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ABSTRACT

A well-known line of work (Barron, 1993; Breiman, 1993; Klusowski & Barron,
2018) provides bounds on the width n of a ReLU two-layer neural network needed
to approximate a function f over the ball BR(Rd) up to error ε, when the Fourier
based quantityCf =

∫
Rd ‖ξ‖2|f̂(ξ)| dξ is finite. More recently Ongie et al. (2019)

used the Radon transform as a tool for analysis of infinite-width ReLU two-layer
networks. In particular, they introduce the concept of Radon-based R-norms and
show that a function defined on Rd can be represented as an infinite-width two-
layer neural network if and only if its R-norm is finite. In this work, we extend
the framework of (Ongie et al., 2019) and define similar Radon-based semi-norms
(R,U-norms) such that a function admits an infinite-width neural network repre-
sentation on a bounded open set U ⊆ Rd when itsR,U-norm is finite. Building on
this, we derive sparse (finite-width) neural network approximation bounds that re-
fine those of Breiman (1993); Klusowski & Barron (2018). Finally, we show that
infinite-width neural network representations on bounded open sets are not unique
and study their structure, providing a functional view of mode connectivity.

1 INTRODUCTION

Extensive work has shown that for a neural network to be able to generalize, the size or magnitude
of the parameters is more important than the size of the network, when the latter is large enough
(Bartlett, 1997; Neyshabur et al., 2015; Zhang et al., 2016). Under certain regimes, the size of the
neural networks used in practice is so large that the training data is fit perfectly and an infinite-width
approximation is appropriate. In this setting, what matters to obtain good generalization is to fit
the data using the right inductive bias, which is specified by how network parameters are controlled
(Wei et al., 2020) together with the training algorithm used (Lyu & Li, 2020).

The infinite-width two-layer neural network model has been studied from several perspectives due
to its simplicity. One can replace the finite-width ReLU network 1

n

∑n
i=1 ai(〈ωi, x〉 − bi)+ by an

integral over the parameter space with respect to a signed Radon measure:
∫

(〈ω, x〉− b)+ dα(ω, b).
Thus, controlling the magnitude of the neural network parameters is akin to controlling the mea-
sure α according to a certain norm. Bach (2017) introduced the F1-space, which is the infinite-
width neural network space with norm inf{

∫
|b| d|α|(ω, b)}, derived from the finite-width regular-

izer 1
n

∑n
i=1 |ai|‖(ωi, bi)‖2 (the infimum is over all the measures α which represent the function at

hand). A different line of work (Savarese et al., 2019; Ongie et al., 2019) consider the infinite-width
spaces with norm inf{‖α‖TV =

∫
d|α|(ω, b)}, which is derived from the finite-width regularizer

1
n

∑n
i=1 |ai|‖ωi‖2 (i.e. omitting the bias term). Both of these works seek to find expressions for this

norm, leading to characterizations of the functions that are representable by infinite-width networks.
Savarese et al. (2019) solves the problem in the one-dimensional case: they show that for a function
f on R, this norm takes value max{

∫
R |f

′′(x)| dx, |f ′(−∞) + f ′(∞)|}. Ongie et al. (2019) give an
expression for this norm (the R-norm) for functions on Rd, making use of Radon transforms (see
Subsec. 2.3).

Although we mentioned in the first paragraph that in many occasions the network size is large
enough that the specific number of neurons is irrelevant, when the target function is hard to approx-
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imate it is interesting to have an idea of how many neurons one needs to approximate it. The first
contribution in this direction was by Cybenko (1989); Hornik et al. (1989), which show that two-
layer neural networks with enough neurons can approximate any reasonable function on bounded
sets in the uniform convergence topology. Later on, Barron (1993); Breiman (1993) provided sparse
approximation bounds stating that if a function f is such that a certain quantity Cf constructed from
the Fourier transform f̂ is finite, then there exists a neural network of width n such that the L2 ap-
proximation error with respect to a distribution of bounded support is lower than O(Cf/n). More
recently, Klusowski & Barron (2018) provided alternative sparse approximation bounds of Breiman
(1993) by restricting to networks with bounded weights and a slightly better dependency on n at the
expense of a constant factor increasing with d (see Subsec. 2.2).

Contributions. In our work, we seek to characterize the functions that coincide with an infinite-
width two-layer neural network on a fixed bounded open set. This endeavor is interesting in itself
because in practice, we want to learn target functions for which we know samples on a bounded
set, and we are typically unconcerned with the values that the learned functions take at infinity.
Moreover, the tools that we develop allow us to derive state-of-the-art sparse approximation bounds.
Our main contributions are the following:

• In the spirit of theR-norm introduced by Ongie et al. (2019), for any bounded open set U ⊆ Rd
we define theR,U-norm of a function on Rd, and show that when theR,U-norm of f is finite,
f(x) can admits a representation of the form

∫
Sd−1×R(〈ω, x〉 − b)+ dα(ω, b) + 〈v, x〉 + c for

x ∈ U , where v ∈ Rd, c ∈ R and α is an even signed Radon measure.
• Using theR,U-norm, we derive function approximation bounds for neural networks with a fixed

finite width. We compute theR,U-norm of a function in terms of its Fourier representation, and
show that it admits an upper bound by the quantity Cf . This shows that our approximation
bound is tighter than the previous bound by Breiman (1993), and meaningful in more instances
(e.g. for finite-width neural networks). We also showR,U-norm-based bounds analogous to the
ones of Klusowski & Barron (2018).

• Setting U as the open unit ball of radius R, we show that neural network representations of f on
U hold for multiple even Radon measures, which contrasts with the uniqueness result provided
by Ongie et al. (2019) for the case of Rd. We study the structure of the sets of Radon measures
which give rise to the same function on U . The non-uniqueness of the measure representing a
measure could be linked to the phenomenon of mode connectivity.

Additional related work. There have been other recent works which have used the Radon transform
to study neural networks in settings different from ours (Parhi & Nowak, 2021a; Bartolucci et al.,
2021). These two works consider the R-norm as a regularizer for an inverse problem, and proceed
to prove representer theorems: there exists a solution of the regularized problem which is a two-
layer neural network equal to the number of datapoints. Regarding infinite-width network spaces, E
& Wojtowytsch (2020) present several equivalent definitions and provides a review. A well-known
line of work (Mei et al., 2018; Chizat & Bach, 2018; Rotskoff & Vanden-Eijnden, 2018) studies the
convergence of gradient descent for infinite-width two-layer neural networks.

2 FRAMEWORK

2.1 NOTATION

Sd−1 denotes the (d − 1)-dimensional hypersphere (as a submanifold of Rd) and BR(Rd) is the
Euclidean open ball of radius R. For U ⊆ Rd measurable, the space C0(U) of functions vanishing
at infinity contains the continuous functions f such that for any ε > 0, there exists compact K ⊆
U depending on f such that |f(x)| < ε for x ∈ U \ K. P(U) is the set of Borel probability
measures, M(U) is the space of finite signed Radon measures (which may be seen as the dual of
C0(U)). Throughout the paper, the term Radon measure refers to a finite signed Radon measure
for shortness. If γ ∈ M(U), then ‖γ‖TV is the total variation (TV) norm of γ. MC(U) denotes
the space of complex-valued finite signed Radon measures, defined as the dual space of C0(U,C)
(the space of complex-valued functions vanishing at infinity). We denote by S(Rd) the space of
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Schwartz functions, which contains the functions in C∞(Rd) whose derivatives of any order decay
faster than polynomials of all orders, i.e. for all k, p ∈ (N0)d, supx∈Rd |xk∂(p)ϕ(x)| < +∞. For
f ∈ L1(Rd), we use f̂ to denote the unitary Fourier transforms with angular frequency, defined
as f̂(ξ) = 1

(2π)d/2

∫
Rd f(x)e−i〈ξ,x〉dx. If f̂ ∈ L1(Rd) as well, we have the inversion formula

f(x) = 1
(2π)d/2

∫
Rd f̂(ξ)ei〈ξ,x〉dx. The Fourier transform is a continuous automorphism on S(Rd).

2.2 EXISTING SPARSE APPROXIMATION BOUNDS

One of the classical results of the theory of two-layer neural networks (Breiman (1993), building
on (Barron, 1993)) states that given a probability measure p ∈ P(BR(Rd)) and a function f :

BR(Rd)→ R admitting a Fourier representation of the form f(x) = 1
(2π)d/2

∫
Rd e

i〈ξ,x〉df̂(ξ), where

f̂ ∈MC(Rd) is a complex-valued Radon measure such that Cf = 1
(2π)d/2

∫
Rd ‖ξ‖22 d|f̂ |(ξ) < +∞,

there exists a two-layer neural network f̃(x) = 1
n

∑n
i=1 ai(〈x, ωi〉 − bi)+ such that∫

BR(Rd)

(f(x)− f̃(x))2 dx ≤
(2R)4C2

f

n
. (1)

These classical results do not provide bounds on the magnitude of the neural network weights.
More recently, Klusowski & Barron (2018) showed similar approximation bounds for two-layer
ReLU networks under additional l1 and l0 bounds on the weights ai, ωi. Namely, if C̃f =

1
(2π)d/2

∫
Rd ‖ξ‖21 d|f̂ |(ξ) < +∞ there exists a two-layer neural network f̃(x) = a0 + 〈ω0, x〉 +

κ
n

∑n
i=1 ai(〈wi, x〉 − bi)+ with |ai| ≤ 1, ‖ωi‖ ≤ 1, bi ∈ [0, 1], and κ ≤ 2C̃f , and

sup
x∈[−1,1]d

|f(x)− f̃(x)| ≤ c C̃f
√
d+ log n n−1/2−1/d, (2)

where c is a universal constant.

2.3 REPRESENTATION RESULTS ON Rd BASED ON THE RADON TRANSFORM

One defines Pd denotes the space of hyperplanes on Rd, whose elements may be represented by
points in Sd−1 × R by identifying {x|〈ω, x〉 = b} with both (ω, b) and (−ω,−b). Thus, functions
on Pd are even functions on Sd−1 × R and we will use both notions interchangeably1.

The Radon transform and the dual Radon transform. If f : Rd → R is a function which is
integrable over all the hyperplanes of Rd, we may define the Radon transformRf : Pd → R as

Rf(ω, b) =

∫
{x|〈ω,x〉=b}

f(x) dx, ∀(ω, b) ∈ Sd−1 × R.

That is, one integrates the function f over the hyperplane (ω, b). If Φ : Pd → R is a continuous
function, the dual Radon transformR∗Φ : Rd → R is defined as

R∗Φ(x) =

∫
Sd−1

Φ(ω, 〈ω, x〉) dω, ∀x ∈ Rd,

where the integral is with respect to the Hausdorff measure over Sd−1. R and R∗ are adjoint
operators in the appropriate domains (see Lemma 13).

The Radon inversion formula. When f ∈ C∞(Rd), one has that (Theorem 3.1, Helgason (2011))

f = cd(−∆)(d−1)/2R∗Rf (3)

where cd = 1
2(2π)d−1 and (−∆)s/2 denotes the (negative) fractional Laplacian, defined via its

Fourier transform as ̂(−∆)s/2f(ξ) = ‖ξ‖sf̂(ξ).
1Similarly, the space M(Pd) of Radon measures over Pd contains the even measures in M(Sd−1 × R).

If α ∈ M(Pd),
∫
Sd−1×R ϕ(ω, b) dα(ω, b) is well defined for any measurable function ϕ on Sd−1 × R, but∫

Pd ϕ(ω, b) dα(ω, b) is only defined for even ϕ.
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TheR-norm. Given a function f : Rd → R, Ongie et al. (2019) introduce the quantity

‖f‖R =

{
sup{−cd〈f, (−∆)(d+1)/2R∗ψ〉 | ψ ∈ S(Sd−1 × R), ψ even, ‖ψ‖∞ ≤ 1} if f Lipschitz
+∞ otherwise.

(4)

They call it the R-norm of f , although it is formally a semi-norm. Here, the space S(Sd−1 × R) of
Schwartz functions on Sd−1 × R is defined, in analogy with S(Rd), as the space of C∞ functions
ψ on Sd−1 × R which for any integers k, l ≥ 0 and any differential operator D on Sd−1 satisfy
sup(ω,b)∈Sd−1×R |(1 + |b|k)∂kb (Dψ)(ω, b)| < +∞ (Helgason (2011), p. 5). Moreover, S(Pd) =

{ψ ∈ S(Sd−1 × R) | ψ even}, which means the conditions on ψ in (4) can be written as ψ ∈
S(Pd), ‖ψ‖∞ ≤ 1.

The finiteness of the R-norm indicates whether a function on Rd admits an exact representation as
an infinitely wide neural network. Namely, Ongie et al. (2019) in their Lemma 10 show that ‖f‖R
is finite if and only if there exists a (unique) even measure α ∈M(Sd−1×R) and (unique) v ∈ Rd,
c ∈ R such that for any x ∈ Rd,

f(x) =

∫
Sd−1×R

(
〈ω, x〉 − b

)
+
dα(ω, b) + 〈v, x〉+ c, (5)

in which case, ‖f‖R = ‖α‖TV.

Remark the following differences between this result and the bounds by (Breiman, 1993; Klusowski
& Barron, 2018) shown in equations (1) and (2):

(i) in (5) we have an exact representation with infinite-width neural networks instead of an
approximation result with finite-width,

(ii) in (5) the representation holds on Rd instead of a bounded domain.

In our work, we derive representation results similar to the ones of Ongie et al. (2019) for functions
defined on bounded open sets, which naturally give rise to sparse approximation results that refine
those of (Breiman, 1993; Klusowski & Barron, 2018).

One property that makes the Radon transform and its dual useful to analyze neural networks can
be understood at a very high level via the following argument: if f(x) =

∫
Sd−1×R(〈ω, x〉 −

b)+ρ(ω, b) d(ω, b) + 〈v, x〉 + c for some smooth rapidly decreasing function ρ, then ∆f(x) =∫
Sd−1×R δ〈ω,x〉=bρ(ω, b) d(ω, b) =

∫
Sd−1 ρ(ω, 〈ω, x〉) dω = (R∗ρ)(x). For a general function f of

the form (5), one has similarly that 〈∆f, ϕ〉 = 〈α,Rϕ〉 for any ϕ ∈ S(Rd). This property relates the
evaluations of the measure α to the function ∆f via the Radon transform, and is the main ingredient
in the proof of Lemma 10 of Ongie et al. (2019). While we also rely on it, we need many additional
tools to deal with the case of bounded open sets.

3 REPRESENTATION RESULTS ON BOUNDED OPEN SETS

Schwartz functions on open sets. Let U ⊆ Rd be an open subset. The space of Schwartz func-
tions on U may be defined as S(U) =

⋂
z∈Rd\U

⋂
k∈(N0)d

{f ∈ S(Rd) | ∂(k)f(z) = 0}, i.e. they
are those Schwartz functions on Rd such that the derivatives of all orders vanish outside of U (c.f.
Def. 3.2, Shaviv (2020)). The structure of S(U) is similar to S(Rd) in that its topology is given by a
family of semi-norms indexed by ((N0)d)2: ‖f‖k,k′ = supx∈U |xk · f (k

′)(x)|. Similarly, if V ⊆ Pd

is open, we define S(V) =
⋂

(ω,b)∈(Sd−1×R)\V
⋂
k∈(N0)2

{f ∈ S(Pd) | ∂k1b ∆̂k2f(ω, b) = 0}, where

∆̂ is the spherical Laplacian.

