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Prompting to Adapt Foundational Segmentation Models
Anonymous Submission

ABSTRACT
Foundational segmentationmodels, predominantly trained on scenes
typical of natural environments, struggle to generalize across var-
ied image domains. Traditional “training-to-adapt” methods rely
heavily on extensive data retraining and model architectures modi-
fications. This significantly limits the models’ generalization capa-
bilities and efficiency in deployment. In this study, we propose a
novel adaptation paradigm, termed “prompting-to-adapt”, to tackle
the above issue by introducing an innovative image prompter.
This prompter generates domain-specific prompts through few-
shot image-mask pairs, incorporating diverse image processing
techniques to enhance adaptability. To tackle the inherent non-
differentiability of image prompts, we further devise an information-
estimation-based gradient descent strategy that leverages the in-
formation entropy of image processing combinations to optimize
the prompter, ensuring effective adaptation. Through extensive
experiments across nine datasets spanning seven image domains
(i.e., depth, thermal, camouflage, endoscopic, ultrasound, grayscale,
and natural) and four scenarios (i.e., common scenes, camouflage
objects, medical images, and industrial data), we demonstrate that
our approach significant improves the foundational models’ adap-
tation capabilities. Moreover, the interpretability of the generated
prompts provides insightful revelations into their image processing
mechanisms. Our source code will be publicly available to foster
further innovation and exploration in this field.

CCS CONCEPTS
• Computing methodologies→ Image segmentation.

KEYWORDS
Foundational Segmentation Models, Prompt Engineering, Domain
Adaption
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1 INTRODUCTION
Image segmentation plays a pivotal role in multimedia by facili-
tating the identification and extraction of information from multi-
domain images. This capability is crucial across a broad spectrum
of applications, from enhancing autonomous vehicle navigation
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Figure 1: (a) Foundational segmentation models are typically
trained on natural images, encountering issues when applied
to images from other domains. (b) “Training-to-adapt” meth-
ods generally fit the models through adapters and retraining.
(c) Our proposed “prompting-to-adapt” paradigm searches
for the optimal combination of image processing prompts
in a few-shot manner, adapting the models by altering the
context of input images.

to advancing diagnostic processes in medical imaging. Recent ad-
vancements have led to the development of robust foundational
models for image segmentation, such as the segment anything
model (SAM) [16] and the segment everything everywhere model
(SEEM) [44] These models are distinguished by their use of sophisti-
cated prompts ranging from semantic texts that provide contextual
understanding to spatial cues that highlight specific areas of inter-
est, which facilitates the accurate segmentation of objects within
a diverse array of images. Despite these significant strides, the
application of foundational segmentation models to images out-
side the scope of standard natural scenes presents substantial chal-
lenges [3, 36]. This limitation is especially pronounced in domains
featuring highly variable conditions, such as medical imagery, in-
dustrial scenes, and camouflaged environments. These contexts
often exhibit complex background textures, fluctuating lighting
conditions, and partial object occlusions, all of which demand an
enhanced level of adaptability and precision from segmentation
models. Previous methods [3, 36] for adapting foundational segmen-
tation models typically involve intensive training and architectural
modifications, which, while effective to a degree, significantly im-
pede the models’ ability to generalize and operate efficiently across
different domains.

In this paper, we propose an novel adaptation paradigm, chang-
ing the perspective from “training-to-adapt” to “prompting-to-
adapt” (as illustrated in Fig. 1), to overcome the above challenges.
Central to this approach is the development of an innovative image
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(b) Thermal Images: VT1K, SEEM-L, +1.76 mIoU
Prompt: Contrast Enhance: 1.3, Saturation Enhance: 1.5, Gaussian Blur: 1

O
rig

in
al

Pr
om

pt
ed

(c) Camouflage Images: COD10K, SEEM-L, +0.21 mIoU
Prompt: Saturation Reduce: 0.3, Saturation Enhance: 1.2, Saturation Enhance: 1.0

(d) Endoscopic Images: Kavsir, SAM-H, +4.82 mIoU
Prompt: Gaussian Sharpen: 1.2, Saturation Enhance: 1.4, Box Filter: 4

(e) Ultrasound Images: BUSI, SAM-H, +7.29 mIoU
Prompt: Median Filter: 13, Saturation Reduce: 0.8, Box Filter: 1

(f) Grayscale Images: MTSD, SAM-H, +0.27 mIoU
Prompt: Gamma Correct: 0.6, Gaussian Sharpen: 1.2, Brightness Reduce: 0.8

(g) Natural Images: KolektorSDD2, SEEM-L, +28.51 mIoU
Prompt: Contrast Enhance: 1.4, Box Filter: 8, Gaussian Sharpen: 0.7
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Figure 2: Illustrative examples of image prompts. We show the potential to adapt the foundational segmentation models to a
variety of image domains, such as depth, thermal, camouflage, endoscopic, ultrasound, and grayscale images. This adaptation
is facilitated through the strategic application of traditional image processing techniques. These techniques serve as effective
prompts, guiding the models to adjust to the specific characteristics of various target domains. Please zoom in this figure for
additional details.

prompter, which employs few-shot image-mask pairs to generate
domain-specific prompts. These prompts incorporate a variety of
image processing techniques, aiming to adjust the content of in-
put images for the adaptability of segmentation models without
necessitating comprehensive model overhauls or extensive fine-
tuning. To overcome the intrinsic challenge of non-differentiable
image prompts, we further devise an information-estimation-based
gradient descent strategy. This strategy capitalizes on the infor-
mation entropy of image processing combinations, enabling the
efficient and effective optimization of the image prompter. Through
extensive experiments across diverse domains, we demonstrate
the profound impact of our “prompting to adapt” paradigm. This
approach not only facilitates significant improvements in the adapt-
ability of foundational segmentationmodels but also illuminates the
interpretability and practical applicability of the generated prompts.
For example, as shown in Fig. 2(d), by using the generated prompts,
we can modify the lighting conditions of endoscopic images to
mitigate the impact of bright spots in original input images.

