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A BROADER IMPACT AND LIMITATIONS

Broader Impact This work can be broadly extended to more downstream multi-modality ap-
plications, such as general zero-shot learning, text-image retrieval, text-to-image generation, etc.,
when the class composition is not especially taken into consideration. Besides, the central idea of
LLM-grounded modality alignment is not limited to text and image, but any modality that could
reveal the semantic categories in practice is promising to explore in the future. The potential negative
societal impact is that, the developers should be cautious by carefully examining the societal biases
indicated by the generated textual class descriptions, even though the large language models we used
are publicly accessible.

Limitations One limitation is that the primitive decomposition could be difficult to learn when the
states are non-visual concepts like smelly, hot, etc., even by the pre-trained CLIP model. Another
limitation is that the generated descriptions by LLMs are not grounded to the image such that some
distraction from generated descriptions could be introduced.

B GENERATING COMPOSITIONAL CLASS DESCRIPTIONS

In this work, we choose T5 and OPT models as the LLMs for compositional class description
generation. For the T5 model, we follow the same setting as (He et al., 2023) that uses the T5-base
model for word-to-sentence generation. The T5-base model was pre-trained on the Colossal Clean
Crawled Corpus dataset (Raffel et al., 2020) and finetuned on the CommonGen dataset (Lin et al.,
2020). Take the painted ceiling as an example, the results from T5-base model are:

- A very old but beautifully decorated ceiling.
- A remodeled interior with a painted ceiling.
- A painted ceiling at a restaurant.
- Stained glass windows and a carved pattern on the ceiling.
- Painted ceilings and a fireplace.
- This apartment has a painted ceiling.
- A painted ceiling was a huge hit.
- A chandelier is painted in the middle of the ceiling.
- A stained glass window in a bathroom with a white painted ceiling.
- The ceiling of a hotel is painted.
- ...

For the OPT model, we adopt the pre-trained OPT-1.3B model which is small but still could generate
sentences of sufficiently good quality. Considering that it is a decoder-only LLM that relies on a
few examples as the prompt for word-to-sentence generation, we design the prompt template with 4
examples as shown below.

Keywords: sliced, potato, picture
Output: The picture features a beautifully arranged plate of thinly

sliced potatoes.
###
Keywords: red, apple, photo
Output: In the photo, a bright red apple is the central focus,

captured in stunning detail.
###
Keywords: leather, shoes, image
Output: The image showcases a sleek pair of leather shoes,

meticulously designed to impress.
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###
Keywords: broken, car, photo
Output: The photo captures the aftermath of a car accident with a

broken vehicle lying on the road.
###

where the Keywords is followed by the words of the state, object, and the word randomly picked
from the set {photo,image,picture}. Using the same example painted ceiling as T5-base
model, the generated sentences are:

- The painting of the ceiling features an intricate pattern of
intricate gold-colored paint and is framed by a white
background.

- The ceiling has been painted with the pictures of these three
characters, all arranged together.

- In the picture, the ceiling is covered in bright, colorful
paintwork that has been painted on by hands painted white. The
colors have been selected carefully.

- In the picture, the ceiling features painted decoration. The
decoration resembles the surface of the sea, and has been
painted in shades of blue.

- The photograph captures both the bright colors of the painting
atop the ceiling and the subtle shades of light reflecting off
of it.

- The large picture shows a large pattern painted onto the ceiling.
The blue line shows paint dripping down.

- The wall behind the picture shows three different painted
ceilings, in bright contrasting colors. A vibrant sky and blue
skies are depicted against the dark brick wall.

- The ceiling of the room depicted in the painting could very well
be painted in a few hours. The details of each object are
clearly defined in its placement and position.

- Another photo of the same scene, this time featuring a ceiling
painted in a stunning, white color.

- A painted ceiling is shown, painted according to a specific
design. this is a typical design that can also include
decorative or functional elements.

- ...

It is clear that the generated class descriptions are much more diverse and informative than those of
the OPT model.

C COVARIANCE SHARING

For the CZSL task, the spatial complexity of computing the covariance matrix Σ1:C is O(|C(s)|2d)
which could be too heavy to compute if the number of the compositions is too large. For example, the
C-GQA dataset contains 278K seen compositions which result in around 6× 1013 floating elements
of Σ1:C for 768-dim text features. To handle this issue, we instead implement the Σ1:C by sharing
the covariance across attributes given the same object. This implies that the model is encouraged to
learn the object-level distributions.

