
Supplementary Material: Repulsive Deep Ensembles are
Bayesian

A Non-identifiable neural networks

Deep neural networks are parametric models able to learn complex non-linear functions from few
training instances and thus can be deployed to solve many tasks. Their overparameterized architecture,
characterized by a number of parameters far larger than that of training data points, enables them to
retain entire datasets even with random labels [84]. Even more, this overparameterized regime makes
neural network approximations of a given function not unique in the sense that multiple configurations
of weights might lead to the same function. Indeed, the output of a feed forward neural network given
some fixed input remains unchanged under a set of transformations. For instance, certain weight
permutations and sign flips in MLPs leave the output unchanged [9]. The invariance of predictions
and therefore of parameterized functions under a given weight transformation translates to invariance
of the likelihood function. This effect is commonly denoted as non-identifiability of neural networks
[68]. More in detail, let g : (x,w) 7! f(x;w) be the map that maps a data point x 2 X and a weight
vector w 2 Rd to the corresponding neural network output and denote fi := f(x;wi) the output
with a certain configuration of weights wi. Then for any non identifiable pair {wi,wj} 2 W ✓ Rd

and fi,fj 2 F their respective functions:

fi = fj =) p(wi|D) = p(wj |D) 6=) wi = wj .

Strictly speaking, the map g : X ⇥ W ! F is not injective (many to one). Denoting by T the
class of transformations under which a neural network is non-identifiable in the weights space, it
is always possible to identify a cone K ⇢ Rd such that for any parameter configuration w there
exist a point ⌘ 2 K and a transformation ⌧ 2 T for which it holds that ⌧(⌘) = w. This means that
every parameter configuration has an equivalent on the subset given by the cone [30]. Modern neural
networks containing convolutional and max-pooling layers have even more symmetries than MLPs
[4]. Given that in practice we cannot constraint the support of the posterior distribution to be the
cone of identifiable parameter configurations and given that the likelihood model is also invariant
under those transformations that do not change the function, the posterior landscape includes multiple
equally likely modes that despite their different positions represent the same function. It is important
to notice that this is always true for the likelihood but not for the posterior. Indeed, for the modes to
be equally likely, the prior should also be invariant under those transformations, condition that is in
general not true. Nevertheless, the fact that there are multiple modes of the posterior parametrizing
for the same function remains true but they might be arbitrarily re-scaled by the prior3. As we will
see in the following, this redundancy of the posterior is problematic when we want to obtain samples
from it. Moreover it is interesting to notice how this issue disappears when the Bayesian inference is
considered in the space of functions instead of weights. In this case, indeed, every optimal function
has a unique mode in the landscape of the posterior and redundancy is not present:

fi 6= fj =) p(fi|D) 6= p(fj |D) .

In spite of that, performing inference over distributions of functions is prohibitive in practice due
to the infinite dimensionality of the space in consideration. Only in very limited cases like the
one of Gaussian Proccess, Bayesian inference is exact. Interestingly Neural network model in the
limit of infinite width are Gaussian processes with a particular choice of the kernel determined
by the architecture [44, 81, 60]. In this limit Bayesian inference over functions can be performed
analytically.

B Quantify functional diversity

As illustrated in Section 2 , in the Bayesian context, predictions are made by doing a Monte-
Carlo estimation of the BMA. Functional diversity, and so the diversity in the hypotheses taken
in consideration when performing the estimation, determines the epistemic uncertainty and the
confidence over the predictions. Importantly, the epistemic uncertainty allows for the quantification

3Note that for the fully factorized Gaussian prior commonly adopted, the invariance under permutations is
true

16

of the likelihood of a test point to belong to the same distribution from which the training data points
were sampled [65]. Following this, the uncertainty can be used for the problem of Out-of-distribution
(OOD) detection [11] that is often linked to the ability of a model to ”know what it doesn’t know”. A
common way used in the literature to quantify the uncertainty is the Entropy4 H of the predictive
distribution:

H
�
p(y0|x0

,D)

= �

X

y

p(y0|x0
,D) log p(y0|x0

,D) . (21)

Nevertheless, it has been argued in recent works [55] that this is not a good measure of uncertainty
because it does not allow for a disentanglement of epistemic and aletoric uncertainty. Intuitively,
we would like the predictive distribution of an OOD point to be uniform over the different classes.
However, using the entropy and so the average prediction in the BMA, we are not able to distinguish
between the case in which all the hypotheses disagree very confidently due to the epistemic uncertainty
or are equally not confident due to the aleatoric uncertainty. To overcome this limitation, we can use
a direct measure of the model disagreement computed as:

MD2(y0;x0
,D) =

Z

w

⇥
p(y0|x0

,w)� p(y0|x0
,D)