Our contributions can be summarized as follows:

• We propose a novel adaption paradigm termed “prompting-
to-adapt”, which significantly enhances the flexibility of
foundational segmentation models across a diverse array
of image domains. This approach is notable for its depar-
ture from traditional, labor-intensive adaptation methods,
instead relying on the strategic use of image-mask pairs

to generate domain-specific prompts. These prompts, com-
prised with varied image processing techniques, facilitate
model adaptation without necessitating modifications to
model architectures or extensive retraining.
• We propose an information-estimation-based gradient de-
scent strategy that effectively addresses the challenge of
non-differentiable image prompts by leveraging the infor-
mation entropy inherent in the combinations of image pro-
cessing techniques. Beyond the quantitative enhancements
in model performance, we also show the interpretability of
the generated prompts. These prompts not only aid in model
adaptation but also offer valuable insights into the underly-
ing image processing mechanisms, providing a deeper un-
derstanding of how segmentation models can be effectively
adapted to new and challenging environments.
• We conduct extensive experiments on nine datasets, i.e.,
NJU2K [15], VT1K [33], CAMO [18], COD10K [7], NC4K [26],
Kavsir [12], BUSI [1], MTSD [11], and KolekorSDD2 [2],
which cover seven image domains including depth, thermal,
camouflage, endoscopic, ultrasound, grayscale, and natural
images, across four scenarios: common scenes, camouflage
objects, medical images, and industrial data. By applying our
image prompting approach to foundational segmentation
models such as SAM [16] and SEEM [44], we demonstrate sig-
nificant improvements in segmentation performance across
various image domains.
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Figure 3: Prompting to adapt foundational segmentation models. During the training process, the segmentation models
themselves are kept unchanged. The key to adaptation lies within an image prompter, meticulously trained to craft effective
prompts for adaptation. This method is designed to safeguard the core architecture of the segmentation models, thereby
maintaining their inherent, pre-trained capabilities. In the inference stage, the generated prompts, which embody a blend of
image processing techniques, are directly applied to the input images. This ensures that the foundational segmentation models
can adeptly adjust to new inputs, leveraging the specifically designed prompts to achieve enhanced performance without
altering the structural essence of the models.

2 RELATEDWORK
Foundational Segmentation Models. Foundational segmenta-
tion models have marked a significant advancement, showcasing
remarkable capabilities in accurately segmenting diverse objects.
These models, such as the segment anything model (SAM) [16] and
the segment everything everywhere model (SEEM) [43, 44], stand
out for their utilization of handcrafted prompts to generate detailed
segmentation masks. By integrating various types of prompts, in-
cluding points, boxes, or textual information, these models have
proven adept at identifying and segmenting objects across a myriad
of images. Despite these advancements, the potential of using the
input images themselves as adaptive prompts represents an intrigu-
ing avenue for enhancing model adaptability. Our study delves into
this concept, exploring the development and application of effec-
tive image prompts tailored for foundational segmentation models
Central to our approach is the employment of a few-shot learning
strategy aimed at facilitating the models’ seamless adaptation to
a diverse range of image domains. This strategy underscores our
effort to broaden the applicability and versatility of foundational
segmentation models, enabling their tailored use in specific tasks
or domains that extend beyond their initial training distribution.
Prompt Engineering. Prompt engineering has emerged as a strate-
gic approach to repurpose foundation models for novel downstream
tasks without necessitating model fine-tuning or modifications.
This technique has seen increasing exploration within both the
neural language processing and visual foundation model domains,
aiming at the automatic derivation of optimal templates for task
adaptation [9, 23]. In the context of neural language processing,
the methodology for automatic template learning bifurcates into
offline and continuous strategies. Offline methods include prompt
mining or prompt paraphrasing [13], gradient-based search [31],
prompt generation [8], and prompt scoring [5]. On the other hand,
continuous methods primarily consist of prefix tuning [20], tuning
initialized with discrete prompts [40], hard-soft prompt hybrid tun-
ing [25], and P-Tuning [24]. Similarly, for visual foundation models,

several prompt engineering methods have been proposed. These
methods include continuous text token optimization, conditional
text token optimization [41], and other approaches [14, 28, 38, 42].
In the segmentation foundation models sector, an approach that
parallels our own is the introduction of SAMAug [4], a method
that leverages visual point augmentation to boost interactive image
segmentation capabilities within the SAM framework. This study
introduces a tailored prompt engineering strategy specifically for
foundational segmentation models. Our methodology distinguishes
itself by examining various image processing techniques to craft
effective prompts, aiming to enhance the adaptability and perfor-
mance of these models.
Test-TimeAdaption.Test-TimeAdaptation (TTA) for image recog-
nition has emerged as a pivotal approach to address the challenges
posed by distribution shifts between training and testing data [21].
This technique allows for the fine-tuning of pre-trained models
during the inference phase, thereby enhancing their robustness and
accuracy when confronted with novel data distributions. TTA is
particularly useful in scenarios where the test data distribution is un-
known or significantly different from the training data distribution,
which is common in real-world applications. TTA methods are cate-
gorized into several types, including source-free domain adaptation
(SFDA) [17, 19, 22], test-time batch adaptation (TTBA) [30, 32, 39],
online test-time adaptation (OTTA) [27, 35], and test-time prior
adaptation (TTPA) [29]. SFDA focuses on adapting a model to a
new domain without access to original training data. TTBA in-
volves adjusting the model based on batches of test data. OTTA
adapts the model continuously as each test instance is processed,
learning from each instance to improve subsequent predictions.
TTPA utilizes prior knowledge or assumptions about the test data
to guide the adaptation process, often incorporating external data
or constraints to align the model with the expected test distribution.
Our method stands apart from conventional TTA techniques by
focusing on dynamic, context-aware adjustments tailored for input
images at inference. We aim to identify the best combination of
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image processing techniques for the inference stage of a pre-trained
segmentation foundation model.