Specifically, similar to the VLPD module of the main paper, we compute the mean µ1:|O| and
covariance Σ1:|O| over the objects by grouping ty and D(y) with object labels:

to =
1

|Yo|
∑
y∈Yo

ty, D(o) =
1

|Yo|
∑
y∈Yo

D(y), (1)

where Yo is the subset of compositions in Y that contains the same object as y. Then, all the pairwise
margins H(m)

o ∈ R|O|×|O| in object space can be mapped back to H(m) ∈ RC×C in a compositional
space by sharing it with all compositions in Yo. This could significantly reduce the computation load
of the covariance while compromising the accuracy of distribution modeling.
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Variants Mem.(GB) Hcw AUCcw How AUCow

ProDA (Lu et al., 2022) 32.5 32.71 16.11 17.30 5.11
PLID (w. ShareCov) 17.6 38.50 (-0.47%) 21.69 (-0.43%) 19.81 (-0.60%) 7.04 (-0.30%)
PLID (full) 22.2 38.97 22.12 20.41 7.34

Table 1: Effect of covariance sharing on MIT-States dataset. All methods use the same batch size of 64 for a
fair comparison of GPU memory.

Since the distribution modeling for both our PLID and ProDA is not applicable to the C-GQA dataset,
we use the MIT States dataset to show the negative impact of sharing the covariance (see Table 1). It
shows that the covariance sharing can significantly save the GPU memory (17.6 vs 32.5 GB), while
still performing much better than ProDA.

D PRIMITIVE-LEVEL GAUSSIAN MODELING

To formulate the Gaussian distributions over the state classes and the object classes, we group the text
embeddings of composition descriptions D by Eq. (1), resulting in the distribution support points
(DSP) to +D(o) and ts +D(s) for a given object class o and state class s, respectively. The DSPs
are assumed to follow the state distribution N (ts,Σs) or the object distribution N (to,Σo), where
the covariances Σs and Σo are determined by D(s) and D(o), respectively.

Eventually, given the decomposed state visual features fs(v) and object visual features fo(v), the
logit margin terms are defined as

h
(m)
k,s = fs(v)

⊤Ak,sfs(v), and h
(m)
k,o = fo(v)

⊤Ak,ofo(v), (2)

where the index k ranges within [1, |S|] for computing the state classification loss Ls, and ranges
within [1, |O|] for computing the object classification loss Lo, respectively.

E MORE IMPLEMENTATION DETAILS

Datasets We perform experiments on three CZSL datasets, i.e., MIT-States (Isola et al., 2015),
UT-Zappos (Yu & Grauman, 2014), and C-GQA (Naeem et al., 2021). MIT-States consists of 115
states and 245 objects, with 53,753 images in total. Following (Purushwalkam et al., 2019; Nayak
et al., 2023; Lu et al., 2023), it is split into 1,262 seen and 300/400 unseen compositions for training
and validation/testing, respectively. UT-Zappos contains 16 states and 12 objects for 50,025 images
in total, and it is split into 83 seen and 15/18 unseen compositions for training and validation/testing.
C-GQA contains 453 states and 870 objects for 39,298 images, and it is split into 5,592 seen and
1,040/923 unseen compositions for training and validation/testing, respectively, resulting in 7,555
and 278,362 target compositions in closed- and open-world settings.

Implementation Our model is implemented on top of the CSP (Nayak et al., 2023) codebase,
which extends the CLIP model for compositional zero-shot learning. To tokenize the generated long
sentences of each compositional class, we set the context length to the default value of 77 in the
original CLIP model. For the soft prompt embeddings, we set the context length of text encoder to
8 for all datasets. We use the dropout rate of 0.3 for the learnable state and object embeddings. In
training, we follow the DFSP (Lu et al., 2023) that uses the performance of the validation set for
model selection. The rest hyperparameters of our final model on each dataset are listed in Table 2.

F MORE RESULTS

Primitive-level Visualization In addition to the tSNE visualization of Gaussian distributions over
the composition-level classes, we provide the visualizations of the primitive-level classes in Fig. 1.
These figures show that our model could learn better text distributions over state classes and object
classes than those of the pre-trained LLMs.
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Hyperparameters MiT-States UT-Zappos C-GQA
max epochs 50 25 20
base learning rate 0.00005 0.0001 0.00001
weight decay 0.00002 0.00001 0.00001
number of text descriptions 64 32 64
number of image views 8 8 8
attention dropout 0.5 0.1 0.1
weights of primitive loss 0.1 0.01 0.01

Table 2: Hyperparameters of model implementation.
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(d) Learned DSP of Objects

Figure 1: tSNE visualization of the primitive-level text embeddings (states: Fig. 1a and 1b, objects:
Fig. 1c and 1d). This figure clearly shows that, compared to the raw embeddings by pre-trained
LLMs, our method achieves better distributions over both the state and object classes.
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