TOWARDS EFFICIENT ADAPTATION OF PRUNING STRATEGY IN LARGE LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

Abstract

Post-training pruning has gained increasing attention with the rapid growth of large language models (LLMs). However, significant variations in weight distributions across different LLMs make a fixed pruning strategy inadequate for multiple models. In this paper, we propose an efficient evolutionary optimization framework, MECON, for adaptive LLM pruning. In particular, we design an effective search space built on our **Me**ta pruning metric to mitigate diverse weight distributions among LLMs. We then introduce model-wise reconstruction error, a lightweight search evaluation to speed up the evaluation of each search trial. We finally leverage Non-dominated Sorting Genetic Algorithm III (NSGA-III) as our search algorithm, handling both the single-objective problem of pruning metric search and the multi-objective problem of layerwise sparsity ratio search in discovering the optimal pruning strategy. We extensively evaluate our framework on LLaMA-1/2/3 and Mistral models across multiple benchmarks. Our results demonstrate that our adaptive pruning metrics consistently outperform existing ones, and the layerwise sparsity ratios improve the effectiveness of other pruning metrics. Furthermore, we validate the cross-task and crossmodel generalizability of our pruning metrics, offering a cost-effective solution to streamline the search process. We release our code in the anonymous repository: https://anonymous.4open.science/r/Mecon-5819.

028 029

031

000

001

002 003 004

006

008 009

010 011

012

013

014

015

016

017

018

019

021

024

025

026

027

1 INTRODUCTION

032 Large language models (LLMs) (Achiam et al., 2023; Touvron et al., 2023a; Le Scao et al., 2023) 033 have recently shown remarkable performance in a range of complex language benchmarks in the field 034 of language understanding and generation (Bubeck et al., 2023; Wei et al., 2022a;b). Despite their impressive performance, their extensive model size causes significant computational demands, making LLM inference and deployment a big challenge. One notable advancement in model compression 037 has centered on model pruning (LeCun et al., 1989; Hassibi et al., 1993; Han et al., 2015), which 038 shrinks model sizes by removing specific weights from the model – essentially setting them to zero. Traditional model pruning methods, typically involve retraining (Liu et al., 2018; Blalock et al., 2020) or iterative training to recover performance (Frankle & Carbin, 2018; Renda et al., 2019), 040 which are less feasible when scaling to large LLMs with billions of parameters. Recently, there has 041 been a growing effort in post-training pruning (PTP) due to its minimal resource demands. PTP 042 methods develop pruning metrics to evaluate the importance of weights, thus the weights with lower 043 importance can be removed. (Frantar & Alistarh, 2023; Sun et al., 2023; Zhang et al.). 044

However, as shown in Figure 1, we observe a significant performance drop when applying recent wellestablished pruning metrics (Frantar & Alistarh, 2023; Sun et al., 2023; Zhang et al.) to the LLaMA-3
(Meta, 2024) model. To analyze the reason for the performance drop, we demonstrate the distributions
of input activation norms and weight magnitudes, two main components considered by recent pruning
metrics. Despite the past success of SparseGPT (Frantar & Alistarh, 2023), Wanda (Sun et al., 2023),
and RIA (Zhang et al.) on LLaMA-1 (Touvron et al., 2023a) and LLaMA-2 (Touvron et al., 2023b)
models, the distinct weight distribution of LLaMA-3 (Meta, 2024) underscores the limitations of
using a fixed pruning metric across LLMs with varying weight distributions.

In this paper, we study the essential adaption of pruning strategy across different LLMs, and propose an efficient evolutionary optimization framework, named MECON, to automatically search for the

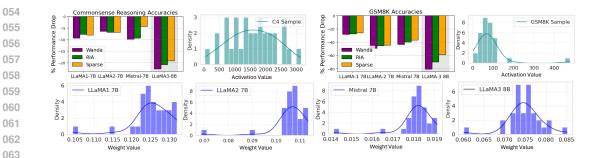


Figure 1: **Performance of existing pruning metrics on different LLMs.** Existing pruning metrics show significant performance drops on the LLaMA-3 model (bar charts in the upper part), influenced by its distinct weight distribution compared to LLaMA-1/2 and Mistral models (the lower part).

068 adaptive pruning strategy for different LLMs, including optimization of both the pruning metric and the layerwise sparsity ratios. In particular, we design an effective search space built on our Meta 069 pruning metric. Unlike prior pruning metrics (Frantar & Alistarh, 2023; Sun et al., 2023; Zhang et al.) that consider weights and activations rely on fixed heuristics, our meta pruning metric dynamically 071 balances the relationship between weights and activations, to mitigate diverse weight distributions 072 among different LLMs. Moreover, we also consider a better way for post-training pruning evaluations 073 of each search trial. We show that prior evaluations based on perplexity (Dong et al., 2024) are more 074 time-consuming and establish limited generalizability across different downstream tasks. Instead, we 075 propose a lightweight search evaluation, model-wise reconstruction error, to speed up the evaluation 076 in each search trial. Finally, we apply Non-dominated Sorting Genetic Algorithm III (NSGA-III) 077 (Deb & Jain, 2013; Jain & Deb, 2013) as our search algorithm, handling both the single-objective 078 problem of pruning metric search and the multi-objective problem of layerwise sparsity ratio search in a unified framework. 079