TheR,U-norm. Let U ⊆ Rd be a bounded open set, and let Ũ := {(ω, 〈ω, x〉) ∈ Sd−1 × R |x ∈
U}. For any function f : Rd → R, we define theR,U-norm of f as

‖f‖R,U = sup{−cd〈f, (−∆)(d+1)/2R∗ψ〉 | ψ ∈ S(Ũ), ψ even, ‖ψ‖∞ ≤ 1}. (6)
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Note the similarity between this quantity and the R-norm defined in (4); the main differences are
that the supremum here is taken over the even Schwartz functions on Ũ instead of Sd−1 × R, and
that the non-Lipschitz case does not need a separate treatment. Remark that ‖f‖R,U ≤ ‖f‖R. If f
has enough regularity, we may write ‖f‖R,U =

∫
Ũ |R(−∆)(d+1)/2f |(ω, b) d(ω, b), using that the

fractional Laplacian is self-adjoint andR∗ is the adjoint ofR.

Define PdU to be the bounded open set of hyperplanes of Rd that intersect U , which in anal-
ogy with Subsec. 2.3, is equal to Ũ up to the identification of (ω, b) with (−ω,−b). Similarly,
note that S(PdU ) = {ψ ∈ S(Ũ), ψ even}, which allows to rewrite the conditions in (6) as
ψ ∈ S(PdU ), ‖ψ‖∞ ≤ 1.

The following proposition, which is based on the Riesz-Markov-Kakutani representation theorem,
shows that when theR,U-norm is finite, it can be associated to a unique Radon measure over PdU .

Proposition 1. If ‖f‖R,U < +∞, there exists a unique Radon measure α ∈ M(PdU ) such that
−cd〈f, (−∆)(d+1)/2R∗ψ〉 =

∫
Pd
U
ψ(ω, b) dα(ω, b) for any ψ ∈ S(PdU ). Moreover, ‖f‖R,U =

‖α‖TV.

Building on this, we see that a neural network representation for bounded U holds when the R,U-
norm is finite:
Theorem 1. Let U be a open, bounded subset of Rd. Let f : Rd → R such that ‖f‖R,U < +∞. Let
α ∈ M(PdU ) be given by Proposition 1. For any ϕ ∈ S(U), there exist unique v ∈ Rd and c ∈ R
such that ∫

U
f(x)ϕ(x) dx =

∫
U

(∫
Ũ

(〈ω, x〉 − t)+ dα(ω, t) + 〈v, x〉+ c

)
ϕ(x) dx, (7)

That is, f(x) =
∫
Ũ (〈ω, x〉 − t)+ dα(ω, t) + 〈v, x〉 + c for x a.e. (almost everywhere) in U . If f is

continuous, then the equality holds for all x ∈ U .

Remark that this theorem does not claim that the representation given by α, v, c is unique, unlike
Lemma 10 by Ongie et al. (2019) concerning analogous representations on Rd. In Sec. 5 we see that
such representations are in fact not unique, for particular choices of the set U . We want to underline
that the proof of Theorem 1 uses completely different tools from the ones of Lemma 10 by Ongie
et al. (2019): their result relies critically on the fact that the only harmonic Lipschitz functions on
Rd are affine functions, which is not true for functions on bounded subsets in our setting.

4 SPARSE APPROXIMATION FOR FUNCTIONS WITH BOUNDED R,U -NORM

In this section, we show how to obtain approximation bounds of a function f on a bounded open
set U using a fixed-width neural network with bounded coefficients, in terms of the R,U-norm
introduced in the previous section.
Theorem 2. Let U ⊆ BR(Rd) be a bounded open set. Suppose that f : Rd → R is such that
‖f‖R,U is finite, where ‖ · ‖R,U is defined in (6). Let v ∈ Rd, c ∈ R as in Theorem 1. Then, there
exists {(ωi, bi)}ni=1 ⊆ Ũ and {ai}ni=1 ⊆ {±1} such that the function f̃ : Rd → R defined as

f̃(x) =
‖f‖R,U
n

n∑
i=1

ai(〈ωi, x〉 − bi)+ + 〈v, x〉+ c

fulfills, for x a.e. in U , ∣∣∣f̃(x)− f(x)
∣∣∣ ≤ R‖f‖R,U√

n
. (8)

The equality holds for all x ∈ U if f is continuous.

The proof of Theorem 2 (in App. B) uses the neural network representation (7) and a probabilis-
tic argument. If one samples {(ωi, bi)}ni=1 from a probability distribution proportional to |α|, a
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Rademacher complexity bound upper-bounds the expectation of the supremum norm between f̃ and
f , which yields the result.

Note the resemblance of (8) with the bound (1); theR,U norm of f replaces the quantityCf . We can
also use theR,U-norm to obtain a bound analogous to (2), that is, with a slightly better dependency
in the exponent of n at the expense of a constant factor growing with the dimension.
Proposition 2. Let f : Rd → R and U ⊆ B1(Rd) open such that ‖f‖R,U < +∞. Then, then there
exist {ai}ni=1 ⊆ [−1, 1], {ωi}ni=1 ⊆ {ω ∈ Rd|‖ω‖1 = 1} and {bi}ni=1 ⊆ [0, 1] and κ <

√
d‖f‖R,U

such that the function

f̃(x) =
κ

n

n∑
i=1

ai(〈ωi, x〉 − bi)+

fulfills, for x a.e. in U and some universal constant c > 0,

|f(x)− f̃(x)| ≤ cκ
√
d+ log nn−1/2−1/d.

The proof of this result (in App. B) follows readily from the representation (7) and Theorem 1 of
Klusowski & Barron (2018).

4.1 LINKS WITH THE FOURIER SPARSE APPROXIMATION BOUNDS

The following result shows that setting U = BR(Rd), theR,U-norm can be bounded by the Fourier-
based quantities Cf , C̃f introduced in Subsec. 2.2.

Theorem 3. Assume that the function f : Rd → R admits a Fourier representation of the form
f(x) = 1

(2π)d/2

∫
Rd e

i〈ξ,x〉df̂(ξ) with f̂ ∈ MC(Rd) a complex-valued Radon measure. Let Cf be
the quantity used in the sparse approximation bound by Breiman (1993) (see Subsec. 2.2). Then,
one has that

‖f‖R,BR(Rd) ≤ 2RCf (9)

As a direct consequence of Theorem 3, when U = BR(Rd) the right-hand side of (8) can be
upper-bounded by R2Cf/

√
n. This allows to refine the bound (1) from Breiman (1993) to a

bound in the supremum norm over BR(Rd), and where the approximating neural network f̃(x) =
1
n

∑n
i=1 ai(〈x, ωi〉 − bi)+ + 〈v, x〉+ c fulfills |ai| ≤ ‖f‖R,BR(Rd), ‖ωi‖2 ≤ 1 and bi ∈ (−R,R).

While we are able to prove the bound (9), the Fourier representation of f does not allow for a
manageable expression for the measure α described in Proposition 1. For that, the following theorem
starts from a slightly modified Fourier representation of f , under which one can describe the measure
α and provide a formula for theR,U-norm.
Theorem 4. Let f : Rd → R admitting the representation

f(x) =

∫
Sd−1×R

eib〈ω,x〉 dµ(ω, b), (10)

for some complex-valued Radon measures µ ∈MC(Sd−1×R) such that dµ(ω, b) = dµ(−ω,−b) =
dµ̄(−ω, b) = dµ̄(ω,−b), and

∫
Sd−1×R b

2d|µ|(ω, b) < +∞. Choosing U = BR(Rd), the unique
measure α ∈M(PdR) specified by Proposition 1 takes the following form:

dα(ω, b) = −
∫
R
t2e−itb dµ(ω, t) db,

where K = 2πd/2/Γ(d2 ). Note that α is real-valued because
∫
R t

2e−itb dµ(ω, t) ∈ R as
t2 dµ(ω, t) = (−t)2 dµ(ω,−t). Consequently, theR,BR(Rd)-norm of f is

‖f‖R,BR(Rd) = ‖α‖TV =

∫ R

−R

∫
Sd−1

∣∣∣∣∫
R
t2e−itb dµ(ω, t)

∣∣∣∣ db. (11)
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Remark that µ is the pushforward of the measure f̂ by the mappings ξ 7→ (±ξ/‖ξ‖,±ξ). When the
Fourier transform f̂ admits a density, one may obtain the density of µ via a change from Euclidean
to spherical coordinates: dµ(ω, b) = 1

2vol(Sd−1)f̂(bω)|b|d−1 d(ω, b). Hence, Theorem 4 provides
an operative way to compute the R,U-norm of f if one has access to the Fourier transform of f̂ .
Note that equation (11) implies that theR,BR(Rd)-norm of f increases with R, and in particular is
smaller than theR-norm of f , which corresponds to setting R =∞.

Theorems 3 and 4 are proven jointly in App. B. Note that from the expression (11) one can easily
see that ‖f‖R,BR(Rd) is upper-bounded by RCf :∫ R

−R

∫
Sd−1

∣∣∣∣∫
R
t2e−itb dµ(ω, t)

∣∣∣∣ db ≤ ∫ R

−R

∫
Sd−1

∫
R
t2 d|µ|(ω, t) db = 2R

∫
Rd

‖ξ‖2d|f̂ |(ξ),(12)

where the equality holds since µ is the pushforward of f̂ . Equation (12) makes apparent the norm
‖f‖R,BR(Rd) is sometimes much smaller than the quantities Cf , C̃f , as is showcased by the follow-
ing one-dimensional example (see the proof in App. B). In these situations, the sparse approximation
bounds that we provide in Theorem 2 and Proposition 2 are much better than the ones in (1)-(2).

Example 1. Take the function f : R → R defined as f(x) = cos(x) − cos((1 + ε)x), with
ε > 0. f admits the Fourier representation f(x) = 1

(2π)1/2

∫
R
√

π
2 (δ1(ξ) + δ−1(ξ) − δ1+ε(ξ) −

δ−1−ε(ξ))e
iξx dξ. We have that Cf = 2 + 2ε + ε2, and ‖f‖R,BR(Rd) ≤ R

(
Rε+ 2ε+ ε2

)
.

‖f‖R,BR(Rd) goes to zero as ε→ 0, while Cf converges to 2.

An interesting class of functions for which ‖f‖R,BR(Rd) is finite but Cf , C̃f are infinite are func-
tions that can be written as a finite-width neural network on BR(Rd), as shown in the following
proposition.

Proposition 3. Let f : Rd → R defined as f(x) = 1
n

∑n
i=1 ai(〈ωi, x〉 − bi)+ for all x ∈ Rd, with

{ωi}ni=1 ⊆ Sd−1, {ai}ni=1, {bi}ni=1 ⊆ R. Then, for any bounded open set U , we have ‖f‖R,U ≤
1
n

∑n
i=1 |ai|, while Cf , C̃f = +∞ if f is not an affine function.

Proposition 3 makes use of the fact that the R,U-norm is always upper-bounded by the R-norm,
which also means that all the bounds developed in Ongie et al. (2019) apply for the R,U-norm.
The fact that finite-width neural networks have infinite Cf was stated by E & Wojtowytsch (2020),
that used them to show the gap between the functions with finite Cf and functions representable by
infinite-width neural networks (belonging to the Barron space, in their terminology). It remains to
be seen whether the gap is closed when considering functions with finite R,U-norm, i.e., whether
any function admitting an infinite-width representation (7) on U has a finiteR,U-norm.

Moving to the non-linear Radon transform. In many applications the function of interest f may
be better represented as

∫
(〈ω, ϕ(x)〉 − t)+ dα(ω, t) + 〈v, x〉 + c, where ϕ is a fixed finite dimen-

sional, non-linear and bounded feature map. Our results trivially extend to this case where in the
Radon transform hyperplanes are replaced by hyperplanes in the feature space. This can be seen
as the “kernel trick” applied to the Radon transform. The corresponding ‖f‖R,ϕ(U) corresponds
to the sparsity of the decomposition in the feature space, and we have better approximation when
‖f‖R,ϕ(U) < ‖f‖R,U . This gives a simple condition for when transfer learning is successful, and
explains the success of using random fourier features as a preprocessing in implicit neural represen-
tations of images and surfaces (Tancik et al., 2020). In order to go beyond the fixed feature maps and
tackle deeper ReLU networks, we think that the non-linear Radon transform (Ehrenpreis, 2003) is an
interesting tool to explore. We note that Parhi & Nowak (2021b) introduced recently a representer
theorem for deep ReLU networks using Radon transforms as a regularizer.

5 INFINITE-WIDTH REPRESENTATIONS ARE NOT UNIQUE ON BOUNDED SETS

Ongie et al. (2019) show that when theR-norm of f is finite, there is a unique measure α ∈M(Rd)
such that the representation (5) holds for x ∈ Rd. In this section we show that when we only ask

7
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the representation to hold for x in a bounded open set, there exist several measures that do the job;
in fact, they span an infinite-dimensional space.

Let U = BR(Rd) be the open ball of radius R > 0 in Rd, which means that Ũ = Sd−1 × (−R,R)
and PdU is the set of hyperplanes {x|〈ω, x〉 = b} such that ‖ω‖ = 1 and b ∈ (−R,R), which
we denote by PdR for simplicity. In the following we will construct a space of Radon measures
α ∈ M(PdR) whose neural network representation (5) coincide for all x ∈ BR(Rd). Note that since
any bounded subset of Rd is included in some open ball, our results imply that such representations
are non-unique on any bounded set.
Remark 1. When one considers representations on BR(Rd) of the sort (5) with the measure α lying
in the larger spaceM(Sd−1 × R), the non-uniqueness is apparent because there are two ‘trivial’
kinds of symmetry at play:

(i) Related to parity: when the measure α is odd, we have
∫
Sd−1×R(〈ω, x〉 − b)+ dα(ω, b) =

1
2

∫
Sd−1×R(〈ω, x〉 − b)+ − (−〈ω, x〉 + b)+ dα(ω, b) = 〈 12

∫
Sd−1×R ω dα(ω, b), x〉 −

1
2

∫
Sd−1×R b dα(ω, b), which is an affine function of x.

(ii) Related to boundedness: if (ω, b) ∈ Sd−1×(R\(−R,R)), x 7→ (〈ω, x〉−b)+ restricted to
BR(Rd) is an affine function of x. Hence, if α is supported on Sd−1×Sd−1×(R\(−R,R)),
x 7→

∫
Sd−1×R(〈ω, x〉 − b)+ dα(ω, b) is an affine function when restricted to BR(Rd).

Since in Sec. 3 we restrict our scope to measures α lying inM(PdU ), these two kinds of symmetries
are already quotiented out in our analysis. The third kind of non-uniqueness that we discuss in this
section is conceptually deeper, taking place withinM(PdU ).

Let {Yk,j | k ∈ Z+, 1 ≤ j ≤ Nk,d} be the orthonormal basis of spherical harmonics of the space
L2(Sd−1) (Atkinson & Han, 2012). It is well known that for any k, the functions {Yk,j | 1 ≤ j ≤
Nk,d} are the restrictions to Sd−1 of homogeneous polynomials of degree k, and in fact Nk,d is the
dimension of the space of homogeneous harmonic polynomials of degree k. Consider the following
subset of even functions in C∞(Sd−1 × (−R,R)):

A = {Yk,j ⊗Xk′ | k, j, k′ ∈ Z+, k ≡ k′ (mod 2), k′ < k − 2, 1 ≤ j ≤ Nd,k},

where Xk′ denotes the monomial of degree k′ on (−R,R). We have the following result regarding
the non-uniqueness of neural network representations:
Theorem 5. If α ∈ M(PdR) is such that α ∈ clw(span(A)), then we have that 0 =∫
Sd−1×(−R,R)

(〈ω, x〉 − b)+ dα(ω, b) for any x ∈ BR(Rd). That is, α yields a neural network repre-
sentation of the zero-function on BR(Rd). Here, we consider span(A) as a subset ofM(PdR) by the
Riesz-Markov-Kakutani representation theorem via the action 〈g, ϕ〉 =

∫
Pd
R
ϕ(ω, b)g(ω, b) d(ω, b)

for any g ∈ span(A), ϕ ∈ C0(PdR), and clw denotes the closure in the topology of weak convergence
ofM(Sd−1 × R).

