
Aggressive Q-Learning with Ensembles:
Achieving Both High Sample Efficiency and High

Asymptotic Performance
Supplementary Material

A Hyperparameters and implementation details

Table 1 gives a list of hyperparameters used in the experiments. Most of AQE’s hyperparameters
are made the same as in the REDQ paper to ensure fairness and consistency in comparisons, except
that AQE has 2-head critic networks. As compared with AQE and REDQ, TQC uses a larger critic
network with 3 layers of 512 units per layer. In table 2, we report the dropped atoms d for TQC and
the number of Q values we keep in the ensemble to calculate the target in AQE. In algorithm ??, we
provide detailed pseudo-code.

Table 1: Hyperparameter values.

Hyperparameters AQE SAC REDQ TQC
optimizer Adam
learning rate 3 · 10−4

discount(γ) 0.99
target smoothing coefficient(ρ) 0.005
replay buffer size 1 · 106
number of critics N 10 2 10 5
number of hidden layers in critic networks 2 2 2 3
size of hidden layers in critic networks 256 256 256 512
number of heads in critic networks h 2 1 1 25
number of hidden layers in policy network 2
size of hidden layers in policy network 256
mini-batch size 256
nonlinearity ReLU
UTD ratio G 5 1 5 1

Table 2: Environment-dependent hyper-parameters for TQC and AQE.

Environment Dropped atoms per critic Kept Q values out of N · h values
Hopper 5 10
HalfCheetah 0 20
Walker 2 16
Ant 2 16
Humanoid 2 16

1

B Additional Results for AQE, TQC, REDQ and SAC in MuJoCo
Benchamrk with Fixed Hyper-parameters

We present the experiment on the five MuJoCo environments with the same hyperparameter values
across environments for TQC (drop two atoms per network) and AQE (K = 16) in Figure 1.

(a) Hopper-v2 (b) Walker2d-v2 (c) HalfCheetah-v2

(d) Ant-v2 (e) Humanoid-v2

Figure 1: Performance for AQE and TQC using same hyper-parameters across the five environments.
AQE uses K = 16 and TQC uses atoms = 2 per critic.

Table 3: Early-stage performance comparison of SAC, TQC, REDQ and AQE when AQE and TQC
using the same hyperparameters across the environments. On average, AQE performs 2.71 times
better than SAC, 1.59 times better than TQC and 1.02 times better than REDQ.

Amount of data SAC TQC REDQ AQE AQE/SAC AQE/TQC AQE/REDQ
Hopper at 100K 1456 1719 2747 2294 1.58 1.33 0.84
Walker2d at 100K 501 1215 1810 2150 4.29 1.77 1.19
HalfCheetah at 100K 3055 3594 6876 6325 2.10 1.76 0.92
Ant at 250K 2107 2344 3279 4153 1.97 1.77 1.27
Humanoid at 250K 1094 3038 4535 3973 3.63 1.31 0.88
Average at early stage - - - - 2.71 1.59 1.02

Table 4: Late-stage performance comparison of SAC, TQC, REDQ and AQE when AQE and TQC
using the same hyperparameters across the environments. On average, AQE performs 16% better
than SAC, 9% better than TQC and 11% times better than REDQ.

Amount of data SAC TQC REDQ AQE AQE/SAC AQE/TQC AQE/REDQ
Hopper at 1M 3282 2024 2954 2404 0.73 1.19 0.81
Walker2d at 1M 4134 5532 4637 5517 1.33 1.00 1.19
HalfCheetah at 1M 10475 9792 11562 11293 1.08 1.15 0.98
Ant at 3M 5903 6186 5785 7345 1.24 1.19 1.27
Humanoid at 3M 6177 9593 6649 8680 1.41 0.91 1.31
Average at late stage - - - - 1.16 1.09 1.11

2

C Additional Results for AQE, TQC, REDQ and SAC in DeepMind Control
Suite Benchmark