080 We empirically evaluate MECON on the widely adopted LLaMA-1 (Touvron et al., 2023a), LLaMA-2 081 (Touvron et al., 2023b), LLaMA-3 (Meta, 2024) and Mistral (Jiang et al., 2023) models across multiple 082 benchmarks. Our results demonstrate that, without any retraining or weight update, our MECON-083 derived pruning metrics consistently outperform all established pruning metrics. Additionally, our 084 MECON-derived layerwise sparsity ratios could also boost the effectiveness of other pruning metrics 085 that consider both weight and activation, such as Wanda (Sun et al., 2023) and RIA (Zhang et al.). Furthermore, we verify the generalizability of our MECON-derived pruning metrics through cross-086 task and cross-model evaluations, showing that metrics developed for complex arithmetic reasoning 087 tasks also perform well on simpler tasks like commonsense reasoning and language modeling, and 088 remain effective when applied to models of different configurations. Thus we provide a cost-effective alternative to streamline the adaptive search process. 090

091 092

064

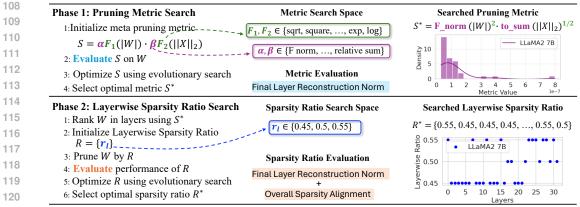
065

066 067

2 RELATED WORK

094 Emergent Large Features of LLMs Emergent large magnitude and massive activation features have 095 been observed in Transformer-based large language models (Kovaleva et al., 2021; Puccetti et al., 096 2022; Wei et al., 2022c; Dettmers et al., 2022; Sun et al., 2024). The occurrence of these hidden state features and input activations with large magnitudes is relatively rare, indicating the outlier patterns 098 within model internal representations. However, these outlier features are shown to have essential 099 importance in representing information, as zeroing out these outlier features during inference leads to a significant degradation in model performance (Dettmers et al., 2022; Sun et al., 2024). Recent 100 development of quantization schemes (Lin et al., 2023; Dettmers et al., 2023; Xiao et al., 2023) 101 and model pruning methods (Sun et al., 2023; Zhang et al.) for LLMs have been influenced by 102 the presence of these outlier features. Our research expands on this insight by demonstrating that 103 the relationship between these weights and input activation outlier features should also act as key 104 indicators for selecting which weights to prune in LLMs. 105

Post-Training Pruning Post training pruning (PTP) has emerged as a popular technique for reducing
 the size and computational complexity of models without the need for extensive retraining (Hubara et al., 2021; Kwon et al., 2022; Frantar & Alistarh, 2023). Recent PTP methods for LLMs aim to



121 122

Figure 2: **Illustration of our proposed MECON method.** MECON consists of two phases: searching for the optimal pruning metric and the optimal layerwise sparsity ratios. We present the distribution of metric scores for the optimal metric searched in the LLaMA2-7B model, along with the sparsity ratio for each layer in the right column.

126 evaluate the importance of weights using specific pruning metrics and remove less important weights 127 by setting them to zero. Magnitude pruning (Han et al., 2015) directly removes weights based on 128 their magnitude, offering simplicity but often resulting in unsatisfied performance for LLMs. To improve accuracy, SparseGPT (Frantar & Alistarh, 2023) solves layer-wise reconstruction problem, 129 which significantly boosts performance but adds computational costs due to weight updates. Wanda 130 (Sun et al., 2023) simplifies SparseGPT by considering only the product of weight magnitude and the 131 norm of input activations. Building on Wanda, RIA (Zhang et al.) introduces a relative importance 132 coefficient to enhance weight importance evaluation. These one-shot pruning metrics now stand out 133 as strong baseline approaches for LLM pruning. 134

- 135
- 136 137

146

147

148

149

150

151

3 MECON: ADAPTIVE PRUNING STRATEGY SEARCH

138 3.1 METHOD OVERVIEW

MECON focuses on the essential adaption of pruning strategy across different LLMs. As shown in Figure2, MECON automatically searches for the adaptive pruning strategy through evolutionary optimization, optimizing both the pruning metric and layerwise sparsity ratios. In each phase of the search, MECON iteratively samples pruning metrics or layerwise sparsity ratios from a predefined search space. Each sample is then evaluated, producing a numerical measure of its quality. The evaluation results are fed back into the search algorithm to improve future samplings. The details of these two phases are as follows:

- **Pruning Metric Search** involves identifying the most effective metric for scoring the importance of model weights. Similar to Wanda (Sun et al., 2023), we compare the weights on a per-output basis, where weight importance is assessed locally within each output neuron.
- Layerwise Sparsity Ratio Search determines the optimal non-uniform sparsity ratios for different layers in the model. After assigning importance scores to the weights using the pruning metric, we prune the weights with lower scores according to the specified sparsity ratio for each layer.

In Section 3.2, we outline the Search Space for each phase of MECON, covering the range of pruning metrics and sparsity ratios that can be explored. Section 3.3 describes the Evaluation Measurement, detailing how we efficiently assess the sampled pruning metrics and layerwise sparsity ratios. Lastly, in Section 3.4, we describe the search algorithm, highlighting how we leverage an evolutionary approach to identify the optimal pruning metric and layerwise sparsity ratios.