In particular, any measure whose density is in the span of A will yield a function which is equal to
zero when restricted to BR(Rd). As an example of this result, we show a simple measure inM(Pd1)
which represents the zero function on B1(R2).
Example 2 (Non-zero measure representing the zero function onB1(R2)). We define the even Radon
measure α ∈M(S1×(−1, 1)) with density dα(ω, b) = (8ω4

0−8ω2
0+1) d(ω, b) where ω = (ω0, ω1).

Then, for any x ∈ B1(R2), 0 =
∫
S1×(−1,1)(〈ω, x〉 − b)+ dα(ω, x).

On the one hand, Proposition 1 states that there exists a unique measure α ∈ M(PdU ) such that
−cd〈f, (−∆)(d+1)/2R∗ψ〉 =

∫
Pd
U
ψ(ω, b) dα(ω, b) for any ψ ∈ S(PdU ) if ‖f‖R,U is finite. On the

other hand, Theorem 5 claims that functions admit distinct representations by measures inM(PdU ).
The following theorem clarifies these two seemingly contradictory statements. Consider the follow-
ing subset of even functions in C∞(Sd−1 × (−R,R)), which contains A:

B = {Yk,j ⊗Xk′ | k, j, k′ ∈ Z+, k ≡ k′ (mod 2), k′ < k, 1 ≤ j ≤ Nd,k}.

8
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Proposition 4. Let 0 < R < R′. Let f : Rd → R such that ‖f‖R,BR′ (Rd) < +∞ and let
α ∈ M(PdR) be the unique measure specified by Proposition 1. Then, α is the unique measure in
M(PdR) such that

∀ϕ ∈ S(BR(Rd)), 〈α,Rϕ〉 =

∫
BR(Rd))

f(x)∆ϕ(x) dx, (13)

∀k, j, k′ ∈ Z+ s.t. k′ ≡ k (mod 2), k′ < k, 1 ≤ j ≤ Nk,d,

〈α, Yk,j ⊗Xk′〉 = −cd〈f, (−∆)(d+1)/2R∗(Yk,j ⊗ 1|X|<RXk′)〉.
(14)

The condition (13) holds for any measure α′ ∈ M(PdR) for which f admits a representation of the
form (7) on BR(Rd). Thus, α can be characterized as the unique measure inM(PdR) such that f
admits a representation of the form (7) on BR(Rd) and the condition (14) holds.

In (14), the quantity 〈f, (−∆)(d+1)/2R∗(Yk,j ⊗ 1|X|<RX
k′)〉 is well defined despite 1|X|<RXk′

not being continuous on R; we define it as 〈f, (−∆)(d+1)/2R∗((Yk,j ⊗1|X|<RXk′) + g̃)〉, where g̃
is any function in S(PdR′) such that (Yk,j⊗1|X|<RXk′)+ g̃ ∈ S(PdR′) (which do exist, see App. C).

In short, Proposition 4 characterizes the measure α from Proposition 1 in terms of its evaluations
on the spaces R(S(BR(Rd))) and span(B), and by Corollary 1 the direct sum of these two spaces
dense in C0(PdR), which by the Riesz-Markov-Kakutani representation theorem is the predual of
M(PdR). Interestingly, the condition (13) holds for any measure α ∈ M(PdR) which represents the
function f on BR(Rd), but it is easy to see that the condition (14) does not: by Theorem 5 we have
that if ψ ∈ span(A) ⊆ span(B), the measure α′ defined as dα′(ω, b) = dα(ω, b) + ψ(ω, b) db
represents the function f on BR(Rd), and 〈α′, ψ〉 = 〈α,ψ〉+ ‖ψ‖22.

It remains an open question to see whether Theorem 5 captures all the measures which represent the
zero function on BR(Rd), which we hypothesize. If that was the case, we would obtain a complete
characterization of the Radon measures which represent a given function on BR(Rd).

Mode connectivity. Mode connectivity is the phenomenon that optima of neural network losses
(at least the ones found by gradient descent) turn out to be connected by paths where the loss value
is almost constant, and was observed empirically by Garipov et al. (2018); Draxler et al. (2018).
Kuditipudi et al. (2019) provided an algorithmic explanation based on dropout, and an explanation
based on the noise stability property. Theorem 5 suggests an explanation for mode connectivity
from a functional perspective: one can construct finitely-supported measures which approximate
a measure α ∈ clw(span(A)), yielding finite-width neural networks with non-zero weights which
approximate the zero function on BR(Rd). Assuming that the data distribution is supported in
BR(Rd), adding a multiple of one such network to an optimal network will produce little change
in the loss value because the function being represented is essentially unchanged. More work is
required to confirm or discard this intuition.

6 CONCLUSION

We provided in this paper tighter sparse approximation bounds for two-layer ReLU neural networks.
Our results build on the introduction of Radon-basedR,U-norms for functions defined on a bounded
open set U . Our bounds refine Fourier-based approximation bounds of Breiman (1993); Klusowski
& Barron (2018). We also showed that the representation of infinite width neural networks on
bounded open sets are not unique, which can be seen as a functional view of mode connectivity
observed in training deep neural networks. We leave two open questions: whether any function
admitting an infinite-width representation on U has a finite R,U-norm, and whether Theorem 5
captures all the measures which represent the zero function on BR(Rd). Finally, in order to extend
our theory to deeper ReLU networks we believe that non-linear Radon transforms (Ehrenpreis, 2003)
are interesting tools to explore.
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A PROOFS OF SEC. 3

Proof of Proposition 1. We make an argument analogous to Lemma 10 of Ongie et al. (2019). For
ψ ∈ S(PdU ), let Lf (ψ) = −cd〈f, (−∆)(d+1)/2R∗ψ〉. If sup{Lf (ψ) | ψ ∈ S(PdU ), ‖ψ‖∞ ≤ 1} <
+∞, since S(PdU ) is dense in C0(PdU ), by the bounded linear transformation theorem (Lemma 1)
and the Riesz-Markov-Kakutani theorem, there exists a unique α ∈ C ′0(PdU ) = M(PdU ) such that
for all ψ ∈ S(PdU ),

∫
Pd
U
ψ(ω, b) dα(ω, b) = Lf (ψ), and sup{Lf (ψ) | ψ ∈ S(PdU ), ‖ψ‖∞ ≤ 1} =

‖α‖TV.
Lemma 1 (Bounded linear transformation (BLT) theorem). Every bounded linear transformation T
from a normed vector space X to a complete, normed vector space Y can be uniquely extended to a
bounded linear transformation T̃ from the completion of X to Y . In addition, the operator norm of
T is c iff the norm of T̃ is c.

Proof of Theorem 1. Note that without loss of generality we can assume that 0 ∈ U . This is because
if 0 /∈ U but some other point y does belong to U , we can consider the function f(· − y) and the
set U − y. Then, once we have a representation of the form (5) for f(· − y) and x ∈ U − y, we
may obtain a representation for f and x ∈ U by massaging the bias terms and the independent term
appropriately.

If 0 ∈ U , since U is open there exists ε > 0 such that the ball of radius ε centered at 0 is included in
U . Thus, for any ω ∈ Sd−1 and b ∈ (−ε, ε), the point x = bω belongs to U and fulfills 〈ω, x〉 = b.
This means that Sd−1 × (−ε, ε) ⊆ Ũ := {(ω, 〈ω, x〉) ∈ Sd−1 × R | x ∈ U}.
Lemma 2 (Helgason (2011), Lemma 2.1). The following intertwining relations of the Radon trans-
form and its dual with the Laplacian operator hold

(−∆)s/2R∗ = (−i)sR∗Λs andR(−∆)s/2 = (−i)sΛsR, for any s ∈ Z+,

where Λs is known as the ramp filter and is defined as

ΛsΦ(ω, b) =

{
∂sbΦ(ω, b) s even
Hb∂sbΦ(ω, b) s odd.

Here,Hb denotes the Hilbert transform with respect to the variable b.
Lemma 3. Let ε > 0 such that the ball of radius ε centered at 0 is included in U . Let η ∈ C∞c (R)
such that

∫∞
−∞ η(x) dx = 1, such that supp(η) ⊆ (−ε, ε). For any χ ∈ S(PdU ), define βχ(ω) :=∫∞

−∞ χ(ω, x) dx. Define also ψ1 ∈ S(PdU ) as

ψ1(ω, b) = χ(ω, b)− βχ(ω) η(b)

Define Ψ1 : Ũ → R as

Ψ1(ω, b) =

∫ b

−∞
ψ1(ω, t) dt.

Ψ1 belongs to S(Ũ). Define γχ(ω) :=
∫∞
−∞Ψ1(ω, t) dt, and

ψ2(ω, b) = Ψ1(ω, b)− γχ(ω) η(b),

Ψ2(ω, b) =

∫ b

−∞
ψ2(ω, t) dt.

ψ2 and Ψ2 belong to S(Ũ).

Proof. First, note that ψ1 ∈ S(Ũ) because χ ∈ S(PdU ) ⊂ S(Ũ) and η ∈ S(Sd × (−ε, ε)) ⊆ S(Ũ).

Since the support of ψ1 is contained in cl(Ũ), to check that Ψ1 ∈ S(Ũ) it is sufficient to see that for
all ω ∈ Sd,

∫∞
−∞ ψ1(ω, b) db = 0, which holds because∫ ∞

−∞
(χ(ω, b)− βχ(ω) η(b)) db =

∫ ∞
−∞

χ(ω, b) db− βχ(ω) = 0.
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Since the support of ψ2 is contained in cl(Ũ), to check that Ψ2 ∈ S(Ũ) it is sufficient to see that for
all ω ∈ Sd,

∫∞
−∞ ψ2(ω, b) db = 0, which holds because∫ ∞

−∞
(Ψ1(ω, b)− γχ(ω) η(b)) db =

∫ ∞
−∞

Ψ1(ω, b) db− γχ(ω) = 0.

Using the Radon inversion formula (3) together with the first intertwining relation of Lemma 2, we
obtain an alternative Radon inversion formula:

ϕ = cd(−∆)(d−1)/2R∗Rϕ = (−i)d−1cdR∗Λd−1Rϕ, ∀ϕ ∈ C∞(Rd) integrable (15)

Similarly, the measure α ∈M(PdU ) given by Proposition 1 satisfies

∀ψ ∈ S(PdU ), 〈α,ψ〉 = −cd〈f, (−∆)(d+1)/2R∗ψ〉 = (−i)d−1cd〈f,R∗Λd+1ψ〉 (16)

Now, for any ϕ ∈ S(U), we have that Rϕ ∈ S(PdU ) by the definition of PdU . Let us apply Lemma 3
with the choice χ = Rϕ. Then,

〈f, ϕ〉 = (−i)d−1cd〈f,R∗Λd−1Rϕ〉 = (−i)d−1cd〈f,R∗Λd−1χ〉
= (−i)d−1cd〈f,R∗Λd−1ψ1〉+ (−i)d−1cd〈f,R∗βχ Λd−1η〉
= (−i)d−1cd〈f,R∗Λd−1∂bΨ1〉+ (−i)d−1cd〈f,R∗βχ Λd−1η〉
= (−i)d−1cd〈f,R∗Λd−1∂bψ2〉+ (−i)d−1cd〈f,R∗γχ Λd−1∂bη〉+ (−i)d−1cd〈f,R∗βχ Λd−1η〉
= (−i)d−1cd〈f,R∗Λd+1Ψ2〉+ (−i)d−1cd〈f,R∗Λd−1(βχ η + γχ ∂bη)〉

(17)

The first equality holds by (15). We used that χ = ψ1 + βχη, that ∂bΨ1 = ψ1, that Ψ1 = ψ2 + γχη,
that ∂bΨ2 = ψ2 and that Λd−1∂2b = Λd+1. We develop the first and the second terms of the right-
hand side separately.

(−i)d−1cd〈f,R∗Λd+1Ψ2〉 =

∫
V

Ψ2(ω, b) dα(ω, b) =

∫
Sd

∫ ∞
−∞

Ψ2(ω, b) dαR|ω(b) dαSd−1(ω),(18)

In the first equality we use (16). In the second equality we make use of a generalization of the Fubini-
Tonelli theorem (c.f. Theorem 2.1, Salazar (2018)), which states that αR|ω ∈ M(R) is defined for
ω αSd−1 -a.e. in Sd−1. While α is a finite signed Radon measure and Salazar (2018) deals with
probability measures, the result can be applied by decomposing Radon measures into non-negative
finite measures via the Hahn decomposition theorem. We develop the integrand in the right-hand
side via Lebesgue-Stieltjes integration by parts:

∫ ∞
−∞

Ψ2(ω, b) dαR|ω(b) =

[
Ψ2(ω, b)

∫ b

−∞
dαR|ω(t)

]b=+∞

b=−∞

−
∫ ∞
−∞

∫ b

−∞
dαR|ω(t) ∂bΨ2(ω, b) db

= −
∫ ∞
−∞

∫ b

−∞
dαR|ω(t)ψ2(ω, b) db

= −
∫ ∞
−∞

∫ b

−∞
dαR|ω(t) Ψ1(ω, b) db+

∫ ∞
−∞

∫ b

−∞
dαR|ω(t) γχ(ω)η(b) db

(19)

Here we applied Lemma 4 with U(x) = Ψ2(ω, x) and V (x) =
∫ x
−∞ dαR|ω(t), and we used that

Ψ1 = ψ2 + γχη. We apply Lemma 4 again on the first-term in the right-hand side, this time with
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U(x) = Ψ1(ω, x) and V (x) =
∫ x
−∞

∫ t
−∞ dαR|ω(y) dt. We get

−
∫ ∞
−∞

∫ b

−∞
dαR|ω(t) Ψ1(ω, b) db

= −

[
Ψ1(ω, b)

∫ b

−∞

∫ t

−∞
dαR|ω(y) dt

]b=∞
b=−∞

+

∫ ∞
−∞

∫ b

−∞

∫ t

−∞
dαR|ω(y) dt ∂bΨ1(ω, b) db

=

∫ ∞
−∞

∫ b

−∞

∫ t

−∞
dαR|ω(y) dt ψ1(ω, b) db =

∫ ∞
−∞

∫ ∞
−∞

(b− t)+ dαR|ω(t)ψ1(ω, b) db

=

∫ ∞
−∞

∫ ∞
−∞

(b− t)+ dαR|ω(t)
(
(Rϕ)(ω, b)− βRϕ(ω)η(b)

)
db

(20)

The last equality holds because χ = ψ1 + βχη and in the second-to-last one, we used that

∫ b

−∞

∫ t

−∞
dαR|ω(y) dt =

∫ ∞
−∞

1t≤b

∫ t

−∞
dαR|ω(y) dt

=

[
−(b− t)+

∫ t

−∞
dαR|ω(y)

]t=∞
t=−∞

+

∫ ∞
−∞

(b− t)+ dαR|ω(t) =

∫ ∞
−∞

(b− t)+ dαR|ω(t),

which holds again by Lemma 4, with U(x) =
∫ t
−∞ dαR|ω(y) and V (x) = −(b − x)+, which has

derivative dV
dx (x) = 1x≤b. The last equality holds because lim inft→−∞(b−t)+

∫ t
−∞ dαR|ω(y) = 0,

as α is supported on PdU , which is bounded because U is bounded.

Lemma 4 (Lebesgue-Stieltjes integration by parts). Given two functions U and V of finite variation,
if at each point at least one of U or V is continuous, then an integration by parts formula for the
Lebesgue–Stieltjes integral holds:

∫ b

a

U dV +

∫ b

a

V dU = U(b+)V (b+)− U(a−)V (a−), −∞ < a < b <∞,

where U(b+), V (b+) = limr→b+ U(r), V (r) and U(b−), V (b−) = limr→b− U(r), V (r) are the
right and left limits respectively, which exist at all points since U and V are of bounded variation.