Figure ?? presents the performance of AQE, TQC, REDQ and SAC for 9 DeepMind Control Suite
(DMC) environments. We can see that AQE continues to outperform TQC except for Humanoid run
environment, where TQC performs better than AQE in the final stage training. AQE and REDQ have
comparable results in some of the DMC environments, however, AQE usually outperforms REDQ in
the more challenging environments, such as Hopper-hop, Humanoid-run and Quadruped-run. We
report detailed early-stage and late-stage performance comparisons of all algorithms in Table 5 and
Table 6. On average, in the early stage of training, AQE performs 13.71 times better than SAC, 7.59
times better than TQC and 1.02 times better than REDQ. In the late-stage training, on average, AQE
performs 1.37 times better than SAC, 1.08 times better than TQC and 1.03 times better than REDQ.

Table 5: Early-stage performance comparison of SAC, TQC, REDQ and AQE when AQE and TQC
using the same hyperparameters across the DMC environments. On average, AQE performs 13.71
times better than SAC, 7.59 times better than TQC and 1.02 times better than REDQ.

Amount of data SAC TQC REDQ AQE AQE/SAC AQE/TQC AQE/REDQ
Cheetah-run at 100K 205 235 317 339 1.65 1.44 1.07
Fish-swim at 100K 121 149 234 230 1.90 1.54 0.98
Hopper-hop at 100K 2 11 50 64 32 5.81 1.28
Quadruped-walk at 100K 116 172 452 341 2.94 1.98 0.75
Quadruped-run at 100K 114 111 294 284 2.49 2.56 0.97
Walker-run at 100K 305 372 468 457 1.50 1.23 0.98
Humanoid-stand at 100K 5 5 37 52 10.4 10.4 1.41
Humanoid-walk at 100K 1 1 57 40 40 40 0.70
Humanoid-run at 250K 2 18 59 61 30.5 3.39 1.03
Average at early stage - - - - 13.71 7.59 1.02

Table 6: Late-stage performance comparison of SAC, TQC, REDQ and AQE when AQE and TQC
using the same hyperparameters across the DMC environments. On average, AQE performs 1.37
times better than SAC, 1.08 times better than TQC and 1.03 times better than REDQ.

Amount of data SAC TQC REDQ AQE AQE/SAC AQE/TQC AQE/REDQ
Cheetah-run at 1M 734 829 844 856 1.17 1.03 1.01
Fish-swim at 1M 639 722 753 747 1.17 1.03 0.99
Hopper-hop at 1M 293 256 279 294 1.00 1.15 1.05
Quadruped-walk at 1M 871 948 949 948 1.09 1.00 1.00
Quadruped-run at 1M 676 893 904 928 1.37 1.04 1.03
Walker-run at 1M 660 780 826 808 1.22 1.04 0.98
Humanoid-stand at 1M 323 429 547 546 1.69 1.27 1.00
Humanoid-walk at 1M 325 427 596 576 1.77 1.35 0.97
Humanoid-run at 4.5M 146 324 216 271 1.86 0.84 1.25
Average at late stage - - - - 1.37 1.08 1.03

3

Table 7: Sample efficiency comparison of SAC, TQC, REDQ and AQE. The numbers show the
amount of data collected when the specified performance level is reached (roughly corresponding
to 90% of SAC’s final performance). The last three columns show how many times AQE is more
sample efficient than SAC, TQC and REDQ in reaching that performance level.

Performance SAC TQC REDQ AQE AQE/SAC AQE/TQC AQE/REDQ
Cheetah-run at 700 746K 440K 506K 350K 2.13 1.26 1.45
Fish-swim at 600 794K 494K 317K 417K 1.90 1.18 0.76
Hopper-hop at 250 580K 856K 451K 371K 1.56 2.31 1.22
Quadruped-walk at 800 844K 301K 302K 236K 3.58 1.28 1.28
Quadruped-run at 650 942K 521K 267K 248K 3.80 2.10 1.08
Walker-run at 600 516K 201K 156K 174K 2.97 1.16 0.90
Humanoid-stand at 250 626K 429K 279K 342K 1.83 1.25 0.82
Humanoid-walk at 300 820K 523K 279K 300K 2.73 1.74 0.93
Humanoid-run at 120 3940K 1100K 602K 603K 6.53 1.82 1.00
Average - - - - 3.00 1.57 1.05