158 3.2 SEARCH SPACE

Meta Pruning Metric. Inspired by the discovery of emergent large weight magnitude (Puccetti et al., 2022; Wei et al., 2022c; Dettmers et al., 2022) and massive input activation (Sun et al., 2024) features in LLMs, recent pruning metrics (Sun et al., 2023; Zhang et al.) find that augmenting the

standard weight magnitude pruning metric with the input activations shows great effectiveness in
 evaluating the weight importance.

165 166 167

168

169 170

178

179

180

181 182 183

Building upon these concepts, we introduce a meta pruning metric to dynamically balance the relationship between weights and activations for LLMs with varying weight distributions. As shown in Equation 1, we score each weight W_{ij} by applying a weighted transformation to the element-wise product between the weight magnitude $|W_{ij}|$ and the norm of input activations $||X_j||_2$. The weighted transformation is conducted by specific coefficients (α , β) and operations (F_1 , F_2).

$$S_{ij} = \alpha F_1(|W_{ij}|) \cdot \beta F_2(||X_j||_2).$$
(1)

Here, we use the absolute value of weights $|W_{ij}|$ to calculate weight magnitudes and $||X_j||_2$ to measure the norm of input activations, which computes the l_2 norm of the j_{th} features aggregated across different tokens. The predefined coefficients and operation candidates are listed in Table 1, with further details and calculation equations provided in Appendix A.5.

Notably, our meta pruning metric is able to encompasses and extends beyond existing pruning metrics
 like Wanda and RIA. For instance, the Wanda metric (Sun et al., 2023), expressed as

$$S_{ij} = |W_{ij}| \cdot ||X_j||_2,$$
(2)

does not set coefficients and operations, providing a uniform weighting between weight magnitude and norm of input activations. Building on this, the RIA metric (Zhang et al.), denoted as

$$U_{ij} = \text{RI}(|W_{ij}|) \cdot ||X_j||_2^{1/2},$$
(3)

modifies the coefficient of the weight magnitude as relative sum RI, and sets the operation of the
 input activation norm as a square function.

Table 1: Predefined coefficient and operation candidates for Meta Pruning Metric.

coefficient candidates for α, β	no coe, F norm, to sum, to mean, row sum, column sum, relative sum
operation candidates for F_1, F_2	no op, sqrt, square, sigmoid, softmax, exp, log

Layerwise Sparsity Ratios. Within Transformer architectures, neurons across different layers 191 are observed to capture distinct types of information (Wang & Tu, 2020; Zhang et al., 2021), thus 192 exhibiting different priorities in maintaining original performance. To leverage this insight, we 193 prune LLMs in a non-uniform layerwise sparsity, for layers with more important neurons, we set a 194 lower pruning ratio, while layers with less important neurons are assigned a higher pruning ratio. 195 Specifically, we identify the optimal sparsity ratio for each layer by selecting from a predefined 196 sparsity ratio set, including target sparsity - sparsity step, target sparsity 197 and target sparsity + sparsity step. Here, target sparsity is the pre-defined sparsity ratio for pruning the overall model. The sparsity step allows for adjustments to achieve slightly higher 199 or lower sparsity ratios, facilitating non-uniform sparsity across different layers. We empirically find 200 that for LLMs with more than 32 layers, using a discrete set of three sparsity ratios outperforms larger 201 sets when searching within a limited number of trials.

- 202 203 204
- 3.3 SEARCH EVALUATION

Search Evaluation measures each sampling from the search space, thus guiding the evolutionary
 process toward finding the optimal pruning strategy (Bäck & Schwefel, 1993). The primary goal of
 model pruning is to remove a subset of network weights while aiming to preserve performance (LeCun
 et al., 1989; Han et al., 2015). Following this goal, MECON leverages model-wise reconstruction
 error to evaluate each sampled pruning metric. Furthermore, we introduce a secondary measurement
 to assess the overall sparsity ratio of the pruned model to evaluate sampled layerwise sparsity ratios.

Model-wise Reconstruction Error. We propose a lightweight search evaluation, model-wise
 reconstruction error, for the sampled pruning strategy. Existing automatic framework, like Pruner Zero (Dong et al., 2024), use perplexity as the evaluation measure. However, we demonstrate
 that using perplexity requires more evaluation time and tends to generalize poorly across different
 downstream tasks. Toward that end, the proposed model-wise reconstruction error admits a faster
 evaluation of each search trial while preserving generalizability.

Mathematically, the model-wise reconstruction error, denoted as f_{rec} , measures the discrepancy norm in the final layer outputs between the dense model θ and the pruned model θ^* . Specifically, we denote the input activations for the final layer l as X_l , and weight with r output channels and c input channels as $W_l \in \mathbb{R}^{r \times c}$. A layerwise sparsity mask $M_i \in 0, 1^{r \times c}, i \in \{0, ..., l\}$ removes a certain degree of model weights with lower importance scores, which are measured by the sampled pruning metric. Therefore, the model-wise reconstruction error can be formally expressed as:

$$f_{rec}(\theta, \theta^*) = \|W_l X_l - (M_l \odot W_l) \cdot X_l\|_{Frob},\tag{4}$$

where $|| \cdot ||_{Frob}$ is the Frobenius norm (Golub & Van Loan, 1996), ensuring the final output of pruned model θ^* closely matches that of dense model θ .

