z>y] + αE[x>y] = 〈M,Y 〉+ α〈X,Y 〉 (53)

for any random vector M and α ∈ R. All that remains is to prove is that 〈·, ·〉 is positive definite, we first note
that the mapping x 7→ x>x is a convex function of x. Then, we apply Jensen’s inequality and the positive
definiteness of the inner product on Rn to show:

〈X,X〉 = E[x>x] ≥ (Ex)>(Ex) ≥ 0 . (54)

Further E[x>x] = 0 only when x = 0, almost surely. Thus, 〈X,X〉 = 0 if and only if X = 0.

To begin, we consider a special case where the neural responses are deterministic, but the inputs are
randomly chosen. That is, to draw a sample of (X,Y ), we first sample an input z ∼ P (Z) and then calculate
x = fx(z) and y = fy(z), where fx and fy are functions mapping the input space to Rn.

In the simplest case, P (Z) is a uniform distribution over a discrete set of m network inputs. In this case,
we can compute the required inner products exactly. Let zi denote the ith input to the networks, and let

2As in the main text, we can define feature maps X 7→ Xφ and Y 7→ Y φ which establish a common dimensionality between
networks of dissimilar sizes.
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X ∈ Rm×n and Y ∈ Rm×n denote matrices that stack the neural responses, fx(zi) and fy(zi) row-wise.
Then we have

〈X,Y 〉 = E[x>y] =
1

m

m∑
i=1

fx(zi)
>fy(zi) =

1

m
〈X,Y 〉 , (55)

where the final inner product 〈X,Y 〉 = Tr[X>Y ] is the typical Frobenius inner product between matrices
that we have used throughout. Because these inner products coincide up to a uniform scaling factor, we
can reinterpret the metrics defined in the main text (Propositions 1 & 2) as providing a notion of distance
between deterministic neural responses that are drawn uniformly from a set of m inputs.

In many cases, the number of possible inputs to a network is effectively infinite, so we can consider P (Z) to
be a continuous distribution. In this scenario, the inner product becomes:

〈X,Y 〉 =
∫
p(z)fx(z)

>fy(z) dz (56)

which is generally intractable to compute. For example, we typically do not know how to evaluate the density
p(z). This is the case, for example, when P (Z) corresponds to the distribution over all “natural images.” If we
are given independent samples zi ∼ P (Z), for i = 1, . . . ,m, then the integral can be approximated as∫

p(z)fx(z)
>fy(z) dz ≈

1

m

m∑
i=1

fx(zi)
>fy(zi) =

1

m
〈X,Y 〉 , (57)

which coincides with (55). Thus, we can also interpret generalized shape metrics (Propositions 1 & 2) as
being approximations to metrics that capture representational dissimilarity over a continuous distribution of
input patterns. This final interpretation is appealing from both scientific and engineering perspectives. In
neuroscience, we expect animals to encounter sensory input patterns probabilistically from an effectively
infinite range of possibilities. Likewise, in machine learning, we are interested in how deep artificial networks
generalize to “real-world” applications. In short, the space of possible future inputs is generally more
numerous than the space of inputs used for training and validation. Nonetheless, if the statistics of the test
set match the “real world,” then (57) tells us that we can approximate the “true” distance between network
representations appropriately.

The results shown in Figures 3B and 3C in the main text can now be properly interpreted as varying the
choice of m (sample size) in the approximation of the integral appearing in equation (57).

The framework above can also be readily extended to define metrics between stochastic neural representa-
tions, which are ubiquitous in both biology (due to “noise”) and machine learning (e.g. dropout layers). We
view this as an intriguing direction for future research that is enabled by our theoretical framing of neural
representations.

E Experimental Methods

Code accompanying this paper can be found at — https://github.com/ahwillia/netrep

E.1 Experiments on sample size (Fig. 3)

We ran all experiments on a pair of convolutional neural networks trained on CIFAR-10. The architecture
is shown in Table 1. In Figure 3A, we sampled activations from the three layers following the stride-2
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convolutions. We did a brute-force search over circular shifts along the width and height dimensions. When
comparing two layers with unequal dimensions, we upsampled the layer with smaller width and height by
linear interpolation. The remaining panels in Figure 3 were computed using activations from the final layer
before average pooling.

3× 3 conv. 64-BN-ReLU
3× 3 conv. 64-BN-ReLU
3× 3 conv. 64-BN-ReLU
3× 3 conv. 64 stride 2-BN-ReLU
3× 3 conv. 128-BN-ReLU
3× 3 conv. 128-BN-ReLU
3× 3 conv. 128-BN-ReLU
3×3 conv. 128 stride 2-BN-ReLU
3× 3 conv. 256-BN-ReLU
3× 3 conv. 256-BN-ReLU
3× 3 conv. 256-BN-ReLU
3×3 conv. 256 stride 2-BN-ReLU
Global average pooling
Logits

Table 1: The architecture used for experiments in Fig. 3. All convolutions use zero padding to maintain the size of the
feature map.