⇤2
p(w|D)dw . (22)

It is easy to see how the quantity in Eq. (22), measuring the deviation from the average prediction is
zero when all models agree on the prediction. The latter can be the case of a training point where all
hypotheses are confident or a noisy point where all models ”don’t know” the class and are equally
uncertain. On the other side the model disagreement will be greater the zero the more the model
disagree on a prediction representing like this the epistemic uncertainty. To obtain a scalar quantity
out of Eq. (22) we can consider the expectation over the output space of y:

MD2(x0) = Ey

 Z

w

⇥
p(y0|x0

,w)� p(y0|x0
,D)

⇤2
p(w|D)dw

�
. (23)

C Functional derivative of the KL divergence

In this section, we show the derivation of the functional derivative for the KL divergence functional.
We start with some preliminary definitions.

Given a manifold M embedded in Rd, let F [⇢] be a functional, i.e. a mapping from a normed linear
space of function (Banach space) F = {⇢(x) : x 2 M} to the field of real numbers F : F ! R. The
functional derivative �F [⇢]/�⇢(x) represents the variation of value of the functional if the function
⇢(x) is changed.

Definition 2 (Functional derivative). Given a manifold M and a functional F : F ! R with respect
to ⇢ is defined as:

Z
�F

�⇢(x)
�(x)dx = lim

✏!0

F [⇢(x) + ✏�(x)]� F (⇢(x))

✏
=

d

d✏
F [⇢(x) + ✏�(x)]

����
✏=0

(24)

for every smooth �.

Definition 3 (KL divergence). Given ⇢ and ⇡ two probability densities on M, the KL-divergence is
defined as:

DKL(⇢,⇡) =

Z

M

�
log ⇢(x)� log ⇡(x)

�
⇢(x) dx . (25)

Proposition 1. The functional derivative of the KL divergence in Eq. (25) is:

�DKL

�⇢(x)
= log

⇢(x)

⇡(x)
+ 1 (26)

4The continuous case is analogous using the differential entropy

17

Proof. using the definition of functional derivative in Eq. (24) :
Z

�DKL

�⇢(x)
�(x)dx =

d

d✏
DKL(⇢+ ✏�,⇡)

����
✏=0

=

Z
d

d✏

(⇢(x) + ✏�(x)) log

(⇢(x) + ✏�(x))

⇡(x)

�

✏=0

dx

=

Z
�(x) log

(⇢(x) + ✏�(x))

⇡(x)
+

d(⇢(x) + ✏�(x))

d✏

�

✏=0

dx

=

Z
log

⇢(x)

⇡(x)
+ 1

�
�(x)dx

(27)

D SVGD as Wasserstein gradient flow

To understand the connection between the Wasserstein gradient flow and the SVGD method, we first
need to introduce the concept of gradient flow on a manifold. Let’s consider a Riemannian manifold
M equipped with the metric tensor G(x) defined for all x 2 M. Here, G(x) : TW ⇥ TW ! R
defines a smoothly varying local inner product on the tangent space at each point of the manifold x.
For manifolds over Rd, the metric tensor is a positive definite matrix that defines local distances for
infinitesimal displacements d(x, x+ dx) =

p
dx>G(x)dx. Considering a functional J : M ! R,

the evolution in Eq. (9) and so the gradient flow, becomes:

dx

dt
= �G(x)�1rJ(x) . (28)

We see that the metric tensor of the manifold acts like a perturbation of the gradient. Secondly, we
need to reformulate the update equation in 6 in continuous time, as the following ODE:

dxi

dt
=

1

n

nX

j=1

[k(xj , xi)rxj log p(xj) +rxjk(xj , xi)] (29)

that in the mean field limit n ! 1 becomes:

dx

dt
=

Z
k(x0

, x)rx0 log ⇡(x0) +rx0k(x0
, x)

�
⇢(x0)dx0

=

Z
k(x0

, x)rx0 log ⇡(x0)⇢(x0)dx0 +

Z
rx0k(x0

, x)⇢(x0)dx0
.