Sparsity Ratio Discrepancy. Layerwise sparsity search assigns each layer a sampled sparsity ratio which is slightly higher or lower than the pre-defined sparsity ratio. As a result, the overall sparsity of the pruned model may deviate from the pre-defined ratio to prune the dense model. Thus, we introduce a secondary measurement, sparsity ratio discrepancy, to evaluate the numerical difference between the sparsity ratio of the pruned model and the pre-defined sparsity ratio. The sparsity ratio discrepancy f_{ratio} is mathematically defined as:

$$f_{ratio}(\theta, \theta^*) = |R_d - \frac{\text{parameters}(\theta) - \text{parameters}(\theta^* | \mathcal{R})}{\text{parameters}(\theta)}|.$$
(5)

Here, R_d denotes the pre-defined sparsity ratio for pruning the dense model, and \mathcal{R} is the layerwise sparsity ratios applied to the pruned model θ^* . The function parameters(\cdot) measures the total number of parameters in the model. Therefore, the sparsity ratio of the pruned model is thus calculated by comparing the number of removed parameters to the total number of parameters in the dense model.

3.4 SEARCH ALGORITHM

222

224

225 226

227

228

229

230

231

236

237

238 239

240

252

253

256 257

258

259 260 261

241 We employ the Non-dominated Sorting Genetic Algo-242 rithm III (NSGA-III) Deb & Jain (2013) as our search 243 algorithm. NSGA-III is capable of handling both single 244 and multi-objective optimization problems, making it 245 suitable for addressing both pruning metric search and 246 layerwise sparsity ratio search scenarios within a uni-247 fied framework. Let $S = \{s_1, s_2, ..., s_n\}$ be the search 248 space, where s_i represents a candidate pruning strategy. We define the objective function as $f(s) : S \to \mathbb{R}$, 249 where f(s) is to be minimized. For the single-objective 250 problem of pruning metric search, we aim to find: 251

 $s \in S$

Algorithm 1 NSGA-III for Searching Adap-
tive Pruning Strategy
1: Initialize population P_0 of size N
2: for $t = 1$ to T do
3: $Q_t \leftarrow \text{CreateOffspring}(P_t)$

4: $R_t \leftarrow P_t \cup Q_t$ 5: $\mathcal{F} \leftarrow \text{NonDominatedSort}(R_t)$

6: $P_{t+1} \leftarrow \text{SelectPopulation}(\mathcal{F}, N)$ 7: end for

$$s^* = \arg\min f(s) \tag{6}$$

7: end for
8: return
$$P_T$$

For the multi-objective problem of layerwise sparsity ratio search, we define a vector of objective functions $\mathbf{F}(s) = (f_1(s), f_2(s), ..., f_k(s))$. The goal is to find the Pareto optimal set:

$$S^* = \{ s \in \mathcal{S} \mid \nexists s' \in \mathcal{S} : \mathbf{F}(s') \prec \mathbf{F}(s) \}$$
(7)

where \prec denotes Pareto dominance. The dominance relation is defined as: A solution x_1 dominates x_2 ($x_1 \prec x_2$) if and only if:

$$\forall i \in \{1, \dots, k\} : f_i(x_1) \le f_i(x_2) \land \exists j \in \{1, \dots, k\} : f_j(x_1) < f_j(x_2) \tag{8}$$

262 Specifically, MECON follows a two-phase search process. In the first phase, we minimize the model-263 wise reconstruction error f_{rec} (Eq. 4) to find the optimal pruning metrics. During the next phase, 264 we aim to find the optimal layerwise sparsity ratios by minimizing both f_{rec} and the sparsity ratio 265 discrepancy f_{ratio} (Eq. 5).

The detailed process of NSGA-III for pruning strategy search is provided in Algorithm 1. The algorithm starts with an initial population P_0 and iterates for a fixed number of generations. In each generation, it combines the parent P_t and offspring populations Q_t , performs non-dominated sorting to rank solutions, and selects the best solutions to form the next generation P_{t+1} . The niching procedure ensures diversity by favoring solutions close to under-represented reference points.

Method	Weight	Sparsity	LLaN	/IA-1	LLaN	MA-2	LLa	MA-3	M	stral
Wethou	Update	sparsity	7B	13B	7B	13B	8B	8B-Inst	7B	7B-Ins
				LI	M Harness					
Dense	-	0%	59.70	62.58	59.72	63.03	64.21	64.15	60.06	66.69
Magnitude -	X	50%	46.89	47.34	- 52.40	-52.90 -	- 44.87	45.31	- 57.24	63.34
SparseGPT	\checkmark	50%	54.86	58.54	55.90	60.70	53.87	55.89	57.49	62.46
Wanda	X	50%	54.08	59.18	55.89	60.88	49.66	51.34	54.20	61.04
RIA	X	50%	55.10	59.45	55.67	61.03	50.76	50.64	54.39	60.48
Pruner-Zero	X	50%	52.31	57.08	53.81	58.18	52.48	55.60	55.57	61.41
MECON	<u>x</u>	50%	55.10	59.73	57.47	61.42	55.50	55.94	- 59.33	63.51
				WikiT	Text Perple	xity				
Dense	-	0%	5.37	4.80	5.04	4.56	5.80	7.91	5.23	4.90
Magnitude -	<u>x</u>	50%	13.27	13.55	- 11.96	- 6.16 -	73.93	5.5E2	7.14	- 6.59
SparseGPT	\checkmark	50%	6.92	5.87	6.59	5.72	10.89	13.27	6.42	7.02
Wanda	X	50%	6.90	5.82	6.47	5.64	10.57	16.37	7.24	7.22
RIA	X	50%	6.81	5.83	6.43	5.63	12.56	15.57	7.27	7.21
Pruner-Zero	X	50%	7.13	6.02	6.86	5.88	12.68	15.45	7.84	7.50
MECON	<u>x</u>	50%	6.78	5.74	6.35	5.51	$-\bar{9.23}$	$\bar{1}\bar{1}.\bar{3}7^{}$	$\bar{6.22}$	6.55