E.2 Allen Brain Observatory

Data were accessed through the Allen Software Development Kit (AllenSDK — https://allensdk.readthedocs.

io/en/latest/). All isolated single units that met the default quality control standards were loaded and
pooled across sessions. The anatomical location of each unit in Common Coordinate Framework (CCF; [19])
was extracted and categorized into anatomical regions according to the reference atlas, using the finest
scale anatomical parcellation. Spike counts were calculated over 0.033355 ms timebins (duration of a single
movie frame), over 1600 frames. Spikes were then smoothed with a Gaussian filter with a standard deviation
of 20 bins (frames), and averaged over 10 trials (repeats of the movie). Then, we projected the data onto the
top 100 principal components, resulting in a matrix Xk ∈ R1600×100 for each brain region k = {1, . . . ,K}. Re-
gions with fewer than 100 neurons across all sessions were excluded. The following set of 48 regions, listed
by their standard abbreviations, contained more than 100 neurons and were then studied for further anal-
ysis: APN, AUDd5, AUDpo5, AUDpo6a, CA1, CA3, DG-mo, DG-sg, Eth, LGd-co, LGd-ip, LGd-sh, LGv,

LP, MB, MGd, MGv, PO, POL, ProS, SGN, SSp-bfd2/3, SSp-bfd4, SSp-bfd5, SUB, TEa5, TH, VISa2/3,

VISa4, VISa5, VISa6a, VISal2/3, VISal4, VISal5, VISam2/3, VISam4, VISam5, VISam6a, VISp2/3,

VISp4, VISp5, VISp6a, VPM, alv, ccs, dhc, fp, or.

Dendrograms were computed and visualized using tools available in the scipy library [18]. We used Ward’s
linkage criterion to compute the hierarchical clusterings.

We performed kernel ridge regression to predict anatomical hierarchy scores (defined in [8]) 29 regions:
AUDd5, AUDpo5, AUDpo6a, LGd-co, LGd-ip, LGd-sh, LP, MGd, MGv, POL, SSp-bfd2/3, SSp-bfd4, SSp-bfd5,

TEa5, VISa2/3, VISa4, VISa5, VISa6a, VISal2/3, VISal4, VISal5, VISam2/3, VISam4, VISam5, VISam6a,

VISp2/3, VISp4, VISp5, VISp6a. Two regions, PO and VPM, were excluded from the analysis as they were
outliers with exceptionally high and low hierarchy scores. The other regions were excluded because they ei-
ther had undefined hierarchy scores or had fewer than 100 neurons. We used the scikit-learn implementation
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Figure E.2.1: Performing MDS directly to L = 2 dimensions (right) produces a distinct low-dimensional visualization
of the ABO dataset from multi-dimensional scaling to L = 20 dimensions, following by PCA projection down to 2D
(left). As shown in the main text (Fig. 4C), the MDS embedding to L = 20 dimensions produces a dramatically better
approximation of the true metric space than the embedding to L = 2 dimensions. Thus, we advocate using the former
over the latter for downstream modeling tasks.

of kernel ridge regression, KernelRidge(alpha=0.01, gamma=1.0, kernel="rbf"), and fit the model 100
separate times on different approximate Euclidean embeddings found by multi-dimensional scaling (MDS).
The error bars in Fig. 5B show range of estimates from different MDS embeddings. An embedding dimension
of L = 20 was used in all cases.

If our goal is only to visualize the data in 2D we may apply MDS with an embedding dimension of L = 2. How
does this embedding differ from a larger embedding of L = 20? Figure E.2.1 demonstrates that qualitatively
distinct structures emerge from these two procedures.

E.3 NAS-Bench-101

We obtained checkpoints for 2000 randomly-selected NAS-Bench-101 architectures trained for 108 epochs
following the protocol described in [20] and computed the similarity between activations of every possible pair
of these architectures on the CIFAR-10 test set, using an Apache Beam pipeline operating on offsite hardware.
In total, the computational cost of these experiments was 260 core-years, including pilot experiments and
several experiments not included in the paper.

For ridge regression analyses in Fig. 5D, we train on 80% of the data, use 10% of the data as a validation
set to select the optimal ridge hyperparameter and the kernel bandwidth, and compute R2 on remaining 10%
of the data.

In Figure E.3.1, we show the skeleton of the NAS-Bench-101 architecture along with the layers from which
we extract representations.
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Figure E.3.1: Diagram of the skeleton of the NAS-Bench-101 architecture. The architecture of each cell (shown in green)
is selected from a fixed space, described further by Ying et al. [20], and all cells within a single architecture are identical
except for the number of channels, which differs by stack. In Fig. 5, we show the results we obtain by analyzing the
representations of the outputs of the layers shown in yellow.
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Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald,
Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. “SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python”. Nature Methods 17 (2020), pp. 261–272.

[19] Quanxin Wang, Song-Lin Ding, Yang Li, Josh Royall, David Feng, Phil Lesnar, Nile Graddis, Maitham
Naeemi, Benjamin Facer, Anh Ho, Tim Dolbeare, Brandon Blanchard, Nick Dee, Wayne Wakeman,
Karla E. Hirokawa, Aaron Szafer, Susan M. Sunkin, Seung Wook Oh, Amy Bernard, John W. Phillips,
Michael Hawrylycz, Christof Koch, Hongkui Zeng, Julie A. Harris, and Lydia Ng. “The Allen Mouse
Brain Common Coordinate Framework: A 3D Reference Atlas”. Cell 181.4 (2020), 936–953.e20.

[20] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter. “NAS-
Bench-101: Towards Reproducible Neural Architecture Search”. Proceedings of the 36th International
Conference on Machine Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97.
Proceedings of Machine Learning Research. PMLR, 2019, pp. 7105–7114.

18


	Background
	Notation
	Metrics
	Hilbert spaces
	Euclidean and Angular Distances in Hilbert Spaces
	The Orthogonal Group

	Proof of Propositions 1 & 2
	Connections to Other Methods
	Permutation Invariance & Linear Assignment Problems
	Orthogonal Procrustes Problems
	Canonical Correlation Analysis (CCA)
	Ridge CCA
	Nonlinear Alignments and Kernel CCA
	Geodesic Distances on Kendall's Shape Space
	Centered Kernel Alignment (CKA) and Representational Similarity Analysis (RSA)

	Probabilistic interpretations of generalized shape metrics
	Experimental Methods
	Experiments on sample size (Fig. 3)
	Allen Brain Observatory
	NAS-Bench-101