(30)

Due to the boundary condition of a Kernel in the Stein class (see Liu et al. [52] for more details),
without loss of generality, we can rewrite the integrals in the previous equation as:

dx

dt
=

Z
k(x0

, x)rx0 log ⇡(x0)⇢(x0)dx0 +

Z
rx0k(x0

, x)⇢(x0)dx0 � k(x0
, x)⇢(x0)

���
||x0||!1| {z }

=0

and notice how the second and the third terms are the result of an integration by parts:

dx

dt
=

Z
k(x0

, x)rx0 log ⇡(x0)⇢(x0)dx0 �
Z

rx0k(x0
, x)rx0⇢(x0)dx0

=

Z
k(x0

, x)rx0 log ⇡(x0)⇢(x0)dx0 �
Z

rx0k(x0
, x)rx0 log ⇢(x0)⇢(x0)dx0

=

Z
k(x0

, x)rx0
⇥
log ⇡(x0)� log ⇢(x0)

⇤
⇢(x0)dx0

= Ex0⇠⇢

⇥
k(x0

, x)rx0(log ⇡(x0)� log ⇢(x0))
⇤

(31)

which is exactly the functional derivative of the KL divergence in 11 approximated in the RKHS of
the kernel [16, 50]. Following this, the Liouville equation of the SVGD dynamics in the mean field

18

limit is:

@⇢(x)

@t
= �r ·

✓Z
k(x0

, x)rx0
⇥
log ⇡(x0)� log ⇢(x0)

⇤
⇢(x0)dx0

◆

= r ·
✓Z

k(x0
, x)rx0

�

�⇢
DKL(⇢,⇡)⇢(x

0)dx0
◆
.

(32)

Defining the linear operator (K⇢�)(x) := Ex0⇠⇢[k(x0
, x)�(x0)] the ODE in Eq. (31) becomes:

dx

dt
= K⇢rx0

�
log ⇡(x0)� log ⇢(x0)

�
. (33)

And the Liouville equation describing the evolution of the empirical measure of the particles:

@⇢

@t
= r ·

�
⇢(x)K⇢rx0(log ⇢(x0)� log ⇡(x0))

�

= r ·
✓
⇢(x)K⇢rx0

�

�⇢
DKL(⇢,⇡)

◆
.

(34)

Notice how the only solution of the previous equation is ⇢ = ⇡. If we now compare Eq. (34) and
Eq. (11) we can see how they only differ for the application of the operator K⇢; moreover the operator
seems to act like a perturbation of the gradient and defines a local geometry in the same way the
Riemannian metric tensor G(x) is doing in 28. The intuition suggest then that the SVGD can be
reinterpreted as a gradient flow in the Wasserstein space under a particular Stein geometry [16]
induced on the manifold by the kernel and where K⇢ is the metric.

E Kernel density estimation

Kernel Density Estimation (KDE) is a nonparametric density estimation technique [66]. When an
RBF kernel is used, it can be thought as a smoothed version of the empirical data distribution. Given
some training datapoints D = {x1, ...,xn} with xi ⇠ p(x) and x 2 RD their empirical distribution
q0(x) is a mixture of n Dirac deltas centered at each training data:

q0(x) =
1

N

NX

i=1

�(x� xi) . (35)

We can now smooth the latter by replacing each delta with an RBF kernel:

k✏(x,xi) =
1

h
exp

✓
� ||x� xi||2

h

◆
(36)

where h > 0. The kernel density estimator is then defined as:

qh(x) =
1

N

NX

i=1

kh(x,xi) (37)

In the limit of h ! 0 and N ! 1 the kernel density estimator is unbiased: it is equal to the true
density. Indeed kh!0(x,xi) ! �(x� xi) and so qh!0(x) ! q0(x) and:

lim
N!1

q0(x) = lim
N!1

1

N

NX

i=1

(�(x� xi))

= Ep(x0) [�(x� x
0)]

=

Z

RD

�(x� x
0)p(x0) dx0 = p(x)

(38)

19

Figure F.1: Neal’s funnel. The SGE-WGD and SVGD again fit the distribution best.

F Additional experiments

In this section, we report the additional results for the different methods when sampling from the
Funnel distribution p(x, y) = N (y|µ = 0,� = 3)N (x|0, exp(y/2)), the results are reported in
Figure F.1.

G Implementation details

In this section, we report details on our implementation in the experiments we performed. The code is
partially based on von Oswald et al. [73] and can be found at https://github.com/ratschlab/
repulsive_ensembles. All the experiments were performed on the ETH Leonhard scientific
compute cluster with NVIDIA GTX 1080 Ti and took roughly 150 GPU hours.

G.1 Sampling from synthetic distributions

Single Gaussian:we created a two-dimensional Gaussian distribution with mean µ =

(�0.6871, 0.8010) and covariance ⌃ =

✓
1.130 0.826
0.826 3.389

◆
. We used a normal initialization with

zero mean and standard deviation �
2 = 3. We sampled 100 initial particles and optimized them for

5000 iterations using Adam with a fixed learning rate of 0.1. The kernel bandwidth was estimated
using the median heuristic for all methods. For the SSGE we used all the eigenvalues. The random
seed was fixed to 42.
Funnel: the target distribution followed the density p(x, y) = N (y|µ = 0,� = 3)N (x|0, exp(y/2)).
We used a normal initialization with zero mean and standard deviation �

2 = 3. We sampled 500
initial particles and optimized them for 2000 iterations using Adam with a fixed learning rate of 0.1.
The kernel bandwidth was fixed to 0.5 for all methods. For the SSGE we used all the eigenvalues.
The random seed was fixed to 42.