If we plug (20) into (19) and then this back into (18), we obtain

(−i)d−1cd〈f,R∗Λd+1Ψ2〉 =

∫
Sd

∫ ∞
−∞

∫ ∞
−∞

(b− t)+ dαR|ω(t) (Rϕ)(ω, b) db dαSd−1(ω)

−
∫
Sd

∫ ∞
−∞

∫ ∞
−∞

(b− t)+ dαR|ω(t)βRϕ(ω)η(b) db dαSd−1(ω)

+

∫
Sd

∫ ∞
−∞

∫ b

−∞
dαR|ω(t) γRϕ(ω)η(b) db dαSd−1(ω)

(21)
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We develop the first term of (21):∫
Sd

∫ ∞
−∞

∫ ∞
−∞

(b− t)+ dαR|ω(t) (Rϕ)(ω, b) db dαSd−1(ω)

=

∫
Sd

∫ ∞
−∞

∫ ∞
−∞

(b− t)+ dαR|ω(t)

∫
{x|〈ω,x〉=b}

ϕ(x) dx db dαSd−1(ω)

=

∫
Sd

∫ ∞
−∞

∫
{x|〈ω,x〉=b}

∫ ∞
−∞

(〈ω, x〉 − t)+ dαR|ω(t)ϕ(x) dx db dαSd−1(ω)

=

∫
Sd

∫ ∞
−∞

∫ ∞
−∞

∫
{x|〈ω,x〉=b}

(〈ω, x〉 − t)+ ϕ(x) dx dαR|ω(t) db dαSd−1(ω)

=

∫
Sd

∫ ∞
−∞

∫ ∞
−∞

∫
{x|〈ω,x〉=b}

(〈ω, x〉 − t)+ ϕ(x) dx db dαR|ω(t) dαSd−1(ω)

=

∫
Pd
U

∫
Rd

(〈ω, x〉 − t)+ ϕ(x) dx dα(ω, t)

=

∫
U

∫
Pd
U

(〈ω, x〉 − t)+ dα(ω, t)ϕ(x) dx.

(22)

In the third, fourth and sixth equalities we used Fubini’s theorem. Before going any further, we
express βRϕ(ω) and γRϕ(ω) as integrals over U of some functions against ϕ:

βRϕ(ω) =

∫ ∞
−∞

(Rϕ)(ω, b) db =

∫ ∞
−∞

∫
{x|〈ω,x〉=b}

ϕ(x) dx db =

∫
U
ϕ(x) dx.

γRϕ(ω) =

∫ ∞
−∞

Ψ1(ω, b) db =

∫ ∞
−∞

∫ b

−∞
ψ1(ω, t) dt db

=

[
b

∫ b

−∞
ψ1(ω, t) dt

]b=∞
b=−∞

−
∫ ∞
−∞

bψ1(ω, b) db

= −
∫ ∞
−∞

b
(
(Rϕ)(ω, b)− βRϕ(ω)η(b)

)
db

= −
∫ ∞
−∞

b

∫
{x|〈ω,x〉=b}

ϕ(x) dx db+ βRϕ(ω)

∫ ∞
−∞

bη(b) db

= −
∫ ∞
−∞

∫
{x|〈ω,x〉=b}

〈ω, x〉ϕ(x) dx db+ βRϕ(ω)

∫ ∞
−∞

bη(b) db

= −
∫
U
〈ω, x〉ϕ(x) dx+

∫
U
ϕ(x) dx

∫ ∞
−∞

bη(b) db

In the third equality we used Lemma 4 with U(b) =
∫ b
−∞ ψ1(ω, t) dt and V (b) = b.

We develop the second term of (21):

−
∫
Sd

∫ ∞
−∞

∫ ∞
−∞

(b− t)+ dαR|ω(t)βRϕ(ω) η(b) db dαSd−1(ω)

= −
∫
Sd

∫ ∞
−∞

∫ ∞
−∞

(b− t)+βRϕ(ω) η(b) db dαR|ω(t) dαSd−1(ω)

= −
∫
Pd
U

∫ ∞
−∞

(b− t)+βRϕ(ω) η(b) db dα(ω, t) = −
∫
U
ϕ(x) dx

∫
Pd
U

∫ ∞
−∞

(b− t)+ η(b) db dα(ω, t)

(23)
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We compute the third term of (21):

∫
Sd

∫ ∞
−∞

∫ b

−∞
dαR|ω(t) γRϕ(ω)η(b) db dαSd−1(ω)

=

∫
Sd
γRϕ(ω)

(∫ ∞
−∞

dαR|ω(b)−
∫ ∞
−∞

∫ b

−∞
η(t) dt dαR|ω(b)

)
dαSd−1(ω)

=

∫
Ũ
γRϕ(ω)

(
1−

∫ b

−∞
η(t) dt

)
dα(ω, b)

=

∫
Ũ

(
−
∫
U
〈ω, x〉ϕ(x) dx+

∫
U
ϕ(x) dx

∫ ∞
−∞

tη(t) dt

)(
1−

∫ b

−∞
η(t) dt

)
dα(ω, b)

= −
∫
U

〈∫
Ũ
ω

(
1−

∫ b

−∞
η(t) dt

)
dα(ω, b), x

〉
ϕ(x) dx

+

∫
U
ϕ(x) dx

∫ ∞
−∞

tη(t) dt

∫
Ũ

(
1−

∫ b

−∞
η(t) dt

)
dα(ω, b)

(24)

In the first equality we used that by Lemma 4 with U(b) =
∫ b
−∞ dαR|ω(t) and V (b) =

∫ b
−∞ η(t) dt,

and since
∫∞
−∞ η(t) dt = 1

∫ ∞
−∞

∫ b

−∞
dαR|ω(t) η(b) db =

[∫ b

−∞
dαR|ω(t)

∫ b

−∞
η(t) dt

]b=∞
b=−∞

−
∫ ∞
−∞

∫ b

−∞
η(t) dα(t)

=

∫ ∞
−∞

dαR|ω(t)−
∫ ∞
−∞

∫ b

−∞
η(t) dα(t)

It remains to compute the second term in the right-hand side of (17):

(−i)d−1cd〈f,R∗Λd−1(βRϕ η + γRϕ ∂bη)〉 = (−i)d−1cd〈f,R∗(βRϕ Λd−1η + γRϕ Λd−1∂bη)〉

= (−i)d−1cd
〈
f,

∫
Sd−1

(βRϕ(ω) (Λd−1η)(〈ω, ·〉) + γRϕ(ω) (Λd−1∂bη)(〈ω, ·〉)) dω
〉

= (−i)d−1cd
∫
U
ϕ(x) dx

〈
f,

∫
Sd−1

(Λd−1η)(〈ω, ·〉) dω
〉

+ (−i)d−1cd

〈
f,

∫
Sd−1

(
−
∫
U
〈ω, x〉ϕ(x) dx+

∫
U
ϕ(x) dx

∫ ∞
−∞

bη(b) db

)
(Λd−1∂bη)(〈ω, ·〉) dω

〉

= (−i)d−1cd
∫
U
ϕ(x) dx

〈
f,

∫
Sd−1

(
(Λd−1η)(〈ω, ·〉) +

∫ ∞
−∞

bη(b) db (Λd−1∂bη)(〈ω, ·〉)

)
dω

〉

− (−i)d−1cd
∫
U

〈〈
f,

∫
Sd−1

ω (Λd−1∂bη)(〈ω, ·〉) dω
〉
, x

〉
ϕ(x) dx

(25)
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Plugging (22), (23) and (24) into (18), and then plugging (18) and (25) into (17), we obtain that (7)
holds when we set

v = −
∫
Ũ
ω

(
1−

∫ b

−∞
η(t) dt

)
dα(ω, b)− (−i)d−1cd

∫
U
f(x)

∫
Sd−1

ω (Λd−1∂bη)(〈ω, x〉) dω dx

c = −
∫
Pd
U

∫ ∞
−∞

(b− t)+ η(b) db dα(ω, t) +

∫ ∞
−∞

tη(t) dt

∫
Ũ

(
1−

∫ b

−∞
η(t) dt

)
dα(ω, b)

+ (−i)d−1cd
∫
U
f(x)

∫
Sd−1

(
(Λd−1η)(〈ω, x〉) +

∫ ∞
−∞

bη(b) db (Λd−1∂bη)(〈ω, x〉)

)
dω dx.

B PROOFS OF SEC. 4

Lemma 5 (Hahn decomposition theorem). For any measurable space (X,Σ) and any signed mea-
sure µ defined on the σ-algebra Σ, there exist two Σ-measurable sets, P and N , of X such that:

• P ∪N = X and P ∩N = ∅.

• For every E ∈ Σ such that E ⊆ P , one has µ(E) ≥ 0, i.e., P is a positive set for µ.

• For every E ∈ Σ such that E ⊆ N , one has µ(E) ≤ 0, i.e., N is a negative set for µ.

Proof of Theorem 2. By Theorem 1, there exists α ∈ M(PdU ) such that ‖α‖TV = ‖f‖R,U and
f(x) =

∫
Pd
U

(〈ω, x〉− t)+ dα(ω, t) + 〈v, x〉+ c for x a.e. in U . By the Hahn decomposition theorem

(Lemma 5), we can write α = α+ − α−, where α+, α− ∈ M+(PdU ) are non-negative Radon
measures. Also, there exist measurable sets P,N ⊆ PdU such that for any measurable set E included
in P (resp. N ), µ−(E) = 0 (resp., µ+(E) = 0).

We define |α| = α++α− ∈M+(PdU ), and the normalized measure µ = |α|/‖α‖TV, which belongs
to P(PdU ), the set of Borel probability measures over PdU .

Let {(ωi, bi)}ni=1 be n i.i.d. samples from µ, and let µ̂n = 1
n

∑n
i=1 δ(ωi,bi). We construct the

function

f̃(x) =
‖α‖TV

n

n∑
i=1

(1P (ωi, bi)− 1N (ωi, bi))(〈ωi, x〉 − bi)+ + 〈v, x〉+ c

= ‖α‖TV

∫
Ũ

(1P (ω, b)− 1N (ω, b))(〈ω, x〉 − b)+ dµ̂n(ω, b) + 〈v, x〉+ c.

Notice that if we take the expectation over {(ωi, bi)}ni=1, we have

E{(ωi,bi)}ni=1
f̃(x) = ‖α‖TV

∫
Ũ

(1P (ω, b)− 1N (ω, b))(〈ω, x〉 − b)+ dµ(ω, b) + 〈v, x〉+ c

=

∫
Ũ

(1P (ω, b)− 1N (ω, b))(〈ω, x〉 − b)+ d|α|(ω, b) + 〈v, x〉+ c

=

∫
Ũ

(〈ω, x〉 − b)+ d(α+ − α−)(ω, b) + 〈v, x〉+ c

=

∫
Ũ

(〈ω, x〉 − b)+ dα(ω, b) + 〈v, x〉+ c = f(x),

where the last equality holds almost everywhere.
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To show the uniform bound, we want to upper-bound

sup
x∈U

∣∣∣∣∫
Ũ

(1P (ω, b)− 1N (ω, b))(〈ω, x〉 − b)+ d(µ̂n − µ)(ω, b)

∣∣∣∣ .
We compute the Rademacher complexity of the class

F = {f : Ũ → R, (ω, b) 7→ (1P (ω, b)− 1N (ω, b))(〈ω, x〉 − b)+ | x ∈ U}.

Rn(F) = Eσ,{(ωi,bi)}ni=1

sup
f∈F

1

n

n∑
i=1

σif(ωi, bi)


= Eσ,{(ωi,bi)}ni=1

sup
x∈U

1

n

n∑
i=1

σi(1P (ωi, bi)− 1N (ωi, bi))(〈ωi, x〉 − bi)+


= Eσ,{(ωi,bi)}ni=1

sup
x∈U

1

n

n∑
i=1

σi(〈ωi, x〉 − bi)+

 ≤ Eσ,{(ωi,bi)}ni=1

sup
x∈U

1

n

n∑
i=1

σi(〈ωi, x〉 − bi)


≤ Eσ,{ωi}ni=1

 sup
x∈BR(Rd)

1

n

n∑
i=1

σi〈ωi, x〉

 = REσ,{ωi}ni=1

∥∥∥∥ 1

n

n∑
i=1

σiωi

∥∥∥∥
2

 ≤ R√
n
.

In the first inequality we used that x 7→ (x)+ is Lipschitz and Talagrand’s lemma (Lemma 5.7,
Mohri et al. (2012)). In the second inequality we used the assumption that U ⊆ BR(Rd), and also
that Eσ[ 1n

∑n
i=1 σibi] = 0. The second-to-last equality is by Cauchy-Schwarz and the last equality

is by Kakade et al. (2009) (Sec. 3.1). Thus, we have the following Rademacher complexity bound
(Mohri et al. (2012), Thm. 3.3):

E{(ωi,bi)}ni=1

[
sup
x∈U

∣∣∣∣∫
Ũ

(1P (ω, b)− 1N (ω, b))(〈ω, x〉 − b)+ d(µ̂n − µ)(ω, b)

∣∣∣∣
]
≤ Rn(F) ≤ R√

n
.

And this means there must exist some {(ωi, bi)}ni=1 such that

sup
x∈U

∣∣∣∣∣∣‖α‖TV

n

n∑
i=1

(1P (ωi, bi)− 1N (ωi, bi))(〈ωi, x〉 − bi)+ −
∫
Ũ

(〈ω, x〉 − b)+ dα(ω, b)

∣∣∣∣∣∣ ≤ R‖α‖TV√
n

,

which concludes the proof.
Lemma 6 (Theorem 1 of Klusowski & Barron (2018)). If f : [−1, 1]d → R admits an integral
representation

f(x) = κ

∫
{ω∈Rd|‖ω‖1=1}×[0,1]

η(ω, b)(〈ω, x〉 − b)+ dµ(ω, b)

for some probability measure µ and η(ω, b) taking values in {±1}, then there exist {ai}ni=1 ⊆
[−1, 1], {ωi}ni=1 ⊆ {ω ∈ Rd|‖ω‖1 = 1} and {bi}ni=1 ⊆ [0, 1] such that the function

f̃(x) =
κ

n

n∑
i=1

ai(〈ωi, x〉 − bi)+

fulfills

sup
x∈[−1,1]d

|f(x)− f̃(x)| ≤ cκ
√
d+ logmm−1/2−1/d,

for some universal constant c > 0.
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Proof of Proposition 2. By Theorem 1, f admits an infinite-width neural network representation of
the form (7) on B1(Rd). That is, for almost every x ∈ B1(Rd), we have that f(x) is equal to

f̂(x) :=

∫
Ũ

(〈ω, x〉 − b)+ dα(ω, b) + 〈v, x〉+ c

=

∫
Ũ

(1P (ω, b)− 1N (ω, b))(〈ω, x〉 − b)+ d|α|(ω, b) + 〈v, x〉+ c

=

∫
Ũ∩Sd−1×[0,1)

(1P (ω, b)− 1N (ω, b))(〈ω, x〉 − b)+ d|α|(ω, b) + 〈v′, x〉+ c′

=

∫
Ũ∩Sd−1×[0,1)

(1P (ω, b)− 1N (ω, b))

(〈
ω

‖ω‖1
, x

〉
− b

‖ω‖1

)
+

‖ω‖1 d|α|(ω, b) + 〈v′, x〉+ c′

=

∫
{ω|‖ω‖1=1}×[0,1)

(〈ω̃, x〉 − b̃)+ dµ(ω̃, b̃) + 〈v′, x〉+ c′.