3 METHOD
3.1 Problem Formulation
The core aim of the “prompting-to-adapt” strategy is to discern
optimal image prompts that effectively alter input images, thereby
facilitating the adaptation of pre-trained foundational segmenta-
tion models to atypical domains. These image prompts are crafted
through the strategic combination of various image processing
techniques, enabling a seamless adaptation without necessitating
alterations to the models’ parameters or architecture. We conceptu-
alize the problem as identifying image prompts that adeptly modify
input images. This modification aims to produce accurate segmen-
tation masks, leveraging few-shot image-mask ground-truth pairs
for precision. Fig. 3 illustrates the comprehensive framework of our
approach, which integrates three principal components: a search
space, an image prompter, and an information-estimation-based
gradient descent strategy. The search space encompasses an exten-
sive array of image processing techniques along with their poten-
tial intensities, offering a broad spectrum for prompt construction.
Functioning within the defined search space, the image prompter
meticulously samples and combines image processing techniques
to formulate an image prompt. This prompt specifies the sequence
and intensity of the applied image processing techniques. Once
the prompt is applied to the input images, generating modified
images, these are then utilized in lieu of the original inputs for the
foundational segmentation models. The predictions yielded from
this process are evaluated against the ground-truth masks using the
designated loss function. In the subsequent sections, detailed eluci-
dations of each component integral to the adaptation process will be
provided, shedding light on their respective roles and interactions
within the overarching framework.

3.2 Search Space for Image Processes
In formulating the search space for image prompts, a meticulous ex-
amination of various image processing techniques was undertaken,
leading to their categorization into two distinct groups: semantic-
destructive and semantic-preserving. Semantic-destructive image
processing techniques modify the core semantic content of an im-
age. They include operations such as random cropping, rotation,
the introduction of noise, and crop-outs. Although these manipula-
tions alter the image’s contextual information, they play a crucial
role in testing the robustness of segmentation models to changes
in image semantics. In contrast, semantic-preserving techniques
adjust the visual representation of an image without impacting
its semantic integrity. Such adjustments may involve modifica-
tions to the brightness, contrast, or saturation levels, serving to
enhance or diminish specific image features without altering the
underlying content. Despite the potential of semantic-destructive
techniques to alter an image’s context significantly, their incorpo-
ration alongside semantic-preserving techniques is essential for a
holistic exploration within the search space. Thus, the constructed
search space encompasses a diverse array of operations, including
but not limited to, brightness enhancement, contrast reduction,
saturation adjustment, box filtering, Gaussian blur, logarithmic

transformation, gamma correction, Gaussian kernel sharpening, bi-
lateral filtering, median filtering, and random rotation. To facilitate
the search for optimal operation intensities, we have quantified the
intensity range for each operation, dividing it into ten uniformly
spaced intervals. This discretization enables a structured approach
to exploring the search space, ensuring a comprehensive assess-
ment of various image processing combinations and their effects
on the adaptability and performance of segmentation models.

3.3 Design of Image Prompter
Within the defined search space, we have developed an image
prompter tasked with identifying the optimal combinations of im-
age processing techniques to effectively adapt input images for
segmentation tasks. The image prompter is designed to sequence
and intensity of the selected image processing operations. Initially, a
randomly-initialized query embedding, denoted as 𝑟0, is input into a
long short-termmemory (LSTM) layer [10], producing an operation
embedding 𝑟1. This embedding subsequently passes through amulti-
layer perceptron (MLP) layer, yielding the probability 𝑝 (𝑎1 |𝑟0) of
selecting a specific image processing technique and its correspond-
ing intensity. A softmax activation function is applied to normal-
ize this probability distribution. The process iteratively continues,
leveraging the operation embedding to sequentially generate a com-
prehensive prompt 𝜏𝑡 , incorporating 𝑡 = 1, ...,𝑇 image processing
techniques. While the LSTM layer serves as an illustrative example
in our architecture, alternative structures, such as transformers [34],
can also be employed to enhance model design flexibility. Parame-
terizing the image prompter 𝑝 (·) with parameters 𝜃 , we define the
formulated image prompts as a probabilistic combination of image
processing techniques:

𝜏𝑡 = 𝑅
(
argmax𝑝𝜃 (𝑎𝑡 |𝑟𝑡−1)

)
, (1)

where 𝑡 = 1, ...,𝑇 and 𝑅(·) assigns the highest probability image pro-
cessing techniques and their intensities. Subsequently, the original
input images 𝐼 undergo processing as follows:

𝐼𝑝 = 𝜏𝑇

(
...𝜏2

(
𝜏1 (𝐼 )

) )
, (2)

where 𝐼𝑝 represents the processed, or prompted, images. The eval-
uation of the predicted masks is conducted through a loss function
defined as:

𝐿𝜏 (𝑀, 𝑓 (𝐼𝑝 )) = E𝑚∼𝑀,�̂�∼𝑓 (𝐼𝑝 ) [𝐼𝑜𝑈 (𝑚,�̂�)], (3)

where 𝑓 (·) denotes the foundational segmentation model,𝑚 ∼ 𝑀

refers to the ground-truth masks, and �̂� to the predicted masks,
and 𝐼𝑜𝑈 (·, ·) quantifies the intersection over union between the
predicted and ground-truth masks.