4

D Additional Results for AQE, SAC-5 and TQC-5

Figure 2 presents the performance of AQE, SAC-5 and TQC-5 for all the environments. SAC-5 and
TQC-5 uses UTD ratio G = 5 for SAC and TQC, respectively. We can see that AQE continues to
outperform both algorithms except for Humanoid, where TQC performs somewhat better than AQE
in the final stage training. SAC becomes more sample efficient with G = 5; however, AQE still beats
SAC-5 by a large margin.

(a) Performance, Hopper (b) Average normalized bias (c) Std of normalized bias

(d) Performance, Walker (e) Average normalized bias (f) Std of normalized bias

(g) Performance, HalfCheetah (h) Average normalized bias (i) Std of normalized bias

(j) Performance, Ant (k) Average normalized bias (l) Std of normalized bias

(m) Performance, Humanoid (n) Average normalized bias (o) Std of normalized bias

Figure 2: Performance, average and std of normalized Q bias for AQE, SAC-5 and TQC-5. All of the
algorithms in this experiment use UTD = 5.

5

E Additional Results for parameter K

Due to lack of space, Figure ?? only compares different AQE keep numbers K for Ant. Figure 3
shows the performance, average estimation bias and standard deviation for all five environments.
Consistent with the theoretical result in Theorem 1, by decreasing K, we lower the average bias.

(a) Performance, Hopper (b) Average normalized bias (c) Std of normalized bias

(d) Performance, Walker (e) Average normalized bias (f) Std of normalized bias

(g) Performance, HalfCheetah (h) Average normalized bias (i) Std of normalized bias

(j) Performance, Ant (k) Average normalized bias (l) Std of normalized bias

(m) Performance, Humanoid (n) Average normalized bias (o) Std of normalized bias

Figure 3: Performance, average and std of normalized Q bias for AQE with different values of K.

6

F Additional Results for Multi-head Architecture

Due to lack of space, Figure ?? only compares the different size of the ensemble N and the number of
heads h for Ant. Figure 4 shows the results for all five environments. We can see that the combination
of N = 10, h = 2 and N = 20, h = 1 have comparable performance. However, N = 10 and h = 2
is faster in terms of computation time.

(a) Hopper-v2 (b) Walker2d-v2 (c) HalfCheetah-v2

(d) Ant-v2 (e) Humanoid-v2

Figure 4: Performance for AQE with different combinations of number of Q networks and number of
heads.

Will the performance of REDQ match that of AQE if we also provide REDQ a multi-head architec-
ture? Figure 5 examines the performance of REDQ when it is endowed with the same multi-head
architecture as AQE. We see that the performance of REDQ does not substantially improve.

(a) Hopper-v2 (b) Walker2d-v2 (c) HalfCheetah-v2

(d) Ant-v2 (e) Humanoid-v2

Figure 5: Performance of REDQ with N=10 and heads = 2 as compared with REDQ and AQE.

7

G Theoretical Results

In this section, we characterize how changing the size of the ensemble N and the keep parameter K
affects the estimation bias term in the AQE algorithm. We will restrict our analysis to the tabular
version of AQE shown in algorithm 1.

Our analysis will follow similar lines of reasoning as ? and ? which extends upon the theoretical
framework introduced in ?.

For each a ∈ A, let EK,N (s, a) be the ensemble members in {1, . . . , N} with the K lowest values
of Qj(s, a), j = 1, . . . , N . In the tabular case, the target for the Q networks take the form:

r + γmax
a′

 1

K

∑
j∈EK,N (s′,a′)

Qj(s′, a′)

 . (1)

Define the post-update estimation bias as

ZK,N := r + γmax
a′

 1

K

∑
j∈EK,N (s′,a′)

Qj(s′, a′)

− (
r + γmax

a′
Qπ(s′, a′)

)

= γ

max
a′

 1

K

∑
j∈EK,N (s′,a′)

Qj(s′, a′)

