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A Additional Results on Video Recognition1

A.1 Video datasets2

• Kinetics-400 (K400) [1] is a large-scale video dataset, which consists of 240k training3

videos and 20k validation videos in 400 different human action categories.4

• UCF-101 [2] contains 13k videos spanning over 101 human actions.5

• HMDB-51 [3] contains approximately 7k videos belonging to 51 action class categories.6

A.2 Comparison with state-of-the-arts on UCF-101 and HMDB-517

We also evaluate our method on the UCF-101 and HMDB-51 datasets to demonstrate its capacity to8

generalize to smaller datasets. We finetune our models on these two datasets using the pre-trained9

ViT-L model on Kinetics-400 and present the mean class accuracy over three splits utilizing 8 frames10

as inputs and 30 epochs for training. Table 1 reveals that our model has a pretty transfer capability,11

with mean class accuracy of 98.2% on UCF-101 and 79.0% on HMDB-51, respectively.12

Table 1: Mean class accuracy on UCF-101 and HMDB-51 achieved by different methods which are
transferred from their Kinetics models with RGB modality (over 3 splits).

Method UCF-101 HMDB-51
ECOEn [4] 94.8% 72.4%
ARTNet [5] 94.3% 70.9%

I3D [6] 95.6% 74.8%
R(2+1)D [7] 96.8% 74.5%
S3D-G [8] 96.8% 75.9%
TSM [9] 95.9% 73.5%

STM [10] 96.2% 72.2%
TEINet [11] 96.7% 72.1%

MVFNet [12] 96.6% 75.7%
TDN [13] 97.4% 76.4%

Ours 98.2% 79.0%

A.3 More visualizations of different classifiers13

Here we provide more visualizations of different classifiers in Figure 1.14
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Figure 1: Inter-class correlation maps of “embeddings of class labels” for 20 categories on Kinetics-
400. The color thresholds are adjusted for better understandability. Please zoom in for best view.
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A.4 Comparison with the unfrozen classifier15

As we described in Section 2.2 of the submission, we freeze the classifier from updating during the16

fine-tuning of the downstream tasks for the reason: It could preserve the textual knowledge from17

being disturbed by the randomness brought by the mini-batch. By doing so, we can replace the offline18

classifier and do zero-shot recognition.19

Here, we test the unfrozen classifier with the same textual embeddings as the frozen classifier. The20

unfrozen results are given in Table 2. We can see that the unfrozen setting causes the original textual21

knowledge to be broken, resulting in a decrease in performance.22

Table 2: Frozen classifier vs. Unfrozen classifier.

Setting Top-1 Top-5

frozen 81.52 95.49
unfrozen 79.16 93.55

B Additional Implementation Details23

B.1 Large-scale datasets for pre-training24

Here we describe the large-scale web-scale datasets used in other video recognition methods for25

pre-training. The suffix of the name represents the magnitude of the dataset.26

• ImageNet-1K/21K: The ImageNet-1K dataset was used to pre-train models for computer27

vision transfer learning. It was first released for the ILSVRC2012 visual recognition28

challenge. The ImageNet-1K dataset is a subset of the larger ImageNet dataset, which29

contains 14,197,122 images split into 21,841 categories. The whole dataset is known to30

as ImageNet-21K (sometimes referred to as ImageNet-22K) and has been open-source 1.31

ImageNet-1K was created by selecting a subset of 1.2M images from ImageNet-21K, that32

belong to 1000 mutually exclusive classes.33

• IG-65M: Facebook has proposed the IG-65M dataset, which contains approximately 6534

million public, user-generated Instagram videos with hashtags. Due to label and temporal35

noise, the dataset is used for weakly-supervised training. This dataset is not open-source,36

but several pre-trained R(2+1)D [7] and CSN [14] models are provided 2.37

• JFT-300M: JFT-300M is an internal Google dataset used to train image classification38

models. The dataset consists of 300M images that are labeled with 18,291 categories. Image39

labels are generated using a complex algorithm that combines raw web signals, web page40

connections, and user feedback. However, the dataset and the pre-trained weights are not41

open-source.42

• FLD-900M: FLD-900M is a large image-caption dataset from Microsoft, which includes43

900M Images and 900M Free form text (From one word, Phrase to sentence). By now, the44

dataset and the pre-trained weights are not open-source.45

• JFT-3B: JFT-3B is an internal Google dataset and a larger version of the JFT-300M. It has46

over 3 billion images that have been annotated with a class structure of around 30k labels47

using a semi-automated procedure. Also, the dataset and the pre-trained weights are not48

open-source.49

• WIT-400M: WIT-400M is a dataset that contains 400 million web image-text pairs, and is50

used to train CLIP [15]. CLIP does not release the dataset, but made all of the pre-trained51

models available 3. In this paper, we utilize the CLIP-pretrained models in our experiments.52

B.2 Visual encoder architectures53

In this paper, we use the visual encoder and textual encoder as shown in Table 3 and 4.54