270 Table 2: Mean zero-shot accuracies(%) on the LM Harness and WikiText perplexity of pruned 271 LLaMA-1/2/3 and Mistral models.

EXPERIMENTS 4

4.1 **Setup**

272

288 289

290 291

292

Models and Evaluations. To demonstrate the effectiveness of MECON, we adopt four prominent 293 open-sourcing large language models as our foundation model, including LLaMA-1 (Touvron et al., 294 2023a) and LLaMA-2 (Touvron et al., 2023b) with sizes ranging from 7B to 70B, LLaMA-3 8B 295 (Meta, 2024) and Mistral 7B (Jiang et al., 2023) with the base models and their instruction-tuned 296 variants. Following previous works (Sun et al., 2023; Xia et al., 2023), we first evaluate on seven 297 tasks from the EleutherAI LM Harness (Gao et al., 2023)¹, and the language modeling task based on 298 the held-out WikiText (Merity et al., 2016) validation set. Furthermore, we also evaluate two more 299 challenging tasks, namely arithmetic reasoning on GSM8K (Cobbe et al., 2021) and the language 300 understanding benchmark MMLU (Hendrycks et al., 2020). For the comparison group settings, we 301 follow Wanda (Sun et al., 2023) to compare and remove weights on a per-output basis, where weight 302 importance scores are compared locally within each output neuron. We evaluate three sparsity types as defined in previous research (Sun et al., 2023; Zhang et al.): unstructured sparsity, semi-structured 303 4:8 and 2:4 sparsity. We set the number of trails in the search process as 350, further details on 304 hyperparameter analysis are provided in Appendix A.4. 305

306 **Baselines.** We compare MECON with five existing outstanding baselines. Magnitude pruning (Han et al., 2015) is a straightforward but effective solution which discards weights based on their 307 magnitudes. SparseGPT (Frantar & Alistarh, 2023) solves the layer-wise reconstruction problem 308 to identify redundant weights and prune them accordingly. Wanda (Sun et al., 2023) utilizes large-309 magnitude features and input activation to induce sparsity. RIA (Zhang et al.) further improves 310 Wanda pruning by introducing the relative importance and channel permutation. Pruner-Zero (Dong 311 et al., 2024) automatically searches for the optimal pruning metric based on weights and gradients, 312 using perplexity on WikiText as the evaluation measure. 313

Calibration Data. Calibration data is used to estimate input statistics from a small set of samples. 314 For a fair comparison, we use the exact same calibration data as Wanda and SparseGPT when 315 evaluating on LM Harness and WikiText, which includes 128 sequences sampled from the C4 training 316 set (Raffel et al., 2020). For evaluations on GSM8K and MMLU, we randomly select 10 samples 317 from the training dataset, each truncated to a sequence length of 512, as our calibration samples. 318

319 4.2 MAIN RESULTS 320

323

321 LM Harness & Language Modeling Table 2 presents the performance of LM Harness and the 322 WikiText perplexity on the language modeling task. We refer the reader to Appendix A.7 for task-wise

¹Referred as *LM Harness* in remaining parts.

Model	Method	WikiText	BoolQ	RTE	HellaSwag	WinoGrande	ARC-e	ARC-c	OBQA	Average
	Dense	4.77	82.69	66.79	63.35	75.69	80.30	52.82	36.00	65.38
	Magnitude	7.55	64.34	50.18	50.59	66.54	72.39	43.77	29.00	53.83
LLaMA	SparseGPT	5.32	82.32	62.45	59.15	75.22	78.96	48.56	35.00	63.09
30B	Wanda	5.98	81.90	65.34	60.93	73.48	79.29	49.66	34.60	63.60
	RIA	5.16	83.36	67.15	60.01	72.85	78.70	48.29	33.60	63.42
	MECON	5.10	83.36	67.51	60.93	72.61	78.91	49.74	34.20	63.89
	Dense	3.12	83.40	67.87	66.10	78.06	82.55	54.44	37.20	67.08
	Magnitude	- 4.98	70.55	60.65	61.50	73.48	75.70	49.23	35.40	60.93
LLaMA2	SparseGPT	3.98	83.55	70.40	63.80	78.85	82.40	53.75	38.20	67.28
70B	Wanda	3.99	82.50	73.65	64.10	78.14	80.80	52.65	37.40	67.03
	RIA	3.91	83.25	71.49	64.05	77.74	81.20	53.16	36.60	66.77
	Mecon	3.86	83.25	73.21	64.00	78.48	81.25	53.07	38.40	67.38