(26)

In the third equality we use that (〈−ω, x〉 + b)+ = (〈ω, x〉 − b)+ − 〈ω, x〉 + t, and that |α|
is even, and we define v′ = v +

∫
Ũ∩Sd−1×(−1,0)(1P (ω, b) − 1N (ω, b))ω d|α|(ω, b), c′ = c +∫

Ũ∩Sd−1×(−1,0)(1P (ω, b)−1N (ω, b))t d|α|(ω, b). Let T :
∫
Ũ∩Sd−1×[0,1) → {ω|‖ω‖1 = 1}× [0, 1)

be the map (ω, b) 7→
(

ω
‖ω‖1 ,

b
‖ω‖1

)
, which is invertible. In the fifth equality, we define the Radon

measure µ ∈M({ω|‖ω‖1 = 1} × [0, 1)) as

µ = T#
[
(1P (ω, b)− 1N (ω, b))‖ω‖1|α|

]
,

where T# denotes the pushforward by T . Since T is surjective and the pushforward by a surjective
map preserves the total variation norm, we have that the total variation norm of µ is

‖µ‖TV :=

∫
Pd
U

‖ω‖1d|α|(ω, α) ≤
√
d‖α‖TV =

√
d‖f‖R,U ,

where we used that by the Cauchy-Schwarz inequality, ‖ω‖1 ≤
√
d‖ω‖2. Defining µ̃ = |µ|/‖µ‖TV,

the right-hand side of (26) becomes

f̂(x) = ‖µ‖
∫
{ω|‖ω‖1=1}×[0,1)

η(ω̃, b̃)(〈ω̃, x〉 − b̃)+ dµ̃(ω̃, b̃) + 〈v, x〉+ c,

where η is a function taking values in {±1}. Since t fulfills the assumptions of Lemma 6,
we conclude that there exists f̃ of the prescribed form for which supx∈[−1,1]d |f(x) − f̃(x)| ≤
c‖τ‖TV

√
d+ logmm−1/2−1/d. Since f and f̂ coincide a.e. in B1(Rd), we obtain that the final

result by setting κ = ‖τ‖TV.

Proofs of Theorem 3 and Theorem 4. We will prove the two theorems at once because the proofs are
analogous: the only difference is that in Theorem 3 we assume that f admits a Fourier representation,
while in Theorem 4 we assume that it admits a representation of the form (10). We will indicate the
steps where the proofs differ.

By Proposition 1, the measure α is the only one that satisfies 〈ψ, α〉 = −cd〈f, (−∆)(d+1)/2R∗ψ〉
for any ψ ∈ S(Sd−1 × (−R,R)). We develop this expression in different ways for d odd and d
even.

Case d odd: We prove the case in which d is odd first, which is simpler because Λd+1ψ = ∂d+1
b ψ.

By Equation 16, we have

−cd〈f, (−∆)(d+1)/2R∗ψ〉 = (−i)d−1cd〈f,R∗Λd+1ψ〉 = (−i)d−1cd〈f,R∗∂d+1
b ψ〉 (27)

Let ψ ∈ S(Sd−1 × (−R,R)) ⊆ S(Sd−1 × R) even. We have ∂d+1
b ψ ∈ S(Sd−1 × R) which means

that the Fourier inversion formula holds for ∂d+1
b ψ. That is, if we define χ = ∂̂d+1

b ψ to be the
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Fourier transform of Λd+1ψ, we can write Λd+1ψ = χ̌. Since χ̌(ω, b) = 1
(2π)1/2

∫
R e

ibtχ(ω, t) dt,
for the proof of Theorem 3 the right-hand side of (27) becomes (up to constant factors)

〈f,R∗χ̌〉 =

∫
Rd

f(x)

∫
Sd−1

χ̌(ω, 〈ω, x〉) dω dx =

∫
Rd

f(x)

∫
Sd−1

1

(2π)1/2

∫
R
eit〈ω,x〉χ(ω, t) dt dω dx

=

∫
Rd

1

(2π)d/2

∫
Rd

ei〈ξ,x〉 df̂(ξ)

∫
Sd−1

1

(2π)1/2

∫
R
eit〈ω,x〉χ(ω, t) dt dω dx,

where the last equality follows from the representation of the function f . For the proof of Theorem 4
the analogous development reads

〈f,R∗χ̌〉 =

∫
Rd

f(x)

∫
Sd−1

χ̌(ω, 〈ω, x〉) dω dx =

∫
Rd

f(x)

∫
Sd−1

1

(2π)1/2

∫
R
eit〈ω,x〉χ(ω, t) dt dω dx

=

∫
Rd

∫
Sd−1×R

eit̂〈ω̂,x〉 dµ(ω̂, t̂)

∫
Sd−1

1

(2π)1/2

∫
R
eit〈ω,x〉χ(ω, t) dt dω dx.

(28)

At this point, note that χ is even because

χ(ω, b) =
1

(2π)1/2

∫
R

(∂d+1
b ψ)(ω, t)e−ibt dt =

1

(2π)1/2

∫
R

(∂d+1
b ψ)(−ω,−t)e−ibt dt

=
1

(2π)1/2

∫
R

(∂d+1
b ψ)(−ω, t)eibt dt = χ(−ω,−b),

where we used that ∂d+1
b ψ is even, which follows from ψ being even. Consequently,

∫
Sd−1

∫
R
eit〈ω,x〉χ(ω, t) dt =

∫
Sd−1

∫
R+

eit〈ω,x〉χ(ω, t) dt+

∫
Sd−1

∫
R−

eit〈ω,x〉χ(ω, t) dt

=

∫
Sd−1

∫
R+

eit〈ω,x〉χ(ω, t) dt+

∫
Sd−1

∫
R+

e−it〈ω,x〉χ(ω,−t) dt

=

∫
Sd−1

∫
R+

eit〈ω,x〉χ(ω, t) dt+

∫
Sd−1

∫
R+

eit〈−ω,x〉χ(−ω, t) dt = 2

∫
Sd−1

∫
R+

eit〈ω,x〉χ(ω, t) dt

Applying the change of variables from spherical coordinates to Euclidean coordinates (Lemma 7),
we may write

∀x ∈ Rd,
∫
Sd−1

∫
R
eit〈ω,x〉χ(ω, t) dt =

∫
Rd

ei〈y,x〉χ̃(y) dy,

where we define χ̃ : Rd → R as

χ̃(y) =
2χ(y/‖y‖, ‖y‖)
‖y‖d−1

.
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Thus, for the proof of Theorem 3, the right-hand side of (27) can be written as

(−i)d−1cd
1

(2π)1/2

∫
Rd

1

(2π)d/2

∫
Rd

ei〈ξ,x〉 df̂(ξ)

∫
Rd

ei〈y,x〉χ̃(y) dy dx

= (−i)d−1cd
1

(2π)1/2
1

(2π)d/2

∫
Rd

∫
Rd

ei〈ξ,x〉
∫
Rd

ei〈y,x〉χ̃(y) dy dx df̂(ξ)

= (−i)d−1cd(2π)d−1/2
1

(2π)d/2

∫
Rd

1

(2π)d/2

∫
Rd

ei〈ξ,x〉
1

(2π)d/2

∫
Rd

e−i〈y,x〉χ̃(−y) dy dx df̂(ξ)

= (−i)d−1cd(2π)d−1/2
1

(2π)d/2

∫
Rd

χ̃(−ξ) df̂(ξ) = (−i)d−1cd2(2π)(d−1)/2
∫
Sd−1×R

χ(−ξ/‖ξ‖, ‖ξ‖)
‖ξ‖d−1

df̂(ξ)

= (−i)d−1cd2(2π)d−1/2
1

(2π)d/2

∫
Rd

Λ̂d+1ψ(−ξ/‖ξ‖, ‖ξ‖)
‖ξ‖d−1

df̂(ξ)

= (−i)d−1cd2(2π)d−1/2
1

(2π)d/2

∫
Rd

id+1‖ξ‖d+1ψ̂(−ξ/‖ξ‖, ‖ξ‖)
‖ξ‖d−1

df̂(ξ)

= (−i)d−1cd2(2π)d−1/2id+1 1

(2π)d/2

∫
Rd

‖ξ‖2 1

(2π)1/2

∫
R
ei‖ξ‖bψ(−ξ/‖ξ‖, b) db df̂(ξ)

= − 1

(2π)d/2

∫
Rd

‖ξ‖2
∫
R
e−i‖ξ‖bψ(ξ/‖ξ‖, b) db df̂(ξ)

(29)

In the sixth equality we used Lemma 8. In the last equality we used that ψ is even, which means
that

∫
R e

i‖ξ‖bψ(−ξ/‖ξ‖, b) db =
∫
R e

i‖ξ‖bψ(ξ/‖ξ‖,−b) db =
∫
R e
−i‖ξ‖bψ(ξ/‖ξ‖, b) db. And anal-

ogously for the proof of Theorem 4, the right-hand side of (28) becomes

(−i)d−1cd
1

(2π)1/2

∫
Rd

∫
Sd−1×R

eit̃〈ω̃,x〉 dµ(ω̃, t̃)

∫
Rd

ei〈y,x〉χ̃(y) dy dx

= (−i)d−1cd
1

(2π)1/2

∫
Sd−1×R

∫
Rd

eit̃〈ω̃,x〉
∫
Rd

ei〈y,x〉χ̃(y) dy dx dµ(ω̃, t̃)

= (−i)d−1cd(2π)d−1/2
∫
Sd−1×R

1

(2π)d/2

∫
Rd

ei〈t̃ω̃,x〉
1

(2π)d/2

∫
Rd

e−i〈y,x〉χ̃(−y) dy dx dµ(ω̃, t̃)

= (−i)d−1cd(2π)d−1/2
∫
Sd−1×R

χ̃(−t̃ω̃) dµ(ω̃, t̃) = (−i)d−1cd2(2π)(d−1)/2
∫
Sd−1×R

χ(−ω̃, t̃)
|t̃|d−1

dµ(ω̃, t̃)

= (−i)d−1cd2(2π)d−1/2
∫
Sd−1×R

Λ̂d+1ψ(−ω̃, t̃)
|t̃|d−1

dµ(ω̃, t̃)

= (−i)d−1cd2(2π)d−1/2
∫
Sd−1×R

id+1|t̃|d+1ψ̂(−ω̃, t̃)
|t̃|d−1

dµ(ω̃, t̃)

= (−i)d−1cd2(2π)d−1/2id+1

∫
Sd−1×R

t̃2
1

(2π)1/2

∫
R
eit̃bψ(−ω̃, b) db dµ(ω̃, t̃)

= (−i)d−1cd2(2π)d−1/2id+1

∫
Sd−1×R

t̃2
1

(2π)1/2

∫
R
e−it̃bψ(ω̃, b) db dµ(ω̃, t̃)

= −
∫
R

∫
Sd−1

ψ(ω̃, b)

∫
R
t̃2e−it̃b dµ(ω̃, t̃) db.

(30)

Case d even: When d is even, we write

−cd〈f, (−∆)(d+1)/2R∗ψ〉 = −cd〈f, (−∆)1/2(−∆)d/2R∗ψ〉 = −cd〈(−∆)1/2f, (−∆)d/2R∗ψ〉
(31)

= −(−i)dcd〈(−∆)1/2f,R∗∂dbψ〉.
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The second equality holds by the definition of the fractional Laplacian (−∆)s for tempered distri-
butions2: if T ∈ S ′(Rd), for any ϕ ∈ S(Rd) we have 〈(−∆)sT, ϕ〉 = 〈T, (−∆)sϕ〉, and because
(−∆)d/2R∗ψ ∈ S(Rd) as both R∗ and (−∆)d/2 map S(Rd) into itself (Theorem 2.5, Helgason
(1994)). The third equality holds by Lemma 2. Reusing the argument for the even case, this time
taking χ = ∂̂dbψ and χ̌ = ∂dbψ, for the proof of Theorem 3 the right-hand side of (31) is equal to

− (−i)dcd
∫
Rd

(−∆)1/2

(
1

(2π)d/2

∫
Rd

ei〈ξ,x〉 df̂(ξ)

)∫
Sd−1

1

(2π)1/2

∫
R
eit〈ω,x〉χ(ω, t) dt dω dx

= −(−i)dcd
∫
Rd

1

(2π)d/2

∫
Rd

ei〈ξ,x〉‖ξ‖ df̂(ξ)

∫
Sd−1

1

(2π)1/2

∫
R
eit〈ω,x〉χ(ω, t) dt dω dx

= −(−i)dcd2(2π)d−1/2
1

(2π)d/2

∫
Rd

Λ̂dψ(−ξ/‖ξ‖, ‖ξ‖)
‖ξ‖d−1

‖ξ‖ df̂(ξ)

= −(−i)dcd2(2π)d−1/2
1

(2π)d/2

∫
Rd

id‖ξ‖dψ̂(−ξ/‖ξ‖, ‖ξ‖)
‖ξ‖d−1

‖ξ‖ df̂(ξ)

= − 1

(2π)d/2

∫
Rd

‖ξ‖2
∫
R
e−i‖ξ‖bψ(ξ/‖ξ‖, b) db df̂(ξ).

(32)

Note that the only difference with respect to the odd case is the factor id instead of id+1. And for
the proof of Theorem 4, we have analogously:

− (−i)dcd
∫
Rd

(−∆)1/2

(∫
Sd−1×R

eit̃〈ω̃,x〉 dµ(ω̃, t̃)

)∫
Sd−1

1

(2π)1/2

∫
R
eit〈ω,x〉χ(ω, t) dt dω dx

= −(−i)dcd
∫
Rd

∫
Sd−1×R

eit̃〈ω̃,x〉 |t̃|dµ(ω̃, t̃)

∫
Sd−1

1

(2π)1/2

∫
R
eit〈ω,x〉χ(ω, t) dt dω dx

= −(−i)dcd2(2π)d−1/2
∫
Sd−1×R

Λ̂dψ(−ω̃, t̃)
|t̃|d−1

|t̃| dµ(ω̃, t̃)

= −(−i)dcd2(2π)d−1/2
∫
Sd−1×R

id|t̃|dψ̂(−ω̃, t̃)
|t̃|d−1

|t̃| dµ(ω̃, t̃)

= −
∫
R

∫
Sd−1

ψ(ω̃, b)

∫
R
t̃2e−it̃b dµ(ω̃, t̃) db.

(33)

Conclusion of the proof of Theorem 3: Since cd = 1
2(2π)d−1 , from (29) and (32) we obtain

‖f‖R,BR(Rd) = sup
ψ∈S(Pd

R),‖ψ‖∞≤1
〈α,ψ〉

= sup
ψ∈S(Pd

R),‖ψ‖∞≤1
− 1

(2π)d/2

∫
Rd

‖ξ‖2
∫ R

−R
e−i‖ξ‖bψ(ξ/‖ξ‖, b) db df̂(ξ)

≤ sup
ψ∈S(Pd

R),‖ψ‖∞≤1

1

(2π)d/2

∫
Rd

‖ξ‖2
∫ R

−R
|ψ(ξ/‖ξ‖, b)| db d|f̂ |(ξ)

≤ 2R sup
ψ∈S(Pd

R),‖ψ‖∞≤1

1

(2π)d/2

∫
Rd

‖ξ‖2 d|f̂ |(ξ) = 2RCf .

This concludes the proof.

Conclusion of the proof of Theorem 4: Since cd = 1
2(2π)d−1 , from (30) and (33) we obtain that

〈ψ, α〉 = −
∫
R

∫
Sd−1

ψ(ω, b)

∫
R
t2e−itb dµ(ω, t) db.

2We denote by S ′(Rd) the dual space of S(Rd), which is known as the space of tempered distributions
on Rd. Functions that grow no faster than polynomials can be embedded in S ′(Rd) by defining 〈g, ϕ〉 :=∫
Rd ϕ(x)g(x) dx for any ϕ ∈ S(Rd).
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This concludes the proof.

Lemma 7 (Change from Euclidean to spherical coordinates). Let
∫
Sd−1×R ϕ(ω, b) d(ω, b) denote

the integral of the integrable even function ϕ : Sd−1×R→ R with respect to the Lebesgue measure
on Sd−1 × R. Then, ∫

Sd−1×R
ϕ(ω, b) d(ω, b) =

∫
Rd

2ϕ(x/‖x‖, ‖x‖)
‖x‖d−1

dx

Conversely, if g : Rd → R is an integrable function, we have∫
Rd

g(x) dx =
1

2

∫
Sd−1×R

g(bω)|b|d−1 d(ω, b).