3.4 Gradient via Information Estimation
Given the defined loss function as shown in Eq. 3, the conventional
approach to optimize the parameters of the image prompter is
expressed by:

min
𝜃
E𝜏∼𝑝𝜃 [𝐿𝜏 (𝑀, 𝑓 (𝐼𝑝 ))] . (4)

However, the inherently non-differentiable nature of the sampling
operation within 𝜏 ∼ 𝑝𝜃 precludes the direct application of the
gradient of the loss function for parameter updates in the image
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Algorithm 1 Adaption via Image Prompting
1: Randomly initialize image prompter with 𝜃 .
2: Repeat
3: Predict prompts 𝜏 ∼ 𝑝𝜃 (𝑎𝑡 |𝑟𝑡 ) at 𝑡 = 0, ...,𝑇 − 1.
4: Apply the prompts to images.
5: Input images into foundational segmentation model.
6: Obtain predicted masks �̂�.
7: Calculate loss in Eq. 3 and estimate gradient via Eq. 8.
8: Update 𝜃 via Eq. 7.
9: Until convergence.

prompter. To circumvent this, we employ an information-estimation-
based gradient descent strategy for the optimization task, focusing
on modulating the information entropy of the output probabili-
ties from the image prompter relative to the magnitude of the loss
function. This process is formulated as:

min
𝜃
E𝜏∼𝑝𝜃 [𝐿𝜏 (𝑀, 𝑓 (𝐼𝑝 ))] · 𝐻 (𝑎)

=min
𝜃
E𝜏∼𝑝𝜃 [𝐿𝜏 (𝑀, 𝑓 (𝐼𝑝 ))] · E𝑎∼𝑝𝜃 [− log𝑝𝜃 (𝑎 |𝑟 )]

=max
𝜃
E𝑎∼𝑝𝜃 [𝐿𝜏∼𝑎 (𝑀, 𝑓 (𝐼𝑝 )) · log 𝑝𝜃 (𝑎 |𝑟 )],

(5)

where 𝐻 (𝑎) represents the information entropy of the output prob-
abilities for the selected combinations of image processing tech-
niques. The rationale is that a lower loss indicates that the prompted
images can predict precise masks, suggesting a need to decrease the
entropy of the prompt probabilities to diminish the randomness in
selecting prompts. Conversely, a higher loss necessitates increasing
the randomness to explore more combinations. Accordingly, the
gradient of 𝜃 is computed as:

∇𝜃E𝑎∼𝑝𝜃 [𝐿𝜏∼𝑎 (𝑀, 𝑓 (𝐼𝑝 )) · log𝑝𝜃 (𝑎 |𝑟 )]

=E𝑎∼𝑝𝜃
[
𝐿𝜏∼𝑎 (𝑀, 𝑓 (𝐼𝑝 )) · ∇𝜃

(
log 𝑝𝜃 (𝑎 |𝑟 )

) ]
.

(6)

This enables updating the parameter 𝜃 via gradient descent:

𝜃 ← 𝜃 − 𝛼 · ∇𝜃E𝑎∼𝑝𝜃 [𝐿𝜏∼𝑎 (𝑀, 𝑓 (𝐼𝑝 )) · log𝑝𝜃 (𝑎 |𝑟 )], (7)

where 𝛼 is the learning rate. In practice, we discover that the gradi-
ent stipulated in Eq. 6 can be directly derived from the gradient of
Eq.3, elucidated as follows:

E𝑎∼𝑝𝜃
[
𝐿𝜏∼𝑎 (𝑀, 𝑓 (𝐼𝑝 )) · ∇𝜃

(
log𝑝𝜃 (𝑎 |𝑟 )

) ]
=

∫
𝑝𝜃 (𝑎 |𝑟 )∇𝜃 log𝑝𝜃 (𝑎 |𝑟 )𝐿𝜏∼𝑎 (𝑀, 𝑓 (𝐼𝑝 ))𝑑𝑎

=

∫
𝑝𝜃 (𝑎 |𝑟 )
𝑝𝜃 (𝑎 |𝑟 )

∇𝜃𝑝𝜃 (𝑎 |𝑟 )𝐿𝜏∼𝑎 (𝑀, 𝑓 (𝐼𝑝 ))𝑑𝑎

=∇𝜃
∫

𝑝𝜃 (𝑎 |𝑟 )𝐿𝜏∼𝑎 (𝑀, 𝑓 (𝐼𝑝 ))𝑑𝑎

=∇𝜃E𝜏∼𝑝𝜃 [𝐿𝜏 (𝑀, 𝑓 (𝐼𝑝 ))] .

(8)

This revelation allows for the direct use of the gradient from Eq. 3
to update the image prompter effectively. Overall, the algorithm for
adapting foundational segmentation models with image prompter
is summarized in Alg. 1.

4 EXPERIMENTS
4.1 Datasets
To evaluate the adaptability of our proposed method, we conducted
a series of rigorous experiments across four categories: common
scenes, camouflage objects, medical images, and industrial data,
encompassing seven image modalities: depth, thermal, camouflage,
endoscopic, ultrasound, grayscale, and natural images.
Common Scenes. We utilized the NJU2K dataset [15] for depth
imagery, featuring 2,000 stereo images with matching depth maps.
Additionally, the VT1K dataset [33] provided 1,000 spatially aligned
RGB and thermal infrared image pairs with ground truth anno-
tations. The depth and thermal images from these datasets were
directly used as input images for evaluating the adaptability.
CamouflageObjects.Three datasets were used, namely the CAMO
dataset [18] with 1,250 images, the COD10K dataset [7] with 3,040
training and 2,026 testing images, and the NC4K dataset [26] with
4,121 images, capturing objects in complex, camouflaged settings.
Medical Images. The Kavsir dataset [12] provided 1,000 anno-
tated endoscopic images for polyp segmentation, while the BUSI
dataset [1] included 780 ultrasound images of breast tumors with
detailed annotations.
Industrial Data. The MTSD dataset [11] contained 388 magnetic
tile images with defect labels, and the KoletorSDD2 dataset [2]
included 356 images of surface defects with various imperfections.

