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Appendix A. Theory for Training Diffusion Models

We now review with more detailed the formulation of Denoising Diffusion Probabilistic Models
(DDPMs) (Ho et al., 2020). In DDPM, samples are generated by reversing a diffusion process with
a neural network from a Gaussian prior distribution. We begin by defining our data distribution
x0 ∼ p(x0) and a Markovian noising process which gradually adds noise to the data to produce
noised samples xt up to xT . In particular, each step of the noising process adds Gaussian noise
according to some variance schedule given by βt:

p (xt | xt−1) = N
(
xt;
√
1− βt xt−1, βtI

)
(1)

In addition, it’s possible to sample xt directly from x0 without repeatedly sample from xt ∼
p (xt | xt−1). Instead, p (xt | x0) can be expressed as a Gaussian distribution by defining a variance
of the noise for an arbitrary timestep αt :=

∏t
j=0 (1− βj). We, therefore, proceed to define

p (xt | x0) = N (xt;
√
αtx0, (1− αt)I) (2)

=
√
αtx0 + ε

√
1− αt, ε ∼ N (0, I) (3)

However, we are interested in a generative process which consists in performing a reverse dif-
fusion, going from noise xT to data x0. As such, the model trained with parameters θ should
correspond to conditional distribution pθ (xt−1 | xt).

Using Bayes theorem, one finds that the posterior p(xt−1|xt,x0) is also a Gaussian with mean
µ̃t(xt,x0) and variance β̃t defined as follows:

µ̃t(xt,x0) :=

√
αt−1 − αt
1− αt

x0 +
αt(1− αt−1)
αt−1(1− αt)

xt β̃t :=
1− αt−1
1− αt

βt (4)

p(xt−1|xt,x0) = N (xt−1; µ̃(xt,x0), β̃tI) (5)

Training pθ (xt−1 | xt) such that p(x0) learns the true data distribution, the following variational
lower-bound Lvlb for pθ(x0) can be optimized:

Lvlb := − log pθ(x0|x1) +
T∑
t=2

DKL(p(xt−1|xt,x0) || pθ(xt−1|xt)) (6)

Ho et al. (2020) considered a variational approximation of the Eq. 5 for training pθ (xt−1 | xt)
efficiently. Instead of directly parameterize µθ(xt, t) as a neural network, a model εθ(xt, t) is trained
to predict ε from Equation 3. This simplified objective is defined as follows:

Lsimple := Et,x0∼pdata,ε∼N (0,I)

[
(1− αt)

∥∥εθ(√αtx0 +
√
1− αtε, t)− ε

∥∥2
2

]
(7)
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Appendix B. Pearl’s Causal Hierarchy

Bareinboim et al. (2020) use Pearl’s Causal Hierarchy (PCH) nonmenclature after Pearl’s seminal
work on causality which is well illustrated in Pearl and Mackenzie (2018) as the Ladder of Causa-
tion. PCH states that structural causal models should be able to sample from a collection of three
distributions (Peters et al. (2017), Ch. 6) which are related to cognitive capabilities:

1. The observational (“seeing”) distribution pG(x(k)).

2. The do-calculus (Pearl, 2009) formalizes sampling from the interventional (“doing”) distri-
bution pG(x(k) | do(x(j) = x(j))). The do() operator means an intervention on a specific
variable is propagated only through it’s descendants in the SCM G. The causal structure
forces that only the descendants of the variable intervened upon will be modified by a given
action.

3. Sampling from a counterfactual (“imagining”) distribution pG(x(k) | do(x(j) = x(j));x(k))
involves applying an intervention do(x(j) = x(j)) on an given instance x(k) . Contrary to the
factual observation, a counterfactual corresponds to a hypothetical scenario.

Appendix C. DDIM sampling procedure

A variation of the DDPM (Ho et al., 2020) sampling procedure is done with Denoising Diffusion Im-
plicit Models (DDIM, Song et al. (2021)). DDIM formulates an alternative non-Markovian noising
process that allows a deterministic mapping between latents to images. The deterministic mapping
means that the noisy term in Eq. ?? is no longer necessary for sampling. This sampling approach
has the same forward marginals as DDPM, therefore, it can be trained in the same manner. This
approach was used for sampling throughout the paper as explained in Sec. ??.

Alg. 1 describes DDIM’s sampling procedure from xT ∼ N (0, I) (exogenous noise distribu-
tion) to x0 (data distribution) deterministic procedure. This formulation has two main advantages:
(i) it allows a near-invertible mapping between xT and x0 as shown in Alg. 2; and (ii) it allows
efficient sampling with fewer iterations even when trained with the same diffusion discretization.
This is done by choosing different undersampling t in the [0, T ] interval.