Proof. The Jacobian determinant of the change from Euclidean to spherical coordinates takes the
form (ω, b) 7→ C|b|d−1 for some constant C. Consider the function x 7→ 1‖x‖≤R for an arbitrary
R > 0. We have

vol(BR(Rd)) =

∫
Rd

1‖x‖≤R dx = C

∫
Sd−1×R

1b≤Rb
d−1 d(ω, b)

= C

∫
R
1b≤R|b|d−1

∫
Sd−1

dω db = C

∫ R

−R
|b|d−1vol(Sd−1) db

= C

∫ R

−R
vol(Sd−1b ) db = 2C

∫ R

0

vol(Sd−1b ) db = 2Cvol(BR(Rd))

This implies that C = 1/2.

Lemma 8 (Fourier transform of the ramp filter Λs). Let ψ ∈ S(R). Then, Λ̂sψ(ξ) =
is

(2π)1/2
|ξ|sψ̂(ξ).

Proof. We reproduce the proof for completeness, but the result is ubiquitous. When s is even,
we have Λ̂sψ(ξ) = ∂̂sψ(ξ) = (−iξ)sψ̂(ξ) = is|ξ|sψ̂(ξ). When s is odd, we have Λ̂sψ(ξ) =

Ĥ∂sψ(ξ) = −isign(ξ)∂̂sψ(ξ) = −isign(ξ)(−iξ)sψ̂(ξ) = is|ξ|sψ̂(ξ).

Proof of Example 1. The Fourier representation f(x) = 1
(2π)1/2

∫
R
√

π
2 (δ1(ξ)+δ−1(ξ)−δ1+ε(ξ)−

δ−1−ε(ξ))e
iξx dξ holds because we may write cos(ξ0x) = 1

2

∫
R(δξ0(ξ)+δ−ξ0(ξ))eiξx dξ. From the

definition of Cf in Subsec. 2.2, we have

Cf =
1

(2π)1/2

∫
R

√
π

2
|ξ|2(δ1(ξ) + δ−1(ξ) + δ1+ε(ξ) + δ−1−ε(ξ)) dξ

=
1

2
(2 + 2(1 + ε)2) = 2 + 2ε+ ε2.

On the other hand, f(x) = 1
4

∫
S0
∫
R(δ1(b) + δ−1(b) + δ1+ε(b) + δ−1−ε(b))e

ibωx db dω the represen-
tation (10) holds for f with dµ(ω, b) = 1

4 (δ1(b)+ δ−1(b)+ δ1+ε(b)+ δ−1−ε(b)) db dω. By equation
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(11) we have

‖f‖R,BR(Rd) =
1

4

∫ R

−R

∫
S0

∣∣∣∣∫
R
t2e−itb(δ1(t) + δ−1(t) + δ1+ε(t) + δ−1−ε(t)) dt

∣∣∣∣ dω db
=

∫ R

−R

∣∣∣∣∣
∫
R

t2

2

(
δ1(t) + δ−1(t)− δ1+ε(t)− δ−1−ε(t)

)
e−itb dt

∣∣∣∣∣ db
=

∫ R

−R

∣∣f ′′(b)∣∣ db =

∫ R

−R

∣∣∣− cos(x) + (1 + ε)2 cos((1 + ε)x)
∣∣∣ db

≤
∫ R

−R

∣∣cos((1 + ε)x)− cos(x)
∣∣+ (2ε+ ε2)| cos((1 + ε)x)| db

=

∫ R

−R
ε|x|

∣∣sin(x̃)
∣∣+ (2ε+ ε2)| cos((1 + ε)x)| db

≤ R2ε+ 2R(2ε+ ε2) = R
(
Rε+ 4ε+ 2ε2

)
.

Proof of Proposition 3. We show the bound on ‖f‖R,U first. Comparing (4) with (6) we obtain that
‖f‖R,U ≤ ‖f‖R for all f : Rd → R and all U ⊆ Rd bounded open. Theorem 1 of Ongie et al.
(2019) states that ‖f‖R = R̄1(f), where

R̄1(f) = min
α∈M(Sd−1×R),

v∈Rd,c∈R

{
‖α‖TV | ∀x ∈ Rd, f(x) =

∫
Sd−1×R

(〈ω, x〉 − b)+ dα(ω, b) + 〈v, x〉+ c

}
.

By assumption, for all x ∈ Rd we have f(x) =
∫
Sd−1×R(〈ω, x〉 − b)+dα̃(ω, b) where α̃ =

1
n

∑n
i=1 aiδ(ωi,bi), and ‖α‖TV = 1

n

∑n
i=1 |ai|. Thus, R̄1(f) ≤ 1

n

∑n
i=1 |ai|. Putting everything

together we get that ‖f‖R,U ≤ 1
n

∑n
i=1 |ai|.

To show that Cf , C̃f = +∞, we will show that Cf < +∞ implies that f is C1, which is
an argument that we take from E & Wojtowytsch (2020), p. 3. If

∫
Rd d|f̂ |(ξ) < +∞ and∫

Rd ‖ξ‖2 d|f̂ |(ξ) < +∞, we have that
∫
Rd ‖ξ‖ d|f̂ |(ξ) ≤ 1

2

∫
Rd(1 + ‖ξ‖2) d|f̂ |(ξ) < +∞. And

for any i ∈ {1, . . . , d}, ξif̂ is the Fourier transform of ∂if , which means that
∫
Rd d|∂̂if |(ξ) < +∞.

Hence, ∂if is continuous, or equivalently, f ∈ C1(Rd). Since a finite-width neural network which
is not an affine function does not belong to C1(Rd), we have that Cf = +∞.

C PROOFS OF SEC. 5

C.1 PRELIMINARIES

Notation: Throughout this section, Hdk denotes the space of homogeneous polynomials of degree
k on Rd, and Ydk denotes the space of harmonic homogeneous polynomials of degree k on Rd.
{Yk,j | 1 ≤ j ≤ Nk,d} is an orthonormal basis of Ydk, where for d ≥ 2,

Nk,d =
(2k + d− 2)(k + d− 3)!

k!(d− 2)!

The sequence of Legendre polynomials in dimension d is the sequence (Pk,d)k≥0 of polynomials

on [−1, 1] such that
∫ 1

−1 Pk,d(x)Pk′,d(x) dx = δk,k′ .

Lemma 9 (Theorem 2.18, Atkinson & Han (2012)). We have

Hdn = Ydn ⊕ ‖ · ‖2Ydn−2 ⊕ · · · ⊕ ‖ · ‖2[n/2]Ydn−2[n/2],
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where ⊕ denotes the direct sum of vector spaces. In particular,

Hdn|Sd−1 = Ydn|Sd−1 ⊕ Ydn−2|Sd−1 ⊕ · · · ⊕ Ydn−2[n/2]|Sd−1 .

Lemma 10 (Funk-Hecke formula, Atkinson & Han (2012)). If η is a measurable function on (−1, 1)

such that
∫ 1

−1 |η(t)|(1 − t2)(d−3)/2dt < +∞ (in particular, if f ∈ C([−1, 1]) for d ≥ 2), for any
spherical harmonic Y ∈ Ydk|Sd−1 , we have for any ω ∈ Sd−1,∫

Sd−1

η(〈ω, x〉)Y (x) dx = |Sd−2|Y (ω)

∫ 1

−1
η(t)Pk,d(t)(1− t2)(d−3)/2 dt.

Lemma 11 (Schwartz theorem for the Radon transform, Theorem 2.4 of Helgason (2011)). The
Radon transform f 7→ Rf is a linear one-to-one mapping of S(Rd) onto SH(Pd), where

SH(Pd) =

{
ψ ∈ S(Pd)

∣∣∣∣ ∀k ∈ Z+,

∫
R
ψ(ω, b)bk db is a homogeneous polynomial of degree k

}
.

Lemma 12 (Support theorem for the Radon transform, Theorem 2.6 of Helgason (2011)). Let f ∈
C(Rd) satisfy the following conditions:

• For each integer k > 0, |x|kf(x) is bounded.

• There exists a constant A > 0 such that (Rf)(ω, b) = 0 for all (ω, b) ∈ Sd−1 × R such
that b > A.

Then, f(x) = 0 for all x such that ‖x‖2 > A.
Lemma 13 (Helgason (2011), Ch. I, Lemma 5.1). Assume that ϕ ∈ Cc(Rd) and ψ is locally
integrable on Pd. Then,∫

Pd

(Rϕ)(ω, b)ψ(ω, b) d(ω, b) =

∫
Rd

ϕ(x)(R∗ψ)(x) dx.

Lemma 14 (Adaptation of Helgason (1994), Proposition 2.7). Let ϕ ∈ C∞(BR(Rd)). Then, we
have ϕ(ω, b) =

∑∞
k=0 ϕk(x), where the convergence is in the topology of C∞(BR(Rd)) (the topol-

ogy of uniform convergence for derivatives of all orders), and the functions ϕk are of the form

ϕk(rω) =

Nk,d∑
j=1

ϕk,j(r)Yk,j(ω), where ψk,j(r) =

∫
Sd−1

ψ(rω)Yk,j(ω) dω.

Lemma 15 (Adaptation of Helgason (1994), Proposition 2.8). Let ψ ∈ C∞(PdR). Then, we have
ψ(ω, b) =

∑∞
k=0 ψk(ω, b), where the convergence is in the topology of C∞(PdR), and the functions

ψk are of the form

ψk(ω, b) =

Nk,d∑
j=1

ψk,j(b)Yk,j(ω), where ψk,j(b) =

∫
Sd−1

ψ(ω, b)Yk,j(ω) dω,

and ψk,j(−b) = (−1)kψk,j(b).
Lemma 16 (Rudin (1991), Theorem 1.21). All finite dimensional subspaces of Hausdorff topologi-
cal vector spaces are closed.

Lemma 17. Let U, V be subspaces of a vector space E endowed with a bilinear form. Let Ũ be the
annihilator of U within V , that is, Ũ = {v ∈ V | ∀u ∈ U, 〈v, u〉 = 0}. Then, Ũ is the annihilator
of U within V + Ũ .

Proof. Since V ⊆ V + Ũ , Ũ is included in the annihilator of U within V + Ũ . To show the reverse
inclusion, note that an arbitrary element x of the annihilator of U within V + Ũ may be written as
x = v + ũ, where v ∈ V, ũ ∈ Ũ . For any u ∈ U , we have 0 = 〈x, u〉 = 〈v + ũ, u〉 = 〈v, u〉, where
we used that ũ ∈ Ũ . This implies that v belongs to the annihilator in the annihilator of U within V ,
i.e. v ∈ Ũ . Hence, we obtain that x ∈ Ũ .
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Lemma 18. LetU be a finite-dimensional subspace of a (possibly infinite-dimensional) vector space
E endowed with an inner product 〈·, ·〉. Let U⊥ be the annihilator of U within E . Then, one can
write

E = U ⊕ U⊥.

Proof. Let (u1, · · · , um) be an orthonormal basis of U according to 〈·, ·〉, which may be constructed
according to the Gram-Schmidt procedure. Then, one can define the orthogonal projection PU onto
U as PUx =

∑m
i=1〈x, ui〉ui. Note that for any x ∈ E , PUx ∈ U . Moreover, x = PUx+ x− PUx,

and x− PUx ∈ U⊥ because for any u′ ∈ U , one can write u′ =
∑m
i=1〈u′, ui〉ui and consequently,

〈u′, x− PUx〉 =
∑m
i=1〈u′, ui〉〈ui, x〉 −

∑m
i=1〈x, ui〉〈u′, ui〉 = 0.

C.2 PROOF OF THEOREM 5

Proposition 5. Let A = {Yk,j ⊗Xk′ | k, j, k′ ∈ Z+, k ≡ k′ (mod 2), k′ < k− 2, 1 ≤ j ≤ Nd,k}.
If Yk,j ⊗Xk′ ∈ A, then,

∀x ∈ BR(Rd),
∫
Sd−1×(−R,R)

(〈ω, x〉 − b)+(Yk,j ⊗Xk′)(ω, b) d(ω, b) = 0.

Moreover,

for x a.e. in BR(Rd),
∫
Sd−1×(−R,R)

(〈ω, x〉 − b)+(Yk,j ⊗Xk−2)(ω, b) d(ω, b) 6= 0.

Proof. Note that∫
Sd−1×(−R,R)

(〈ω, x〉 − b)+(Yk,j ⊗Xk′)(ω, b) d(ω, b) =

∫
Sd−1

∫ R

−R
(〈ω, x〉 − b)+bk

′
db Yk,j(ω) dω,

and since for x ∈ BR(Rd) we have 〈ω, x〉 ∈ (−R,R) for any ω ∈ Sd−1, by Lemma 19 we have∫ R

−R
(〈ω, x〉 − b)+bk

′
db =

1

(k′ + 1)(k′ + 2)
(〈ω, x〉k

′+2 − (−R)k
′+2)− 1

k′ + 1
(−R)k

′+1(〈ω, x〉+R)

= Qk′+2(〈ω, x〉)

using the fact that d2

db2 ( 1
(k′+1)(k′+2)b

k′+2) = d2

db2 ( 1
k′+1b

k′+1) = bk
′

and defining the degree k′ + 2

polynomial Qk′+2 appropriately. Consequently,∫
Sd−1

∫ R

−R
(〈ω, x〉 − b)+bk

′
db Yk,j(ω) dω =

∫
Sd−1

Qk′+2(〈ω, x〉)Yk,j(ω) dω. (34)

For any x ∈ Rd, Qk′+2(〈ω, x〉) is a polynomial on ω ∈ Sd−1 of degree at most k′+ 2 (the degree is
k′ + 2 if x 6= 0 and zero otherwise). That is,

Qk′+2(〈·, x〉) ∈
k′+2⊕
i=0

Hdi |Sd−1 =

k′+2⊕
i=0

Ydi |Sd−1 ,

where the last equality is by Lemma 9 applied to each Hdi |Sd−1 . Since any pair of spaces Ydi |Sd−1

and Ydi′ |Sd−1 are orthogonal when i 6= i′, we have that Yk,j ∈ Ydk|Sd−1 must be orthogonal to
Qk′+2(〈ω, x〉) as k′ + 2 < k. This means that the right-hand side of (34) is zero.
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To deal with the case of Yk,j ⊗Xk−2, we reproduce the same argument, but in this case Qk(〈·, x〉)
has a term of degree k that survives:∫

Sd−1

Qk(〈ω, x〉)Yk,j(ω) dω =

∫
Sd−1

1

k(k − 1)
〈ω, x〉k Yk,j(ω) dω

=
‖x‖k

k(k − 1)

∫
Sd−1

〈ω, x/‖x‖〉k Yk,j(ω) dω

=
‖x‖k|Sd−2|
k(k − 1)

Yk,j(x/‖x‖)
∫ 1

−1
tkPk,d(t)(1− t2)(d−3)/2 dt.

In the second equality we used that x 6= 0 (in the case x = 0 the result is zero). In the third
equality we used the Funk-Hecke formula (Lemma 10). Note that the sequence (Pk′′,d)k′′≥0 of
Legendre polynomials in dimension d are orthogonal with respect to the inner product 〈f, g〉 =∫ 1

−1 f(t)g(t)(1 − t2)(d−3)/2 dt. Consequently,
∫ 1

−1 t
kPk,d(t)(1 − t2)(d−3)/2 dt is proportional to

the coefficient of Xk in the basis (Pk′′,d)k′′≥0, which is non-zero. Finally, Yk,j being a non-zero
polynomial on Rd, Yk,j(x/‖x‖) is non-zero almost everywhere.