−max
a′

Qπ(s′, a′)

 (2)

Under this definition, if E[ZK,N] > 0, then the expected post-update estimation bias is positive and
there is a tendency for the positive bias to accumulate during updates. Similarly, if E[ZK,N] < 0,
then the expected post-update estimation bias is negative and there is a tendency for the negative bias
to accumulate during updates. Ideally, we would like E[ZK,N] ≈ 0

Also let
Qj(s, a) = Qπ(s, a) + ej(s, a) (3)

where ej(s, a) is an independent and identically distributed error term across all j’s and all a’s for
each fixed s. We further assume that E[ej(s, a)] = 0. Note that with this assumption

E

 1

N

N∑
j=1

Qj(s, a)

−Qπ(s, a) = 0,

that is the pre-update estimation bias is zero. The following theorem shows how the expected
estimation bias changes with N and K:
Theorem 1. The following results hold for E[ZK,N]:

1. E[ZN,N] ≥ 0 for all N ≥ 1.

2. E[ZK−1,N] ≤ E[ZK,N] for all K ≤ N .

3. E[ZK,N+1] ≤ E[ZK,N].

4. Suppose that ejsa ≤ c for some c > 0 for all s, a and j. Then there exists an N sufficiently
large and K < N such that E[ZK,N] < 0.

Proof Sketch. Part 1 is a result of Jensen’s Inequality, and Parts 2 and 3 can be shown by analyzing
how the average of the K smallest ensembles changes when adding an extra ensemble model. Given
the first three parts, we only need to show that E[Z1,N] < 0 to show that there exists a K for a
sufficiently large N where the expected bias is negative. See the next section for full proof.

Theorem 1 shows that we can control the expected post-update bias E[ZK,N] through adjusting K
and N . More concretely, we can bring the bias term from above zero (i.e. over estimation) to under
zero (i.e. under estimation) by decreasing K and/or increasing N .

We note also that similar to ?, we make very few assumptions on the error term es,a. This is in
contrary to ? and ?, both of whom assume that the error term is uniformly distributed.

8

G.1 Tabular AQE with N ensemble members and d drops

Algorithm 1 Tabular AQE

Initialize: Qj(s, a) for all s ∈ S, a ∈ A, j = 1, . . . , N .
1: repeat
2: For some state s ∈ S, choose a ∈ A based on

{
Qj(s, a)

}N

j=1
, observe r, s′.

3: For each a′ ∈ A, let EK,N (s′, a′) be the ensemble members in {1, . . . , N} with the K
lowest values of Qj(s′, a′), j = 1, . . . , N .

4: Get target

y = r + γmax
a′∈A

1

K

∑
j∈EK,N (s′,a′)

Qj(s′, a′)

5: for j = 1, . . . , N do
6: Update each Qj(s, a)

Qj(s, a)← Qj(s, a) + α(y −Qj(s, a))

7: s← s′

8: until end

9

H Proofs

We first present the following lemma:

Lemma 1 (?). Let X1, X2, . . . be an infinite sequence of i.i.d. random variables with cdf F (x) and
let τ = inf x : F (x) > 0. Also let YN = min{X1, X2, . . . , XN}. Then Y1, Y2, . . . converges to τ
almost surely.

Proof. See Appendix A.2 of ?

Theorem 1. The following results hold for E[ZK,N]:

1. E[ZN,N] ≥ 0 for all N ≥ 1.

2. E[ZK−1,N] ≤ E[ZK,N] for all K ≤ N .

3. E[ZK,N+1] ≤ E[ZK,N].

4. Suppose that ejsa ≤ c for some c > 0 for all s, a and j. Then there exists an N sufficiently
large and K < N such that E[ZK,N] < 0.