4.2 Implementation Details
Search Spaces. The image processing techniques are systemat-
ically categorized into distinct subsets based on image intensity
characteristics, as delineated in Fig. 3. For methodologies perti-
nent to the manipulation of brightness, contrast, and saturation,
their respective value spectra were bifurcated into two discrete
segments: the first ranging from min value to half of the max value,
designated for diminishing effects, and the second from half of the
max value to max value, allocated for augmentative adjustments.
Consequently, these methods can be denoted using an abbreviation
format, where the abbreviation consists of an “id” subscript indicat-
ing the numerical values employed. The specific abbreviations are
as follows: BE/BR for Brightness Enhance/Reduce, CE/CR for Con-
trast Enhance/Reduce, SE/SR for Saturation Enhance/Reduce, BX
for Box Filter, GB for Gaussian Blur, LT for Log Transform, GC for
Gamma Correction, GS for Gaussian Shapes, BF for Bilateral Filter,
and MF for Median Filter. All continuous values falling within these
defined intervals were meticulously discretized into ten equidistant
segments. This granular discretization facilitates a comprehensive
exploration of intensity parameters, thereby optimizing the selec-
tion of image processing methodologies.
Search Details. For each dataset, we sampled 5-shot, 10-shot, and
10%-shot of annotated data from training set for searching and
performed validation on the test/validation set. We utilized the
SGD optimizer to update the parameter 𝜃 , with a momentum value
set to 0.9 and a learning rate of 3.5e-4. Training was conducted for
500 epochs. With one A100 GPU, it took approximately 1 hour on
average to find a reasonable policy for each dataset.
Evaluation Metrics. To rigorously appraise the performance of
our proposed method, we adhere to the employment of the mean
Intersection over Union (mIoU) as the evaluative metric for the
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Models Backbone
Common Scenes Camouflage Objects Medical Images Industrial Data

NJU2K VT1K CAMO COD10K NC4K Kavsir BUSI MTSD KoletorSDD2
SAM [16] ViT-B [6] 55.83 57.38 37.92 49.78 49.09 62.13 52.11 54.84 46.57
SAM-FT ViT-B [6] 57.23 57.64 38.40 49.83 49.63 60.95 56.70 54.91 52.90

SAM-IP, ours ViT-B [6] 60.89 58.98 39.41 50.74 50.41 62.43 61.28 55.30 56.55
Learned Image Prompts, ours GB:0-CE:9-LT:3 CR:3-CR:0-BR:9 CR:7-SE:6-SE:1 BR:4-CE:2-CE:1 SE:2-CR:0-BR:7 MF:9-MF:7-GB:9 MF:4-BX:9-BI:8 GC:0-BR:1-SR:6 CE:7-GS:1-GB:7

SAM [16] ViT-H [6] 61.37 56.58 49.00 58.39 57.23 63.29 54.54 59.24 48.04
SAM-FT ViT-H [6] 63.47 57.44 49.43 58.50 57.45 63.81 56.59 59.31 54.24

SAM-IP, ours ViT-H [6] 65.65 60.95 50.35 58.89 58.48 64.30 60.02 59.51 60.33
Learned Image Prompts, ours GB:4-CE:8-CR:6 BE:6-SR:9-MF:4 BE:0-CR:5-BR:2 BR:2-SE:2-BR:1 BE:0-CR:5-BR:2 LT:0-BI:4-GB:6 GS:3-MF:2-GB:6 MF:1-GB:8-SR:8 GB:2-CE:9-MF:6

SEEM [44] Focal-T [37] 57.52 65.31 55.37 54.49 60.96 38.07 43.31 38.99 33.28
SEEM-FT Focal-T [37] 58.93 65.69 55.49 54.57 61.10 43.21 47.97 40.27 46.11

SEEM-IP, ours Focal-T [37] 63.56 66.20 56.21 54.91 61.29 50.20 51.75 44.33 48.78
Learned Image Prompts, ours CE:5-GB:9-GC:7 GB:0-SR:8-GB:8 SE:3-SR:4-SE:1 SE:5-SR:4-SE:4 CR:2-SE:1-CE:4 GB:1-CE:8-CE:9 GB:9-MF:9-BE:9 CR:5-GB:7-CE:5 CE:5-MF:0-GB:9

SEEM [44] Focal-L [37] 64.48 64.61 64.17 61.45 68.60 26.15 29.58 25.54 11.58
SEEM-FT Focal-L [37] 65.14 64.72 65.46 61.48 68.72 26.54 34.93 28.27 34.63

SEEM-IP, ours Focal-L [37] 65.61 65.36 67.26 61.66 69.05 30.60 38.04 37.36 44.34
Learned Image Prompts, ours SR:8-LT:9-BR:2 CE:9-SR:9-BE:3 SR:7-SR:3-GC:0 SR:7-SE:2-SE:0 BE:7-SE:7-SR:9 SE:6-GS:9-LT:8 GS:7-BI:8-CR:1 GB:2-CE:9-BI:5 GS:6-MF:0-GB:8

Table 1: Main results of 5-shot learning. ‘FT’ denotes the employment of fine-tuning techniques with adapter modules, while
‘IP’ represents the process of evaluating model performance through the application of image prompts during testing.