Lemma 19. Let f ∈ C2((−R,R)). For any x ∈ (−R,R), we have

f(x) = f(−R) + (x+R)f ′(−R) +

∫ R

−R
(x− t)+f ′′(t) dt,

f(x) = f(R) + (x−R)f ′(−R) +

∫ R

−R
(t− x)+f

′′(t) dt.

Proof. By the fundamental theorem of calculus,

f(x) = f(−R) +

∫ x

−R
f ′(t) dt,

f(x) = f(R)−
∫ R

x

f ′(t) dt.

And integrating by parts, we get that for any x ∈ (−R,R),∫ x

−R
f ′(t) dt =

∫ R

−R
1t≤xf

′(t) dt =
[
−(x− t)+f ′(t)

]t=R
t=−R +

∫ R

−R
(x− t)+f ′′(t) dt

= (x+R)f ′(−R) +

∫ R

−R
(x− t)+f ′′(t) dt,

In the last equality we used that (x−R)+ = 0, (x+R)+ = x+R for all x ∈ (−R,R). Similarly,

−
∫ R

x

f ′(t) dt = −
∫ R

−R
1t≥xf

′(t) dt =
[
−(t− x)+f

′(t)
]t=R
t=−R +

∫ R

−R
(t− x)+f

′′(t) dt

= (x−R)f ′(R) +

∫ R

−R
(t− x)+f

′′(t) dt.

Proof of Theorem 5. By Proposition 5, for any h ∈ span(A), we have

∀x ∈ BR(Rd),
∫
Sd−1×(−R,R)

(〈ω, x〉 − b)+h(ω, b) d(ω, b) = 0. (35)

If α ∈ M(Sd−1 × (−R,R)) belongs to the closure clw(span(A)) in the topology of weak conver-
gence, there exists a sequence (hk)k≥0 ⊆ span(A) such that for any ψ ∈ Cb(Sd−1 × (−R,R)),∫
Sd−1×(−R,R)

ψ(ω, b)hk(ω, b) d(ω, b)→
∫
Sd−1×(−R,R)

ψ(ω, b) dα(ω, b). Since (ω, b) 7→ (〈ω, x〉 −
b)+ is in Cb(Sd−1 × (−R,R)) for any x ∈ Rd, we have∫

Sd−1×(−R,R)

(〈ω, x〉 − b)+ dα(ω, b) = lim
k→∞

∫
Sd−1×(−R,R)

(〈ω, x〉 − b)+hk(ω, b) d(ω, b) = 0,

where the second equality is by (35). This concludes the proof.
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C.3 PROOF OF PROPOSITION 4

To prove Proposition 4, we use two main intermediate results:

• Proposition 6, which proves that (14) holds. Its proof uses Lemma 20, which in turn builds on
Lemma 21.

• Corollary 1, which proves that span(B)⊕R(S(BR(Rd))) is dense in C0(PdR) and thus implies
that (13) and (14) specify a unique measure. Corollary 1 is a corollary of Proposition 7 (which
makes use of Lemma 23), and also relies on Lemma 24. Both Proposition 7 and Corollary 1 use
Lemma 22.

Proposition 6. Let α ∈ M(PdR) as in Proposition 1. Suppose that ‖f‖R,BR′ (Rd) is finite for some
R′ > R. For any k, j, k′ ∈ Z+ such that k′ ≡ k (mod 2), we have

〈α, Yk,j ⊗Xk′〉 = −cd〈f, (−∆)(d+1)/2R∗(Yk,j ⊗ 1|X|<RXk′)〉.

The quantity 〈f, (−∆)(d+1)/2R∗(Yk,j⊗1|X|<RXk′)〉 is well defined despite 1|X|<RXk′ not being
continuous on R; we define it as 〈f, (−∆)(d+1)/2R∗(Yk,j ⊗ (g̃ + 1|X|<RX

k′))〉, where g̃ is any
function in S((−R,R)) such that g̃ + 1|X|<RX

k′ ∈ S((−R,R)).

Proof. Take Yk,j ⊗ Xk′ as in the statement of the lemma. Let N = max{k′, k′′} and define
(bn)

N
n=0 as bn = − dn

dxn (xk
′
)|x=R. Note that higher-order derivatives are zero. For ε, δ > 0, let

g : R → R be the function described in Lemma 20 corresponding to the sequence (bn)
N
n=0 and

define g̃ : R → R as g̃(x) = g(−x − R) + g(x − R). We define the function ψ̃ : Pd → R as
ψ̃ = Yk,j ⊗ (g̃ + 1|X|<RX

k′). Note that ψ̃ ∈ S(PdR+ε+δ), as both 1|X|<RXk′ and g̃ take value
zero outside of (−R − ε− δ,R + ε+ δ). Let α̃ ∈ M(PdR+ε+δ) be the measure from Proposition 1
for U = BR+ε+δ(Rd), and note that by definition, 〈α̃, ψ〉 = 〈α,ψ〉 for any ψ ∈ C0(PdR). Thus, we
have that

〈α, Yk,j ⊗ 1|X|≤RXk′〉 = 〈α̃, Yk,j ⊗ 1|X|≤RXk′〉
=〈α̃, ψ̃〉 − 〈α̃, Yk,j ⊗ g̃〉 = −cd〈f, (−∆)(d+1)/2R∗ψ̃〉 − cd〈f, (−∆)(d+1)/2R∗(Yk,j ⊗ g̃)〉

The first equality holds because 〈α̃, ψ〉 = 〈α,ψ〉 for any ψ ∈ C0(PdR). The second and fourth
equalities are by the definition of ψ. The third equality holds by the definition of α̃ and because ψ̃ ∈
S(PdR+ε+δ). The fifth equality holds by the definition of α̃ and because Yk,j ⊗ g̃ ∈ S(PdR+ε+δ).

Lemma 20. Let (bn)
N
n=0 ⊆ R. For any ε, δ > 0, there exists a function g : R → R which is C∞

such that g(x) = 0 for ‖x‖ ≥ ε+ δ, and such that dn

dxn g(x) = bn for n = {0, . . . , N}, dn

dxn g(x) = 0
for n > N .

Proof. Let h : (−∞, 0] be the function described in Lemma 21 such that (d
nh
dxn )(0) = bn for n =

{0, . . . , N}. Let h̃ : (−∞, 0] be the function described in Lemma 21 such that (d
nh̃
dxn )(0) = (−1)nbn

for n = {0, . . . , N}. We define g piecewise in terms of h and h̃:

g(x) =

{
h(x) if x ≥ 0,

h̃(−x) if x > 0.

Note that g defined in this form is C∞ as ( dn

dxn (h̃ ◦ (t 7→ −t)))(x) = (−1)nh̃(−x), which means
that ( dn

dxn (h̃ ◦ (t 7→ −t)))(0) = (−1)nh̃(0) = (−1)2nbn = bn = (d
nh
dxn )(0).

Lemma 21. For any ε, δ > 0, define ξε,δ : (−∞, 0] → R as a C∞ function such that ξε,δ(x) = 0
for x ≤ −(ε + δ), ξε,δ(x) = 1 for x ≥ −ε, and ξε,δ is non-decreasing. Define ∂−1ξε,δ to be the
antiderivative of ξε,δ taking value 0 at −∞, i.e. (∂−1ξε,δ)(x) =

∫ x
−ε−δ ξε,δ(t) dt. Similarly, for all
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n ≥ 0, let ∂−(n+1)ξε,δ(x) =
∫ x
−ε−δ(∂

−nξε,δ)(t) dt. For ε, δ > 0 small enough, given a sequence
(bn)Nn=0 ⊆ R, there exist coefficients (an)Nn=0 ⊆ R such that the function h on (−∞, 0] defined as

h(x) =

N∑
n=0

an(∂−nξε,δ)(x)

satisfies (d
nh
dxn )(0) = bn for n = {0, · · · , N} and (d

nh
dxn )(0) = 0 for n > N . In the limit δ → 0, for

x ∈ (−ε, 0] we have (∂−nξε,δ)(x) = 1
n! (x+ ε)n +O(δ). Moreover, in the limits ε, δ → 0, we have

an = bn +O(ε+ δ).

Proof. First, we show that for n = {0, . . . , N} and x ∈ (−ε− δ, 0], (∂−nξε,δ)(x) = 1
n! (x+ ε)n +

O(δ). This is shown by proving that 1
n! (x+ε)n ≤ (∂−nξε,δ)(x) ≤ 1

n! (x+ε+δ)n by finite induction:
the holds for n = 0 trivially and for the general case one integrates both bounds.

Consequently,

dnh

dxn
(x) =

N∑
n′=n

an′(∂
n−n′ξε,δ)(x) =

N−n∑
n′=0

an′+n(∂−n
′
ξε,δ)(x) =

N−n∑
n′=0

an′+n
(n′)!

(x+ ε)n
′
+O(δ),

=⇒ dnh

dxn
(0) =

N−n∑
n′=0

an′+n
(n′)!

εn
′
+O(δ).

Thus, imposing that (d
nh
dxn )(0) = bn for n = {0, · · · , N}we have that an = bn−

∑N−n
n′=1

an′+n

(n′)! ε
n′+

O(δ) = bn +O(ε+ δ).

Lemma 22. For any k ∈ Z+, let Hdk|Sd−1 be the space of homogeneous polynomials over Rd of
degree k restricted to the hypersphere Sd−1. We have that the image

{
Rϕ |ϕ ∈ S(BR(Rd))

}
is

equal to the space {ψ ∈ S(PdR) | ∀k ∈ Z+,
∫
R ψ(ω, b)bk db ∈ Hdk|Sd−1}.

Proof. We want to show the equality{
Rϕ |ϕ ∈ S(BR(Rd))

}
=

{
ψ ∈ S(Pd)

∣∣∣∣ ∀(ω,b)∈Sd−1×(R\(−R,R)), ψ(ω,b)=0,

∀k∈Z+,
∫
R ψ(ω,b)b

k db∈Hd
k|Sd−1

}
.

The left-to-right inclusion holds because:

• For all ϕ ∈ S(BR(Rd)), when {x|〈ω, x〉 = b} does not intersect BR(Rd), we have
(Rϕ)(ω, b) =

∫
{x|〈ω,x〉=b} ϕ(x) dx = 0. This happens when (ω, b) ∈ Sd−1 × (R \

(−R,R)).

• By Lemma 11, for all k ∈ Z+,
∫
R(Rϕ)(ω, b)bk db is a homogeneous polynomial of degree

k.

To show the right-to-left inclusion note that by Lemma 11, for all ψ ∈ S(Pd) such that for all
k ∈ Z+,

∫
R(ω, b)bk db is a homogeneous polynomial of degree k, there exists ϕ ∈ S(Rd) such that

ψ = Rϕ. Since for all (ω, b) ∈ Sd−1 × R with b > R we have (Rϕ)(ω, b) = ψ(ω, b) = 0, we
apply Lemma 12 and obtain that ϕ(x) = 0 for all x such that ‖x‖2 > R. Note that this implies that
the derivatives of ϕ of any order are equal to 0 for all x such that ‖x‖2 > R, and by continuity they
must be 0 for all x such that ‖x‖2 ≥ R. By the definition of the space of Schwartz functions on an
open set in the first paragraph of Sec. 3, we conclude that ϕ ∈ S(BR(Rd)).

Proposition 7. Consider the spaces I = {Rϕ |ϕ ∈ S(BR(Rd))} and N = {ψ ∈ C∞(PdR) | ∀x ∈
BR(Rd), (R∗ψ)(x) = 0} as subspaces of C∞(PdR). The topology we consider on C∞(PdR) is
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the one for which a sequence (fn) converges to 0 if and only for any differential operator D the
sequence (Dfn) converges to zero uniformly. Define the set

B = {Yk,j ⊗Xk′ | k, j, k′ ∈ Z+, k ≡ k′ (mod 2), k′ < k, 1 ≤ j ≤ Nd,k}. (36)

We have that N = cl(span(B)) in the topology of C∞(PdR). Also, N = I⊥, where I⊥ = {ψ ∈
C∞(PdR) | ∀χ ∈ I,

∫
Pd
R
ψ(ω, b)χ(ω, b) d(ω, b) = 0} is the annihilator of I with respect to the

bilinear form on C∞(PdR)× S(BR(Rd)).

Proof. The proof is based on pages 15-17 of Helgason (1994), which shows an analogous result for
Rd and Pd. First, note that

I⊥ = {ψ ∈ C∞(PdR) | ∀ϕ ∈ S(BR(Rd)),
∫
Pd
R

ψ(ω, b)(Rϕ)(ω, b) d(ω, b) = 0}

= {ψ ∈ C∞(PdR) | ∀ϕ ∈ S(BR(Rd)),
∫
Pd

ψ(ω, b)(Rϕ)(ω, b) d(ω, b) = 0}

= {ψ ∈ C∞(PdR) | ∀ϕ ∈ S(BR(Rd)),
∫
Rd

(R∗ψ)(x)ϕ(x) dx = 0}

= {ψ ∈ C∞(PdR) | ∀x ∈ BR(Rd), (R∗ψ)(x) = 0} = N .
The first equality holds by the definition of the annihilator of I. The second equality holds because
if ϕ ∈ S(BR(Rd)), then Rϕ is zero outside of PdR. The third equality is by Lemma 13, which
holds because S(BR(Rd)) ⊆ Cc(Rd) and any function ψ ∈ C∞(PdR) may be trivially extended
to a (locally) integrable function on Pd by setting it equal to zero on the complement of PdR (we
also use this extension to define the dual Radon transformR∗ψ). The fourth equality holds because
S(BR(Rd)) is dense in C0(BR(Rd)) and the fifth equality is by the definition of N .

It remains to show that I⊥ = cl(B). First, we show that if ψ ∈ S(PdR), then

ψ ∈ I ⇐⇒
∫
Pd
R

ψ(ω, b)χ(ω, b) d(ω, b) = 0, ∀χ ∈ B. (37)

Suppose that ψ = Rϕ with ϕ ∈ S(BR(Rd)). Then, by Lemma 22 we have ψ ∈ S(PdR) and

∀k′ ∈ Z+,

∫ R

−R
ψ(ω, b)bk

′
db =

∫
R
ψ(ω, b)bk

′
db ∈ Hdk′ |Sd−1

Since Hdk′ |Sd−1 = Ydk′ |Sd−1 ⊕ Ydk′−2|Sd−1 ⊕ · · · ⊕ Ydk′−2[k′/2]|Sd−1 by Lemma 9, we have that for
any k > k′, Yk,j is orthogonal to Hdk′ . Hence,

∀k′ ∈ Z+,

∫
Pd
R

ψ(ω, b)(Yk,j ⊗Xk′)(ω, b) d(ω, b) =

∫
Sd−1

Yk,j(ω)

∫ R

−R
ψ(ω, b)bk

′
db dω = 0,

which concludes the left-to-right implication in (37). For the reverse implication, we use Lemma 15.
From the right-hand side of (37), we obtain that

∀0 ≤ k′ < k, k ≡ k′ (mod 2), 1 ≤ j ≤ Nk,d, 0 = Yk,j(ω)

∫ R

−R
ψk,j(b)b

k′ db,

which implies that
∫ R
−R ψk,j(b)b

k′ d(ω, b) = 0. Since ψk,j(−b) = (−1)kψk,j(b), when k and k′

have different parity we have
∫ R
−R ψk,j(b)b

k′ db = 0 as well. Thus, we obtain that∫ R

−R
ψ(ω, b)bk

′
db =

∑
0≤k≤k′, k≡k′(mod 2)

Nk,d∑
j=1

Yk,j(ω)

∫ R

−R
ψk,j(ω, b)b

k′ db. (38)

Since Hdk′ |Sd−1 =
∑

0≤k≤k′, k≡k′(mod 2) Ydk|Sd−1 , we conclude that the right-hand side of (38) be-
longs to Hdk′ |Sd−1 . Thus, by Lemma 22 we obtain that ψ ∈ I.
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Remark that when ψ ∈ N , we have

∀x = rω ∈ BR(Rd), (R∗ψ)k(x) =

Nk,d∑
j=1

Yk,j(ω)

∫
Sd−1

(R∗ψ)(rω̃)Yk,j(ω̃) dω̃ = 0. (39)

Consider now the spaces S(BR(Rd))k = {ϕk | ϕ ∈ S(BR(Rd))} and S(PdR)k = {ψk | ϕ ∈
S(PdR)}. By (37) we have that when ψ ∈ S(PdR)k,

ψ ∈ R(S(BR(Rd)))k ⇐⇒

∀k′ < k, k ≡ k′ (mod 2), 1 ≤ j ≤ Nk,d,
∫
Pd
R

ψ(ω, b)(Yk,j ⊗Xk′)(ω, b) d(ω, b) = 0.