Proof. 1. By definition,

E[ZN,N] = γ E

max
a′

 1

N

N∑
j=1

Qj(s′, a′)

−max
a′

Qπ(s′, a′)

≥ γ

max
a′

E

 1

N

N∑
j=1

Qj(s′, a′)

−max
a′

Qπ(s′, a′)

= γ

[
max
a′

Qπ(s′, a′)−max
a′

Qπ(s′, a′)
]
= 0

(4)

2. Let

Q̄K,N (s, a) =
1

K

∑
j∈EK,N

Qj(s, a). (5)

Since for any state s, maxa Q̄K+1,N (s, a) ≥ maxa Q̄K,N (s, a),

E[ZK+1,N] = γ E
[
max
a′

Q̄K+1,N (s′, a′)−max
a′

Qπ(s′, a′)
]

≥ γ E
[
max
a′

Q̄K,N (s′, a′)−max
a′

Qπ(s′, a′)
]

= E[ZK,N]

(6)

3. Comparing E[ZK,N] and E[ZK,N+1] is equivalent to comparing Q̄K,N (s, a) and
Q̄K,N+1(s, a). Since ej(s, a) is i.i.d., by extension Qj(s, a) is also i.i.d. for j = 1, 2, · · · .
Suppose Qj(s, a) is drawn from some probability distribution F , then given Q̄K,N (s, a),
Q̄K,N+1(s, a) can be calculated by generating an additional Qi(s, a) from F . The new
sample Qi(s, a) affects the calculation of Q̄K,N+1(s, a) under the following two cases:

• If Qi(s, a) > maxj∈EK,N
Qj(s, a), then the lowest K values remain unchanged hence

Q̄K,N (s, a) = Q̄K,N+1(s, a).
• Else if Qi(s, a) ≤ maxj∈EK,N

Qj(s, a), then maxj∈EK,N
Qj(s, a) would be re-

moved from and Qi(s, a) would be added to the set of lowest K values, therefore
Q̄K,N+1(s, a) ≤ Q̄K,N (s, a).

Combining the two cases Q̄K,N+1(s, a) ≤ Q̄K,N (s, a), therefore E[ZK,N+1] ≤ E[ZK,N]

10

4. Since E[ZN,N] ≥ 0, E[ZK,N] ≤ E[ZK+1,N] and E[ZK,N+1] ≤ E[ZK,N]. It is suffice to
show that E[Z1,N] < 0 for some N . The rest of the proof largely follows Theorem 1 of ?.

Let τ = inf{x : Fa(x) > 0} where Fa(x) is the cdf of Qj(s, a), j = 1, 2, By Lemma
1, Q̄1,N (s, a) = min1≤j≤N Qj(s, a) converges almost surely to to τa for each a. Since the
action space is finite, it then follows that maxa Q̄1,N (s, a) converges almost surely to to
τ = maxa τa. Due to our assumption that ej(s, a) ≤ c and that Qπ(s, a) is finite, it then
follows that maxa Q̄1,N (s, a) is also bounded above. By Part 3 of the theorem, Q̄1,N (s, a)
is monotonoically decreasing w.r.t. N . and since maxa Q̄1,N (s, a) is also bounded above
and converges almost surely to τ , we have

E[Z1,N] = γ

(
E[max

a
min

1≤j≤N
Qj(s, a)]−max

a
Qπ(s, a)

)
= γ

(
E[max

a
Y N
a]−max

a
Qπ(s, a)

)
N→∞−→ γ

(
max

a
τa −max

a
Qπ(s, a)

)
< 0

(7)
where the last equality follows from the assumption that the error ej(s, a) is non-trivial, and
hence τa < maxa Q

π(s, a) for all a. Therefore for a sufficiently large N , there exists a
1 ≤ K ≤ N such that EK,N < 0.

I Computing Infrastructure

Each experiment is run on a single Nvidia 2080-Ti GPU with CentOS Linux System.

11

	Hyperparameters and implementation details
	Additional Results for AQE, TQC, REDQ and SAC in MuJoCo Benchamrk with Fixed Hyper-parameters
	Additional Results for AQE, TQC, REDQ and SAC in DeepMind Control Suite Benchmark
	Additional Results for AQE, SAC-5 and TQC-5
	Additional Results for parameter K
	Additional Results for Multi-head Architecture
	Theoretical Results
	Tabular AQE with N ensemble members and d drops

	Proofs
	Computing Infrastructure