Models Backbone
Common Scenes Camouflage Objects Medical Images Industrial Data

NJU2K VT1K CAMO COD10K NC4K Kavsir BUSI MTSD KoletorSDD2
SAM [16] ViT-B [6] 55.83 57.38 37.92 49.78 49.09 62.13 52.11 54.84 46.57
SAM-FT ViT-B [6] 60.24 58.46 38.71 49.89 49.81 64.44 57.68 55.04 53.72

SAM-IP, ours ViT-B [6] 61.45 59.81 39.12 50.3 50.41 66.52 59.02 55.30 56.55
Learned Image Prompts, ours BE:5-GC:4-GC:0 CE:5-GB:8-BR:8 BR:2-BE:1-CR:4 BE:0-CR:5-BR:2 SE:2-CR:0-BR:7 LT:5-BE:1-GB:6 GC:9-MF:4-SE:7 GC:0-BR:1-SR:6 CE:7-GS:1-GB:7

SAM [16] ViT-H [6] 61.37 56.58 49.00 58.39 57.23 63.29 54.54 59.24 48.04
SAM-FT ViT-H [6] 64.26 58.67 50.43 58.61 57.64 65.21 57.29 59.51 55.67

SAM-IP, ours ViT-H [6] 65.65 60.95 50.35 59.35 58.48 66.79 60.24 59.72 57.85
Learned Image Prompts, ours GB:4-CE:8-CR:6 SR:8-CR:8-GB:9 BE:0-CR:5-BR:2 SR:1-GC:1-BX:2 BE:0-CR:5-BR:2 CE:7-BX:4-BX:6 SR:3-GB:5-MF:8 SE:5-CR:1-GB:0 CE:7-GS:1-GB:7

SEEM [44] Focal-T [37] 57.52 65.31 55.37 54.49 60.96 38.07 43.31 38.99 33.28
SEEM-FT Focal-T [37] 60.16 65.82 55.49 54.62 61.14 45.62 49.89 41.64 47.19

SEEM-IP, ours Focal-T [37] 62.55 66.20 56.21 54.97 61.29 47.10 50.75 43.38 49.17
Learned Image Prompts, ours GB:7-CE:7-SE:4 GB:0-SR:8-GB:8 SE:3-SR:4-SE:1 SE:1-SR:0-GC:6 CR:2-SE:1-CE:4 GS:1-SR:9-GC:4 GC:4-GB:1-GB:1 SR:0-CE:9-GB:0 BX:9-CE:6-BX:8

SEEM [44] Focal-L [37] 64.48 64.61 64.17 61.45 68.60 26.15 29.58 25.54 11.58
SEEM-FT Focal-L [37] 65.87 64.94 66.18 61.50 68.81 26.98 35.75 29.16 37.41

SEEM-IP, ours Focal-L [37] 66.33 65.69 67.26 61.66 69.05 27.66 38.04 31.70 42.25
Learned Image Prompts, ours BI:2-GC:5-CE:3 BE:6-GB:9-SR:5 SR:7-SR:3-GC:0 SR:7-SE:2-SE:0 BE:0-SE:4-CE:3 GS:3-BX:6-MF:0 GS:7-BI:8-CR:1 SE:2-BE:9-BX:3 CE:8-GS:9-BX:8

Table 2: Main results of 10-shot learning. ‘FT’ denotes the employment of fine-tuning techniques with adapter modules, while
‘IP’ represents the process of evaluating model performance through the application of image prompts during testing.

assessment of segmentation outcomes. The mIoU for an individual
image is derived by computing the average Intersection over Union
(IoU) score, which is achieved by correlating each predicted mask
with its respective ground truth mask. This procedure entails the
calculation of the IoU for each predicted mask in relation to all the
ground truth masks associated with a given image, culminating in
the identification of the highest IoU value. Thereafter, the mIoU is
ascertained by averaging these peak IoU values across the entire
ensemble of predicted masks present within the image.

4.3 Main Results
Tab. 1, Tab. 2, Tab. 3 present the results for the 5-shot, 10-shot,
and 10%-shot experimental configurations. Overall, it is observed
that the accuracy of both fine-tuning (FT) and the proposed image-
prompts (IP) methodology improves with an increase in training
samples. Under conditions of limited samples, such as the 5-shot
and 10-shot scenarios, fine-tuning exhibits lower performance com-
pared to image-prompts, potentially due to an insufficient sample

2024-04-12 15:19. Page 6 of 1–9.
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Models Backbone
Common Scenes Camouflage Objects Medical Images Industrial Data

NJU2K VT1K CAMO COD10K NC4K Kavsir BUSI MTSD KoletorSDD2
SAM [16] ViT-B [6] 55.83 57.38 37.92 49.78 49.09 62.13 52.11 54.84 46.57
SAM-FT ViT-B [6] 64.55 59.54 40.05 50.63 50.24 65.47 59.47 56.72 54.32

SAM-IP, ours ViT-B [6] 65.38 59.96 39.85 51.29 50.74 66.52 61.55 55.79 56.55
Learned Image Prompts, ours CE:8-GB:6-LT:5 GB:4-GS:5-BR:9 CR:4-GC:0-BX:1 SR:1-GC1-BX:2 CR:4-GC:0-BX:1 GS:2-GC:8-GB:5 MF:7-GC:9-GC:7 SR:1-GC:1-BX:2 CE:7-GS:1-GB:7