In other words, the finite-dimensional space Ek = span({Yk,j ⊗Xk′ | k′ < k, k ≡ k′ (mod 2), 1 ≤
j ≤ Nk,d}) has annihilator E⊥k = R(S(BR(Rd)))k within S(PdR)k. Since for ψ ∈ N we have
(R∗ψ)k = 0 on BR(Rd) by (39), we get that

∀ϕ ∈ S(BR(Rd)), 〈(Rϕ)k, ψk〉 = 〈Rϕ,ψk〉 = 〈ϕ,R∗ψk〉 = 〈ϕ, (R∗ψ)k〉 = 0. (40)

Here, the first equality holds because ψk ∈ S(PdR)k, the second equality holds by Lemma 13 and
the third equality holds because R∗ψk = (R∗ψ)k by Lemma 23. Equation (40) implies that ψk
belongs to the annihilator (R(S(BR(Rd)))k)⊥ = (E⊥k )⊥. As argued in Helgason (1994), the finite
dimension of Ek implies that Ek = (E⊥k )⊥. Thus, ψk belongs to Ek. Since the convergence of∑∞
k=0 ψk to ψ is in the topology of C∞(PdR), we conclude that ψ ∈ cl(

⊕∞
k=0Ek) = cl(span(B)).

Corollary 1. Let B be the set defined in (36). Let C0(PdR) be the set of continuous functions f on
PdR such that ∀ε > 0 there exists a compact K ⊆ PdR such that |f(ω, b)| < ε for (ω, b) ∈ PdR \K
(note that C0(PdR) may be regarded as a subset of C(PdR) by considering the trivial extension to the
boundary). Then, we can write

C0(PdR) ⊆ cl∞(span(B)⊕R(S(BR(Rd)))),

where the closure cl∞ is in the topology of C0(PdR) (the topology of uniform convergence).

Proof. Note also that by the proof of Proposition 7, we have that the annihilator of Ek
within S(PdR)k is R(S(BR(Rd)))k. We want to show that the annihilator of Ek within
cl∞(S(PdR)k) is cl∞(R(S(BR(Rd)))k). Note that cl∞(S(PdR)k) = {ψ =

∑Nk,d

j=1 ψk,j ⊗
Yk,j | ψk,j ∈ C0((−R,R)) even }. To show that the annihilator of Ek within cl∞(S(PdR)k) is
cl∞(R(S(BR(Rd)))k), it suffices to show that

cl∞(R(S(BR(Rd)))k)

= {ψ =

Nk,d∑
j=1

ψk,j ⊗ Yk,j | ψk,j ∈ C0((−R,R)) even ,∀k′ < k,

∫
R
ψ(ω, b)bk

′
db = 0}.

(41)

Before going forward, remark that one can construct functions (χk′)k′<k,k′ even in S((−R,R)) such
that for any k′, k′′ < k, k′, k′′ even, we have

∫
R χk′(b)b

k′′ db = δk′,k′′ . Suppose that (ψi)
∞
i=0 ⊆

S(PdR)k converges to ψ belonging to the right-hand side of (41). Then, we construct the sequence
(ψ̃i)

∞
i=0 as

ψ̃i(ω, b) = ψi(ω, b)−
Nk,d∑
j=1

∑
k′<k,k′even

〈ψi, Yk,j ⊗Xk′〉Yk,j(ω)χk
′
(b).
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Remark that for any k′ < k, k′ even,

∫
R
ψ̃i(ω, b)b

k′ db =

∫
R
ψi(ω, b)b

k′ db−
Nk,d∑
j=1

∑
k′′<k,k′′even

〈ψi, Yk,j ⊗Xk′′〉Yk,j(ω)

∫
R
χk′′(b)b

k′ db

=

∫
R

Nk,d∑
j=1

〈ψi(·, b), Yk,j〉Yk,j(ω)

 bk
′
db−

Nk,d∑
j=1

〈ψi, Yk,j ⊗Xk′〉Yk,j(ω) = 0

We have that (ψ̃i)
∞
i=0 belongs to R(S(BR(Rd)))k because by Lemma 22 and the decomposition in

Lemma 9,R(S(BR(Rd)))k = {ψ ∈ S(PdR)k | ∀k′ < k,
∫
R ψ(ω, b)bk

′
db = 0}. Moreover,

lim
i→∞

ψ̃i(ω, b) = lim
i→∞

ψi(ω, b)−
Nk,d∑
j=1

∑
k′<k,k′even

(
lim
i→∞
〈ψi, Yk,j ⊗Xk′〉

)
Yk,j(ω)χk

′
(b)

= ψ(ω, b)−
Nk,d∑
j=1

∑
k′<k,k′even

〈ψ, Yk,j ⊗Xk′〉Yk,j(ω)χk
′
(b) = ψ(ω, b),

where the last equality follows from ψ fulfilling
∫
R ψ(ω, b)bk

′
db = 0. Moreover, the convergence

is uniform on PdR, which shows that ψ ∈ cl∞(R(S(BR(Rd)))k).

By Lemma 17, we have that the annihilator of Ek within cl∞(S(PdR)k) + Ek is
cl∞(R(S(BR(Rd)))k). Now, note that 〈·, ·〉 is an inner product on cl∞(S(PdR)k) + Ek, and
that we are in position to apply Lemma 18 with E = cl∞(S(PdR)k) ⊕ Ek, U = Ek, and
U⊥ = cl∞(R(S(BR(Rd)))k). We obtain that

cl∞(S(PdR)k) + Ek = Ek ⊕ cl∞(R(S(BR(Rd)))k). (42)

Consequently,

C0(PdR) ⊆ cl∞

 ∞⊕
k=0

cl∞(S(PdR)k) + Ek

 = cl∞

 ∞⊕
k=0

Ek ⊕ cl∞(R(S(BR(Rd)))k)


⊆ cl∞

cl∞(R(S(BR(Rd))))⊕
∞⊕
k=0

Ek

 = cl∞

R(S(BR(Rd)))⊕
∞⊕
k=0

Ek

 .

Here, the first inclusion holds because C0(PdR) = cl∞(S(PdR)) = cl∞(cl(
⊕∞

k=0 S(PdR)k)) =
cl∞(

⊕∞
k=0 S(PdR)k), where we used that the uniform norm topology is weaker than the topology

of C∞(PdR). The first equality holds by (42). The second inclusion holds because for any k ∈ Z+,
R(S(BR(Rd)))k ⊆ R(S(BR(Rd))) by Lemma 24. The last equality holds because by a diagonal
argument, cl∞(cl∞A+B) = cl∞(A+B) for any subspaces A,B.

Lemma 23. Let ψ ∈ S(BR(Rd)). Let (R∗ψ)k be the k-th component of the decomposition from
Lemma 14 and R∗ψk the Radon transform of the k-th component of the decomposition given by
Lemma 15. Then (R∗ψ)k = R∗ψk for any k ∈ Z+.
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Proof. Note also that

(R∗ψ)k(x) =

Nk,d∑
j=1

Yk,j(ω)

∫
Sd−1

(R∗ψ)(rω̃)Yk,j(ω̃) dω̃

=

Nk,d∑
j=1

Yk,j(ω)

∫
Sd−1

∫
Sd−1

ψ(ω̂, r〈ω̂, ω̃〉) dω̂ Yk,j(ω̃) dω̃

=

Nk,d∑
j=1

Yk,j(ω)

∫
Sd−1

∫
Sd−1

∞∑
k′=0

Nk′,d∑
j′=1

ψk′,j′(r〈ω̂, ω̃〉)Yk′,j′(ω̂) dω̂ Yk,j(ω̃) dω̃

=

∞∑
k′=0

Nk′,d∑
j′=1

Nk,d∑
j=1

Yk,j(ω)

∫
Sd−1

∫
Sd−1

Yk′,j′(ω̂)ψk′,j′(r〈ω̂, ω̃〉) dω̂ Yk,j(ω̃) dω̃

=

∞∑
k′=0

Nk′,d∑
j′=1

Yk′,j′(ω)

∫
Sd−1

∫
Sd−1

Yk′,j′(ω̂)ψk′,j′(r〈ω̂, ω̃〉) dω̂ Yk′,j′(ω̃) dω̃

(43)

In the last equality, we used that
∫
Sd−1

∫
Sd−1 Yk′,j′(ω̂)ψk′,j′(r〈ω̂, ω̃〉) dω̂ Yk,j(ω̃) dω̃ = 0 if

(k′, j′) 6= (k, j), which holds by the Funk-Hecke formula (Lemma 10). Also,

(R∗ψk)(x) =

∫
Sd−1

ψk(ω̂, r〈ω̂, ω〉) dω̂ =

∫
Sd−1

Nk,d∑
j=1

∫
Sd−1

ψ(ω̃, r〈ω̂, ω〉)Yk,j(ω̃) dω̃ Yk,j(ω̂) dω̂

=

∫
Sd−1

Nk,d∑
j=1

ψk,j(r〈ω̂, ω〉)Yk,j(ω̂) dω̂

=

∞∑
k′=0

Nk′,d∑
j′=1

Yk′,j′(ω)

∫
Sd−1

∫
Sd−1

Nk,d∑
j=1

ψk,j(r〈ω̂, ω̃〉)Yk,j(ω̂) dω̂ Yk′,j′(ω̃) dω̃

=

∞∑
k′=0

Nk′,d∑
j′=1

Yk′,j′(ω)

∫
Sd−1

∫
Sd−1

ψk′,j′(r〈ω̂, ω̃〉)Yk′,j′(ω̂) dω̂ Yk′,j′(ω̃) dω̃

(44)

Note that the right-hand sides of (43) and (44) are equal, which concludes the proof.

Lemma 24. We have
R(S(BR(Rd)))k ⊆ R(S(BR(Rd))).

Proof. By Lemma 22 and the decomposition in Lemma 9,

R(S(BR(Rd)))k = {ψ ∈ S(PdR)k | ∀k′ < k,

∫
R
ψ(ω, b)bk

′
db = 0}. (45)

By the decomposition in Lemma 15, for any ψ ∈ S(PdR), we have that

ψk(ω, b) =

Nk,d∑
j=1

ψk,j(b)Yk,j(ω), where ψk,j(b) =

∫
Sd−1

ψ(ω, b)Yk,j(ω) dω.

Note that ψk,j ∈ S((−R,R)) because differentiating under the integral sign, one obtains
( d

j

dbj ψk)(ω,R) = ( d
j

dbj ψk)(ω,−R) = 0. Thus, S(PdR)k = {
∑Nk,d

j=1 ψk,j ⊗ Yk,j | ψk,j ∈
S((−R,R))}, which is included in S(PdR). Plugging this into (45), we get

R(S(BR(Rd)))k =


Nk,d∑
j=1

ψk,j ⊗ Yk,j
∣∣∣∣ ψk,j ∈ S((−R,R)), ∀k′ < k,

∫
R
ψ(ω, b)bk

′
db = 0


⊆
{
ψ ∈ S(PdR) | ∀k ∈ Z+,

∫
R
ψ(ω, b)bk db ∈ Hdk|Sd−1

}
= R(S(BR(Rd)))

where the inclusion is by the decomposition in Lemma 9 and the last equality is by Lemma 22.
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Proposition 8 (Adaptation of Lemma 9 of Ongie et al. (2019)). Let U ⊆ Rd be an open set. Define
f : U → R as f(x) =

∫
Pd
U

(〈ω, x〉−b)+ dα(ω, x)+〈v, x〉+c for some α ∈M(PdU ), v ∈ Rd, c ∈ R.
For any ϕ ∈ S(U),

〈f,∆ϕ〉 =

∫
Pd
U

(Rϕ)(ω, b) dα(ω, b).

Proof. For any ϕ ∈ S(U),∫
U
f(x)∆ϕ(x) dx =

∫
Rd

f(x)∆ϕ(x) dx

=

∫
Rd

∫
Pd
R

(〈ω, x〉 − b)+ dα(ω, b) ∆ϕ(x) dx

=

∫
Pd
R

∫
Rd

(〈ω, x〉 − b)+∆ϕ(x) dx dα(ω, b)

= −
∫
Pd
R

∫
Rd

1〈ω,x〉>b〈ω,∇ϕ(x)〉 dx dα(ω, b)

= −
∫
Sd−1×R

∫
{x′|〈ω,x′〉=b}

∫
R+

1t>b〈ω,∇ϕ(x′ + tω)〉 dt dx′ dα(ω, b)

= −
∫
Sd−1×R

∫
{x′|〈ω,x′〉=b}

∫
R+

1t>b
d

dt
ϕ(x′ + tω) dt dx′ dα(ω, b)

= −
∫
Sd−1×R

∫
{x′|〈ω,x′〉=b}

−ϕ(x′) dx′ dα(ω, b) =

∫
Sd−1×R

(Rϕ)(ω, b) dα(ω, b)

The first equality holds because the Laplacian of an affine function is 0. The second equality holds
by Fubini’s theorem. The third equality follows from the divergence theorem, since ϕ ∈ S(U), the
boundary term is zero.

Proof of Proposition 4. By the definition of α in Proposition 1, we have

∀ϕ ∈ S(BR(Rd)), 〈Rϕ, α〉 = cd〈f, (−∆)(d+1)/2R∗Rϕ〉 = −〈f,∆ϕ〉.

In the last equality we use that (3). Proposition 6 readily implies that

∀k, j, k′ s.t. k′ ≡ k (mod 2), k′ < k, 〈α, Yk,j ⊗Xk′〉 = −cd〈f, (−∆)(d+1)/2R∗(Yk,j ⊗ 1|X|<RXk′)〉.

To show that α is the unique measure fulfilling (13) and (14), we argue via the Riesz-Markov-
Kakutani representation theorem, which states that the space of signed Radon measuresM(PdR) is
the dual space C ′0(PdR) of the space C0(PdR) of continuous functions vanishing at infinity. That is,
a signed Radon measure is uniquely determined by its action on C0(PdR), or on any dense space
in C0(PdR) in the topology of uniform convergence (as a corollary of the dominated convergence
theorem). Corollary 1 states that C0(PdR) ⊆ cl∞(span(B) ⊕ R(S(BR(Rd)))), or in other words,
that span(B)⊕R(S(BR(Rd))) is dense inC0(PdR) in the uniform convergence topology. Since (13)-
(14) specify how α acts on span(B)⊕R(S(BR(Rd))). By the BLT theorem (Lemma 1), any linear
mapping which is continuous on span(B) ⊕ R(S(BR(Rd))) in the uniform convergence topology
can be extended uniquely to a continuous linear mapping on C0(PdR). This means that there exists a
unique measure in C ′0(PdR) =M(PdR) that coincides with α on span(B)⊕R(S(BR(Rd))), which
is α itself.

Proposition 8 readily states that (13) holds for any measure α′ ∈ M(PdR) for which f admits a
representation of the form (7) on BR(Rd). The characterization of α as the unique measure in
M(PdR) such that (14) holds and f admits a representation of the form (7) on BR(Rd) can be
directly deduced from the uniqueness of the characterization (13)-(14) and the fact that (13) holds
for any measure for which f admits a representation.
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