G.2 1D regression

We generated the training data by sampling 45 points from xi ⇠ Uniform(1.5, 2.5) and 45 from
xi ⇠ Uniform(4.5, 6.0). The output yi for a given xi is then modeled following yi = xi sin(xi) + ✏i

with ✏i ⇠ N (0, 0.25). We use a standard Gaussian likelihood and standard normal prior N (0, I).
The model is a feed-forward neural network with 2 hidden layers and 50 hidden units with ReLU
activation function. We use 50 particles initialized with random samples from the prior and optimize
them using Adam [39] with 15000 gradient steps, a learning rate of 0.01 and batchsize 64. The kernel

20

https://github.com/ratschlab/repulsive_ensembles
https://github.com/ratschlab/repulsive_ensembles

bandwidth is estimated using the median heuristic. We tested the models on 100 uniformly distributed
points in the interval [0, 7]. The random seed was fixed to 42.

G.3 2D classification

We generate 200 training data points sampled from a mixture of 5 Gaussians with means equidistant
on a ring of radius 5 and unitary covariance. The model is a feed-forward neural network with 2
hidden layers and 50 hidden units with ReLU activation function. We use a softmax likelihood and
standard normal prior N (0, I). We use 100 particles initialized with random samples from the prior
and optimize them using Adam [39] with 10,000 gradient steps, a learning rate of 0.001 and batchsize
64. The kernel bandwidth is estimated using the median heuristic. The random seed was fixed to 42.

G.4 Classification on FashionMNIST

On this dataset, we use a feed-forward neural network with 3 hidden layers and 100 hidden units
with ReLU activation function. We use a softmax likelihood and standard normal prior N (0, I).
We use 50 particles initialized with random samples from the prior and optimize them using Adam
[39] for 50000 steps, a learning rate was 0.001 for sge-WGD,kde-WG,ssge-WGD and 0.0025 for
kde-fWGD,ssge-fWGD,sge-fWGD, Deep ensemble, fSVGD, SVGD, and batchsize was 256. The
kernel bandwidth is estimated using the median heuristic for all different methods. The learning
rates were searched over the following values (1e� 4, 5e� 4, 1e� 3, 5e� 3, 25e� 4) we tested for
50000 and 30000 total number of iterations, 50 and 100 particles and batchsize 256 and 128. For
the hyper-deep ensemble, we implemented it on the L2 parameter by first running a random search
to select a set of 5 top values in the range [1e � 3, 1e3], which we subsequently used to create an
ensemble with the same number of members as the other methods. All results in Table 1 are averaged
over the following random seeds (38, 39, 40, 41, 42).

G.5 Classification on CIFAR-10

On this dataset, we used a residual network (ResNet32) with ReLU activation function. We use a
softmax likelihood and standard normal prior N (0, 0.1I). We use 20 particles initialized using He
initialization [28] and optimize them using Adam [39] for 50000 steps, a learning rate was 0.00025
for sge-fWGD,kde-fWGD,ssge-fWGD,fSVGD and 0.0005 for kde-WGD,ssge-WGD,sge-fWGD,
Deep ensemble and SVGD, and batchsize was 128. The kernel bandwidth is estimated using the
median heuristic for all different methods. The learning rates were searched over the following values
(1e � 4, 5e � 4, 1e � 3, 5e � 3, 25e � 4, 5e � 5) we tested for 50000 and 30000 total number of
iterations, 20 and 10 particles. For the hyper-deep ensemble, we implemented it on the L2 parameter
by first running a random search to select a set of 5 top values in the range [1e� 3, 1e3], which we
subsequently used to create an ensemble with the same number of members as the other methods. All
results in Table 1 are averaged over the following random seeds (38, 39, 40, 41, 42).

21

	Introduction
	Repulsive Deep Ensembles
	Repulsive force in weight space
	Repulsive force in function space
	Comparison to Stein variational gradient descent

	Repulsive deep ensembles are Bayesian
	Particle approximation
	Gradient flow in parameter space
	Gradient flow in function space
	The choice of the kernel

	Experiments
	Related Work
	Conclusion
	Non-identifiable neural networks
	Quantify functional diversity
	Functional derivative of the KL divergence
	SVGD as Wasserstein gradient flow
	Kernel density estimation
	Additional experiments
	Implementation details
	Sampling from synthetic distributions
	1D regression
	2D classification
	Classification on FashionMNIST
	Classification on CIFAR-10