Algorithm 1 Sampling with DDIM - Image Generation
Models: trained diffusion model εθ.
Input : xT ∼ N (0, I)
Output: x0 - Image
for t← T to 0 do

xt−1 ←
√
αt−1

(
xt−
√
1−αt εθ(xt,t)√

αt

)
+
√
αt−1 εθ(xt, t)

end

Appendix D. Implementation Details

For each dataset, we train two models that are trained separately: (i) εθ is implemented as an
encoder-decoder architecture with skip-connections, i.e. a Unet-like network (Ronneberger et al.,
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Algorithm 2 Reverse-Sampling with DDIM - Inferring the Noisy Latent
Models: trained diffusion model εθ.
Input : x0 - Image
Output: xT - Latent Space
for t← T to 0 do

xt+1 ←
√
αt+1

(
xt−
√
1−αt εθ(xt,t)√

αt

)
+
√
αt+1 εθ(xt, t)

end

2015). (ii) A (Anti-causal) classifier that uses the encoder of εθ with a pooling layer followed by a
linear classifier. All models are time conditioned. Time, which is a scalar, is embedded using the
transformer’s sinusoidal position embedding (Vaswani et al., 2017). The embedding is incorporated
into the convolutional models with an Adaptive Group Normalization layer into each residual block
(Nichol and Dhariwal, 2021). Our architectures and training procedure follow Dhariwal and Nichol
(2021). They performed an extensive ablation study of important components from DDPM (Ho
et al., 2020) and improved overall image quality and log-likelihoods on many image benchmarks.
We use the same hyperparameters as Dhariwal and Nichol (2021) for the ImageNet and define ours
for MNIST. The specific hyperparameters for diffusion and classification models follow Tab. 1. We
train all of our models using Adam with β1 = 0.9 and β2 = 0.999. We train in 16-bit precision
using loss-scaling, but maintain 32-bit weights, EMA, and optimizer state. We use an EMA rate of
0.9999 for all experiments.

We use DDIM sampling for all experiments with 1000 timesteps. The same noise schedule is
used for training. Even though DDIM allows faster sampling, we found that it does not work well
for counterfactuals.

dataset ImageNet 256 ImageNet 256 MNIST MNIST

model diffusion classifier diffusion classifier
Diffusion steps 1000 1000 1000 1000
Model size 554M 54M 2M 500K
Channels 256 128 64 32
Depth 2 2 1 1
Channels multiple 1,1,2,2,4,4 1,1,2,2,4,4 1,2,4 1,2,4,4
Attention resolution 32,16,8 32,16,8 - -
Batch size 256 256 256 256
Iterations ≈ 2M ≈ 500K 30K 3K
Learning Rate 1e-4 3e-4 1e-4 1e-4

Table 1: Hyperparameters for models.

Appendix E. Sampling from The Interventional Distribution

In this section, we make sure that our method complies with the second level of Pearl’s Causal
Hierarchy (details in Appendix B). Diff-SCM can be used for efficiently sampling from the inter-
ventional distributions pGimage(x

(1) | do(x(2) = x(2))). Sampling from the interventional distribu-
tion can be done by using the second part (“Generation with Intervention”) of Alg. ?? but sampling
u(k) from a Gaussian prior, instead of inferring the latent space (using “Abduction of Exogenous
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Noise”). This formulation is identical to Dhariwal and Nichol (2021) with guided DDIM (Song
et al., 2021) (details in appendix C). Dhariwal and Nichol (2021) achieves state-of-the-art image
quality results in generation while providing faster sampling than DDPM. Since its capabilities in
image synthesis compared to other generative models are shown in Dhariwal and Nichol (2021), we
restrict ourselves to present qualitative results on ImageNet 256x256.

Experimental Setup. Our experiment, depicted in Fig. 1, consists in sampling a single latent
space u(1) from a Gaussian distribution and generating samples for different classes. Since all
images are generated from the same latent, this allows visualization of the effect of the classifier
guidance for different classes. This setup differs from experiments in Dhariwal and Nichol (2021),
where each image presented was a different sample u(1) ∼ u(1). Here, by sampling u(1) only once,
we isolate the contribution of the causal mechanism from the sampling of the exogenous noise u(1).
We use the scale hyperparameter s = 5 for these experiments.

Figure 1: Sampling ImageNet images from the interventional distribution. All images originate
from the same initial noise u(k) but different interventions are applied at inference time.

Appendix F. IM1 and IM2

Van Looveren and Klaise (2021) propose IM1 and IM2 for measuring the realism and closeness to
the data manifold. These metrics are based on the reconstruction losses of auto-encoders trained on
specific classes:

IM1(x(1)CF , x
(2)
F , x

(2)
CF ) =

∥∥∥x(1)CF −AE
x
(2)
CF
(x

(1)
CF )
∥∥∥2
2∥∥∥x(1)CF −AE

x
(2)
F
(x

(1)
CF )
∥∥∥2
2
+ ε

(8)

IM2(x(1)CF , x
(2)
CF ) =

∥∥∥AE
x
(2)
F
(x

(1)
CF )−AE(x

(1)
CF )
∥∥∥2
2∥∥∥x(1)CF

∥∥∥
1
+ ε

(9)

where AEx(2) denotes an autoencoder trained only on instances from class x(2), and AE is
an autoencoder trained on data from all classes. IM1 is the ratio of the reconstruction loss of an
autoencoder trained on the counterfactual class divided by the loss of an autoencoder trained on all
classes. IM2 is the normalized difference between the reconstruction of the CF under an autoencoder
trained on the counterfactual class, and one trained on all classes.

4



DIFF-SCM FOR COUNTERFACTUAL ESTIMATION

Appendix G. More MNIST Counterfactuals

Here, we show in Fig. 2 that we can generate counterfactuals of all MNIST classes, given factual
image. We use the scale hyperparameter s = 0.7 for these experiments.

Figure 2: MNIST counterfactuals. From the left to right, one can observe the original image (orig.),
the reconstruction (rec., which entails in running the algorithm ?? without the anti-causal predictor)
and the resulting counterfactuals for each of the digit classes in the dataset.
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