Table 3: WikiText perplexity and mean zero-shot accuracies(%) on the LM Harness of 50% unstructured pruned LLaMA-1 30B and LLaMA-2 70B models.

performance. The results indicate that our method consistently outperforms all established baselines across the board. More intriguingly, a notable performance gap between SparseGPT and the other two baselines, i.e. Wanda and RIA, is observed on the LLaMA-3 and Mistral models, while the performance remains comparable on the LLaMA-1 and LLaMA-2 models. This observation is also aligned with the results in previous work (Sun et al., 2023). However, our MECON framework further significantly improves the state-of-the-art performance on all types of models. We think this is attributed to the different weight distributions of LLaMA-1/2 models with the LLaMA-3 model, as depicted in Figure 1, highlighting the importance of adaptive pruning on different models.

We also explore the effectiveness of MECON when appied to larger models, such as LLaMA-30B and LLaMA2-70B. As shown in Table 3, MECON consistently achieves the best performance on both the WikiText perplexity and LM Harness benchmarks. Besides, for the particularly larger models like LLaMA2-70B, MECON can even outperform the dense model without the need for weight updating.

Mathad	Weight	C	LLal	MA-1	LLaN	MA-2	LLa	MA-3	Mi	stral
Method	Update	Sparsity	7B	13B	7B	13B	8B	8B-Inst	7B	7B-Inst
					GSM8K					
Dense	-	0%	11.07	17.82	14.59	19.86	52.39	74.45	40.11	47.76
Magnitude	<u>×</u>	50%	1.52	5.99		- 6.22	1.97	- 1.29	15.53	27.37
SparseGPT	\checkmark	50%	8.19	15.60	8.11	13.42	21.46	49.20	25.40	33.97
Wanda	X	50%	7.96	11.52	7.43	9.10	10.16	32.68	22.74	33.59
RIA	X	50%	8.04	11.14	7.96	9.25	15.85	52.39	24.18	32.15
Pruner-Zero	X	50%	6.41	9.22	7.32	8.58	17.25	43.63	21.16	32.24
MECON	X	50%	8.14	15.37	8.13	13.79	41.17	52.39	25.31	35.25
w/ eval.	X	50%	8.22	15.62	8.47	15.03	43.07	52.15	25.78	35.14
					MMLU					
Dense	-	0%	35.28	46.98	41.97	51.47	65.23	66.35	58.92	62.54
Magnitude	<u>×</u>	50%	26.24	30.12	26.04	-43.83 -	- 4.36	- 12.03	- 50.83	49.52
SparseGPT	\checkmark	50%	29.48	38.29	33.03	47.14	49.50	52.27	50.95	52.04
Wanda	X	50%	29.81	37.84	32.09	48.06	49.05	53.15	53.05	53.62
RIA	×	50%	30.37	37.79	31.46	47.39	48.99	54.02	52.67	53.14
Pruner-Zero	X	50%	28.57	35.51	30.26	45.24	41.39	46.32	51.75	53.15
MECON	X	50%	30.93	38.80	32.24	48.15	50.65	55.11	53.10	53.77
w/ eval.	×	50%	31.05	39.76	33.06	48.38	51.22	55.60	53.87	54.36

Table 4: GSM8K and MMLU accuracies(%) of pruned LLaMA-1/2/3 and Mistral models.

Arithmetic & Knowledge Reasoning In Table 4, we report the performance of pruned LLaMA-1/2/3 and Mistral models on the GSM8K and MMLU dataset. We can see that MECON consistently outperforms all baselines on the reasoning tasks. We highlight that we make remarkable improvements on the GSM8K dataset. For instance, on the LLaMA-3 8B model, MECON achieves an accuracy of 41.17, significantly better than the previous best performance of 21.46. This result also suggests that existing pruning methods are sensitive to the models. Additionally, since the optimal pruning strategies differ across the tasks but MECON is task-agnostic, we also attempt to align the search process of MECON with the target task objective. We implement it by introducing the evaluation accuracy on the validation set as an additional search objective. We find that with the aid of evaluation accuracy, further improvements are achieved over the standard MECON.