SAM [16] ViT-H [6] 61.37 56.58 49.00 58.39 57.23 63.29 54.54 59.24 48.04
SAM-FT ViT-H [6] 65.11 60.91 51.23 59.89 58.52 66.91 59.99 60.01 56.22

SAM-IP, ours ViT-H [6] 66.18 61.78 50.99 59.35 58.98 68.11 61.83 59.51 57.85
Learned Image Prompts, ours GC:7-LT:7-GB:2 GB:7-BR:9-BI:6 CR:4-BX:1-BR:1 SR:1-GC:1-BX:2 CR:4-GC:0-BX:1 GS:7-SE:4-BX:3 MF:6-SR:2-BX:0 GC:3-GS:7-BR:2 CE:7-GS:1-GB:7

SEEM [44] Focal-T [37] 57.52 65.31 55.37 54.49 60.96 38.07 43.31 38.99 33.28
SEEM-FT Focal-T [37] 61.41 66.32 56.82 55.12 61.82 49.22 50.22 43.87 48.21

SEEM-IP, ours Focal-T [37] 62.74 66.71 56.21 54.84 61.29 51.68 52.81 45.11 49.61
Learned Image Prompts, ours GB:0-CE:3-CE:2 SR:2-GC:8-GS:2 SE:3-SR:4-SE:1 SE:7-BR:0-CE:0 CR:2-SE:1-CE:4 BX:7-CE:3-SE:9 GB:6-MF:8-BE:7 GS:1-CE:7-GB:4 BE:6-BX:9-BI:6

SEEM [44] Focal-L [37] 64.48 64.61 64.17 61.45 68.60 26.15 29.58 25.54 11.58
SEEM-FT Focal-L [37] 66.10 65.82 67.58 62.06 69.14 36.16 36.95 36.79 39.41

SEEM-IP, ours Focal-L [37] 67.03 66.37 67.26 61.66 69.05 37.68 38.77 37.83 40.09
Learned Image Prompts, ours GB:8-CE:6-GB:7 CE:3-SE:5-GB:0 SR:7-SR:3-GC:0 SR:7-SE:2-SE:0 BE:0-SE:4-CE:3 SR:7-GC:3-SE:4 BX:8-SR:3-BX:7 CE:9-BX:3-SE:6 CE:4-BX:7-GS:2

Table 3: Main results of 10%-shot learning. ‘FT’ denotes the employment of fine-tuning techniques with adapter modules, while
‘IP’ represents the process of evaluating model performance through the application of image prompts during testing.

Domain NJU2K VT1K COD10K Kavsir BUSI MTSD Kolektor
NJU2K +4.81 +0.21 -1.06 -4.52 -7.97 -1.51 +3.16
VT1K -6.76 +5.2 -15.93 -6.96 -4.97 -34.55 -27.95

COD10K +1.72 +0.40 +1.99 -1.67 -3.76 -3.43 -2.42
Kavsir -7.67 -1.63 -7.29 +4.82 -1.20 -8.39 +7.82
BUSI -1.98 -0.82 -15.58 -3.60 +4.93 -27.11 -10.41
MTSD -3.46 +0.25 -3.95 -2.93 -4.31 +0.27 -2.21
Kolektor -1.72 +0.65 -8.76 +3.61 +3.78 -11.59 +9.81

Table 4: Cross-domain transferability of the SAM-H model
across diverse datasets.

Framework NJU2K VT1K COD10K Kavsir BUSI MTSD Kolektor
H-L -9.11 -6.97 -0.61 +0.01 +2.05 -0.52 +31.50
L-H +3.91 -0.07 -0.76 -28.50 +4.40 -5.60 +5.68

Table 5: Cross-framework transferability in foundational
segmentation models. The terms H-L and L-H represent the
outcomes of transferring policies from the SAM-H model to
the SEEM-L framework and vice versa, respectively.

size to effectively train fine-tuning adapters. In contrast, image-
prompts can still achieve commendable image pre-processing re-
sults. Regarding depth images, the analysis indicates a propensity
for contrast enhancement operations to be prevalent in the seg-
mentation process of depth images. Visualizations presented in
Fig. 2(a) demonstrate significant enhancements in the delineation
of foreground and background elements within depth maps as a
result of contrast adjustments. In the context of thermal images,
the Gaussian blur operation is frequently applied, suggesting that
there is a discernible advantage to moderating edge intensity in
thermal imagery. Fig. 2(b) visually illustrates the reduction in seg-
mentation noise and the achievement of more refined segmentation

Model NJU2K VT1K COD10K Kavsir BUSI MTSD Kolektor
B-H +4.87 +4.25 +1.61 +3.18 +7.84 +0.04 +9.81
H-B +5.74 +2.00 +1.09 +3.63 +3.93 -2.56 +9.98
T-L +0.26 +0.12 +0.50 -0.12 +1.90 +6.54 +27.72
L-T -0.50 +0.40 -1.28 -11.70 -2.53 +1.30 +14.12

Table 6: Cross-model transferability in foundational segmen-
tation models. The acronyms B-H, H-B, T-L, and L-T corre-
spond to the transfer outcomes from the SAM-B to the SAM-
H model, from SAM-H to SAM-B, from SEEM-T to SEEM-L,
and from SEEM-L to SEEM-T, respectively.