1https://www.image-net.org
2https://github.com/facebookresearch/vmz
3https://github.com/openai/CLIP
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Table 3: CLIP-ResNet hyperparameters

Embedding Input ResNet Text Transformer
Model dimension resolution blocks width layers width heads

RN50 1024 224 (3, 4, 6, 3) 2048 12 512 8

Table 4: CLIP-ViT hyperparameters

Embedding Input Vision Transformer Text Transformer
Model dimension resolution layers width heads layers width heads

ViT-B/32 512 224 12 768 12 12 512 8
ViT-B/16 512 224 12 768 12 12 512 8
ViT-L/14 768 224 24 1024 16 12 768 12
ViT-L/14-336px 768 336 24 1024 16 12 768 12

B.3 Batch Gather for Distributed InfoNCE55

Instead of Data-Parallel Training (DP), which is single-process, multi-thread, and only works on56

a single machine, Distributed Data-Parallel Training (DDP) is a widely adopted single-program57

multiple-data training paradigm for single- and multi-machine training. Due to GIL contention across58

threads, per-iteration replicated model, and additional overhead introduced by scattering inputs and59

gathering outputs, DP is usually slower than DDP even on a single machine.60

Algorithm 1: Numpy-like Pseudocode that illustrates the role of Batch Gather in Distributed
InfoNCE.

# text_encoder: encoder network for text input
# vision_encoder: encoder network for vision input, e.g., images or videos.
# V: minibatch of vision inputs
# T: minibatch of text inputs
# N: the local batch size of each GPU, e.g.,16
# M: the number of GPUs, e.g.,8
# N * M: the global batch size for multi-gpu training, e.g.,128

# extract feature representations of each modality
local_vision_features = vision_encoder(V) # shape: [N, embed_dim]
local_text_features = text_encoder(T) # shape: [N, embed_dim]

# normalization
local_vision_features = l2_normalize(local_vision_features, axis=1)
local_text_features = l2_normalize(local_text_features, axis=1)

# batch_gather is a function gathering and concatenating the tensors across GPUs.
all_vision_features = batch_gather(local_vision_features) # shape: [N * M, embed_dim]
all_text_features = batch_gather(local_text_features) # shape: [N * M, embed_dim]

# scaled pairwise cosine similarities
# shape = [N, N * M]
logits_per_image = logit_scale * image_features @ all_text_features.t()
# shape = [N, N * M]
logits_per_text = logit_scale * text_features @ all_image_features.t()

# The logits are then used as inputs for N*M-way (e.g., 128-way) classification,
# resulting in a loss value corresponding to N inputs in each GPU.
# Then Distributed Data Parallel mechanism takes care of averaging these across GPUs,
# which becomes equivalent to calculating the loss over NMxNM (e.g.,128x128) similarities.

Hence, we develop the Distributed InfoNCE based on DDP for large batch size and fast training. The61

core of the Distributed InfoNCE implementation is batch gathering. Say there are M GPUs and each62

GPU gets N input pairs, we need to calculate the NM×NM similarity matrix across the GPUs for63

InfoNCE loss. Without batch gathering, each GPU only computes a local N×N matrix, s.t. N≪NM,64

Then the cosine similarity and the InfoNCE loss would be calculated only for the pairs within a single65

GPU and later their gradients would be averaged and synced. That’s obviously not what we want.66
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The batch gathering for Distributed InfoNCE is presented as follows. When calculating the similarity67

matrix (and thus the logit scores across text inputs for each image/video), a GPU only needs to hold68

M vision features, and perform matrix product with NM text features, yielding an M×NM matrix.69

This computation is distributed (i.e., sharded) across N GPUs, and we have calculated NM×NM70

similarities across the GPUs in total. The loss we employ is symmetric and the same happens w.r.t.71

text inputs. As shown in Algorithm 1, we also give an example pseudocode to help you understand72

the statement.73

B.4 Text template74

In Table4 of the submission, we study several text input forms, including class names, single hard75

template, multiple hard templates, and learnable templates. More details are as follows:76

Class name To build textual embeddings, we utilize the category names of the dataset as the text77

input, e.g., “eating hotdog”, “driving car”, etc.78

Single hard template We employ the hand-crafted template “a video of a person {class name}.” to79

form a sentence as input.80

Multiple hard templates CLIP 4 provides 28 templates for Kinetics, one of which is the above81

single template. We use these multiple templates as the text augmentation during training. At each82

iteration, we choose one template at random as text input. Then, using the above single hard template83

as input, we perform the evaluation.84

Learnable templates We adopt the automated prompt CoOp [16] to describe a prompt’s context85

using a set of learnable vectors. Specifically, the prompt given to the text encoder is designed with86

the following form,87

t = [V]1[V]2 . . . [V]M [class name], (1)

where each [V]m (m∈{1, . . . ,M}) is a vector of the same size as word embeddings, and M is a88

hyperparameter indicating the number of context tokens. We set the M to 4.89
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