					1	2				
Method	Weight	Sparsity	LLaN	/IA-1	LLaN	1A-2	LLa	MA-3	Mi	stral
Methou	Update	Sparsity	7B	13B	7B	13B	8B	8B-Inst	7B	7B-Inst
				WiKi	Fext Perple	exity				
Magnitude	X	4:8	17.48	16.80	16.10	7.23	2.5E2	5.6E2	8.78	8.67
SparseGPT	\checkmark	4:8	8.16	7.05	7.89	6.54	15.57	16.62	7.71	8.15
Wanda	X	4:8	8.19	6.95	8.01	6.60	16.82	21.52	8.95	8.42
RIA	X	4:8	8.18	6.97	8.04	6.62	17.28	21.15	8.91	8.51
MECON	×	4:8	7.93	6.65	7.72	6.34	17.24	21.15	-7.57	7.66
Magnitude	X	2:4	49.06	19.33	38.50	9.04	5.3E3	5.3E3	13.18	11.83
SparseGPT	\checkmark	2:4	10.58	8.53	10.38	8.26	23.43	26.68	10.17	9.84
Wanda	X	2:4	11.04	9.06	11.31	8.46	31.89	59.12	13.54	11.08
RIA	X	2:4	11.10	9.24	11.40	8.57	31.79	38.00	13.61	11.21
MECON	× -	2:4	10.54	8.21	10.34	7.97	31.71	37.98	-10.13	9.23
					GSM8K					
Magnitude	X	4:8	1.53	3.48	1.59	4.70	4.16	7.81	9.60	14.15
SparseGPT	\checkmark	4:8	3.54	8.78	4.84	8.20	9.23	18.35	21.46	29.82
Wanda	X	4:8	2.65	7.40	3.10	8.13	6.60	10.84	12.87	20.92
RIA	X	4:8	3.17	8.74	2.93	7.75	8.12	17.59	17.36	27.18
MECON	X	4:8	3.71	9.29	4.95	8.53	8.38	17.59	21.80	30.39
Magnitude	X	2:4	0.74	2.29	0.98	3.60	0.24	3.12	3.80	9.26
SparseGPT	\checkmark	2:4	3.28	6.27	3.10	6.53	1.71	8.21	7.52	19.45
Wanda	X	2:4	2.75	6.12	2.75	6.48	2.27	3.51	4.93	10.79
RIA	X	2:4	2.56	4.73	2.79	5.65	1.98	6.74	6.49	17.22
MECON	×	2:4	3.34	6.27	3.41	6.72	$\bar{2.52}$	6.74	7.9 1	20.33

Table 5: Evaluations of semi-structured N:M sparsity on WikiText and GSM8K datasets.

399 **Comparison to Pruner-Zero** Pruner-Zero (Dong et al., 2024) is also an adaptation-based pruning 400 method, which searches symbolic pruning metrics using genetic programming. Notably, MECON 401 differs from Pruner-Zero in two key aspects: 1) Search Space: Pruner-Zero's search space involves 402 weights, activations, and gradients, while MECON deliberately omits gradient computations. Despite 403 this omission, as shown in Tables 2 and 4, Pruner-Zero even underperforms when compared to 404 the baseline methods like Wanda and RIA, which rely on static metrics derived from weights and 405 activations. Moreover, the calculation of gradients also introduces additional computational overhead. 406 2) Search Evaluation: Pruner-Zero uses perplexity on WikiText as search evaluation, whereas MECON 407 relies on model-wise reconstruction error, thus substantially decreasing the evaluation duration. For instance, pruning LLaMA2-7B takes less than 10 seconds per trial with MECON, compared to over 408 70 seconds with Pruner-Zero. 409

N:M Semi-Structured Pruning While MECON is designed for unstructured sparsity, it can be 410 easily extended to semi-structured N:M sparsity (Mishra et al., 2021), which can leverage NVIDIA's 411 sparse tensor cores to accelerate matrix multiplication in practice. In Table 5, we report the perfor-412 mance of 4:8 and 2:4 sparsity constraints on the WikiText and GMS8K datasets. We find that MECON 413 consistently achieves superior performance than baselines, except LLaMA-3 models. We think this is 414 because the LLaMA-3 model, trained on a larger amount of data, exhibits higher knowledge density 415 (Meta, 2024). Thus, pruning a continuous block of parameters in semi-structured pruning leads to a 416 significant performance drop, necessitating weight updates in SparseGPT for recovery. 417

Table 6: Pruning speed for pruning LLaMA-2/3
and Mistral models to 50% sparsity.

Table 7: Inference speedup of different sparsity patterns for LLaMA-2/3 and Mistral models.

and winstrai in		50% span	July.		patients it	patients for ELawiA-2/5 and Wilstrai models.			
Method	L2-7B	L2-13B	L3-8B	M-7B	Sparsity	L2-7B	L2-13B	L3-8B	M-7B
SparseGPT	370.03	464.77	457.71	450.76	4:8	$1.11 \times$	$1.04 \times$	$1.15 \times$	1.17 ×
Mecon (1997)	56.16	107.11	60.11	59.80	2:4	1.35 imes	1.14 ×	1.15×	$1.16 \times$

421

378

4.3 Speedup

The theoretical computational complexity of SparseGPT is $O(d_{hidden}^3)$, while our meta pruning metric has a lower complexity of $O(d_{hidden}^2)$. We compare their empirical pruning speed on NVIDIA RTX A6000 GPUs by measuring the total time required to prune the model to 50% sparsity using each metric. Calibration data from the C4 training dataset is used to estimate activation magnitudes for the language modeling task. As shown in Table 6, our meta pruning metric results in negligible time overhead compared to SparseGPT. We further evaluate the inference speedup for semi-structured 4:8 and 2:4 sparsity on NVIDIA RTX A6000 GPUs. Our simulations utilize the high-performance 432 GEMM kernel from the NVIDIA CUTLASS library. According to the results presented in Table 7, when compared with dense models, we observe an average speedup of 1.20× in end-to-end latency.

435 436

437

438

5 IN-DEPTH ANALYSIS

5.1 GENERALIZABILITY OF THE SEARCHED PRUNING METRICS

A potential limitation of MECON might be the relatively high cost of the search process, which is conventionally necessitated for every model across all datasets. To alleviate this problem, we explore the generalizability of our searched pruning metrics. We also outline the search costs for finding optimal metrics and layerwise sparsity ratios for LLaMA-1/2/3 and Mistral models in Appendix A.3.