through the employment of image prompts. For camouflage images,
although enhancements were observed across various datasets and
models as a result of image prompting, the extent of improvement
was somewhat limited. This constraint is attributed to the high
variability present within camouflage datasets, which presents chal-
lenges in identifying a uniform prompt applicable to all scenes.
As depicted in Fig. 2(c), the search methodology predominantly
concentrates on adjusting color saturation to counteract the effects
of color diversity, given the heterogeneous nature of the scenes
and the color-dependent distinction between foreground and back-
ground elements in camouflage images. In the case of endoscopic
images, the findings underscore the recognition and application of
processing techniques such as blurring operations (e.g., Gaussian
blur, box filter) and color adjustments (e.g., saturation, contrast) to
alleviate the impact of illumination-induced bright spots within
endoscopic imagery, as exemplified in Fig. 3(d). For ultrasound
images, the results indicate a widespread adoption of filtering tech-
niques, including median and box filters, across different models.
Moreover, Fig. 2(e) suggests that prompts effectively reduce edge
artifacts common in ultrasound imaging, along with the influence
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Data Ratio 1% 10% 20% 50% 100%
# of samples 8 88 176 440 880

mIoU 65.48 68.11 68.11 67.02 67.57
Improvement +2.19 +4.82 +4.82 + 3.73 +4.28

Table 7: Quantity of training samples. The reference model,
designated as SAM-H, achieves a mIoU score of 63.29.

of lesion area annotations, leading to enhanced segmentation re-
sults. For grayscale images, the results, in conjunction with Fig. 2(f),
demonstrate the application of gamma correction and Gaussian
sharpening techniques to bolster edge contrast, thereby augment-
ing the efficacy of segmentation processes. For natural images with
suboptimal imaging quality, the findings, as portrayed in Fig. 2(g),
emphasize prompt strategies that primarily concentrate on modu-
lating image contrast or brightness to augment the discernibility of
objects targeted for segmentation.

4.4 Transferability
This section examines the capacity for image prompts to be trans-
ferred across diverse domains, frameworks, and models. The cross-
domain experiments, as delineated in Tab. 4, revealed a significant
degree of transferability between the Kavsir and KolektorSDD2
datasets. This observation can be ascribed to the common impera-
tive of alleviating the impact of illumination variations present in
both datasets. Such a shared necessity highlights the critical role of
emphasizing salient objects to augment the precision of segmenta-
tion tasks. Moreover, the cross-framework experiments presented
in Tab. 5 indicated a constrained transferability of prompts identi-
fied by the SAM and SEEMmethodologies. This observed limitation
is attributed to the variances in the training datasets and the archi-
tectural design of the models employed in these two frameworks,
implying that these discrepancies present formidable barriers to
the transferability of prompts. Finally, the cross-model experiments
detailed in Tab. 6) showcased a reciprocal transferability among
models within the SAM framework, whereas such transferability
was not evident in the SEEM framework. We surmise that the diver-
gent training paradigms among SEEM models may be responsible
for this observed inconsistency.

4.5 Ablation Study
The ablation studies were meticulously conducted on the Kavsir
dataset to dissect and comprehend the various components and
their impact on the efficacy of our proposed approach.
Impact of Searching Sample Quantity. Tab. 7 elucidates the rela-
tionship between the size of the training dataset and the subsequent
performance of the image prompts. The study’s outcomes under-
score the robustness of our methodology, which yields commend-
able results even under the constraints of a limited training regime,
specifically in scenarios where as few as eight images are utilized.
This observation is particularly pertinent in scenarios where the
availability of annotated data is restricted, thereby underscoring
the method’s adaptability and resilience.
Effect of Point Prompt Sampler Diversity. The results presented
in Tab. 8, provide insights into the ramifications of utilizing a vari-
ety of point prompt sampling techniques. The empirical evidence

Sampler mIoU Improvement
Center Points 68.11 +4.82
Random Points 64.14 +2.33
Everything Mode 65.99 +2.70

Table 8: Point prompt sampler categories. The baselinemodel,
SAM-H, garners a mIoU of 63.29.

Number Policy mIoU Improvement

2 Contrast Enhance: 1.8
Gaussian Blur: 13 67.38 +4.09

3
Gaussian Sharpen: 1.2
Saturation Enhance: 1.4

Box Filter: 4
68.11 +4.82

4

Median Filter: 3
Brightness Enhance: 3

Box Filter: 6
Saturation Enhance: 1.3

67.85 +4.56

Table 9: Sampled image processing techniques. The baseline
model, designated as SAM-H, records a mIoU score of 63.29.

gathered indicates that the adoption of central point forms is asso-
ciated with the most advantageous outcomes. This finding suggests
that the strategic selection of point prompts, particularly those that
are centrally located, can significantly enhance the precision and
effectiveness of the image segmentation process.
Influence of Image Processing Method Diversity. Tab. 9 ar-
ticulates the benefits of exploring an array of image processing
methodologies. The empirical analysis conducted reveals that there
exists an optimal threshold in the number of image processing
methods that can be effectively integrated into the segmentation
algorithm. Specifically, the performance of the algorithm plateaus
once the number of explored methods reaches three. This saturation
point implies that beyond a certain limit, the incremental addition
of image processing techniques does not necessarily translate to
a proportional improvement in performance, thereby providing
valuable insights into the efficient allocation of computational re-
sources and the strategic selection of image processing methods
for optimization purposes.

5 CONCLUSION
This paper presents a significant advancement in the domain of
image segmentation by introducing the “prompting-to-adapt” para-
digm, which addresses the critical issue of limited generalization
in foundational segmentation models. Our approach eschews the
traditional “training-to-adapt” methods that demand extensive re-
training and architectural changes, instead opting for a more ef-
ficient and adaptable solution. By employing an image prompter
that leverages few-shot learning and diverse image processing tech-
niques, our method significantly improves adaptation capabilities
without extensive retraining. Our strategy also introduces an in-
novative gradient descent method to optimize prompts, ensuring
effective domain adaptation. Experiments on nine datasets validate
our approach’s effectiveness and the interpretability of prompts
provides insights into image processing mechanisms.
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