443 **Cross-task Generalization.** We evaluate the generalizability of the pruning metrics identified from 444 the complex arithmetic reasoning task (e.g. GSM8K) to the easier tasks, such as language modeling 445 (e.g. WikiText) and zero-shot reasoning (e.g. LM Harness). This evaluation is partially inspired 446 by the work (Fu et al., 2022) of multi-step reasoning which finds that complex demonstrations provide more valuable information. For instance, on the evaluation of LLaMA-1 7B on WikiText, we 447 directly leverage the metrics searched with LLaMA-1 7B on GSM8K. As shown in Table 8, GSM8K 448 metric, derived from the arithmetic reasoning task, consistently achieves the better performance than 449 SparseGPT and comparable scores against the task-specific pruning metrics across LLaMA-1/2/3 450 and Mistral models on the WikiText and LM Harness benchmarks. We also conduct the counter 451 experiment – performing the metrics derived from WikiText on the harder tasks, like LM Harness and 452 GSM8K. We regrettably observe consistent performance declines on the target tasks. These findings 453 suggest that the generalization works from the complex tasks to those easier. 454

Cross-model Generalization. For cross-model evaluation, we select models notable for their 455 superior performance on arithmetic reasoning, specifically the LLaMA-2 7B and LLaMA-3 8B 456 models. Metrics derived from these models, termed the LLaMA-2 and LLaMA-3 metrics, are applied 457 across different model families to assess their effectiveness. The LLaMA-3 metric is tested on 458 Mistral models, while the LLaMA-2 metric is evaluated with the LLaMA-1 models. We also tried 459 the cross-model evaluations of transferring the metrics of LLaMA-3 to LLaMA-1/2 models. But we 460 found the results are insignificant and we think the reason is that their weight distributions largely 461 differ. As shown in Table 8, we find that the metrics from the superior model can consistently surpass the established baselines across the board. More excitingly, it even exceeds the original MECON. 462 Further details of the optimal metrics found for each LLM, using both C4 and GSM8K calibration 463 data, are provided in Appendix A.5. 464

Method		WiK	iText			LM H	arness				
Method	L1-7B	L2-7B	L3-8B	M-7B	L1-7B	L2-7B	L3-8B	M-7B			
SparseGPT	6.92	6.59	10.89	6.42	54.86	55.90	53.87	57.49			
MECON	6.78	6.35	9.23	6.22	55.10	57.47	55.50	59.33			
GSM8K Metric	6.78	- 6.39 -	12.78	6.23	 55.15	56.05	- <u>5</u> 5. <u>5</u> 9 -	57.66			
LLaMA-2 Metric	6.76	-	-	-	55.24	-	-	-			
LLaMA-3 Metric	-	-	-	6.16	-	-	-	58.30			

Table 8: WikiText perplexity and zero-shot reasoning accuracy (%) with different pruning metrics.

465

Therefore, although we still claim the necessity of adaptive pruning for different models, we also provide a cost-effective alternative to mitigate the search process, which is adopting the pruning metric identified on the challenging task with the strongest model in your candidate pool. This metric has demonstrated a capacity for generalization, proving transferrable and reusable across less complex tasks or the less-performing models.

479 480

5.2 EFFECTIVENESS OF THE SEARCHED LAYERWISE SPARSITY RATIOS

Motivated by the distinct importance of parameters across different layers (Wang & Tu, 2020;
Zhang et al., 2021), another component of MECON involves setting specific pruning ratios for each
layer while maintaining an overall 50% reduction in parameters. Table 9 demonstrates that these
layer-specific sparsity ratios, optimized through our pruning metric, not only enhance our model's
performance but also significantly improve other baseline metrics, such as Wanda and RIA. Notably,
these searched sparsity ratios lead to an average relative improvement of 4.68% in perplexity reduction

⁴⁷¹ 472 473

486 on the WikiText set. Furthermore, in LLaMA-3 models, these ratios enhance the performance of 487 Wanda and RIA by an impressive score of 13.68%. Details of the layerwise sparsity ratios for each 488 LLM are provided in Appendix A.5, and the results generally show that the upper layers tend to have 489 more redundant parameters than the lower layers, aligning with findings from previous studies.

Table 9: Our searched layerwise sparsity ratios are effective for both Wanda and RIA metrics. The 491 number (%) in (·) denotes the relative improvement (RI). For instance, Wanda RI = (Wanda w/ Ratio 492 - Wanda) / Wanda. 493

Method	Uniform	LLaN	/IA-1	LLaN	/IA-2	LLal	MA-3	Mis	stral
Method	Unitorin	7B	13B	7B	13B	8B	8B-Inst	7B	7B-Inst
Wanda	\checkmark	6.90	5.82	6.47	5.64	10.57	16.37	7.24	7.22
Wanda w/ Ratio	x	6.72	5.64	6.28	5.52	9.45	13.67	6.97	6.98
	^	(+2.61)	(+3.09)	(+2.94)	(+2.13)	(+10.60)	(+16.49)	(+3.73)	(+3.32)
RIA		6.81	5.83	6.43	5.63	12.56	15.57	7.27	7.21
RIA w/ Ratio	x	6.65	5.67	6.26	5.54	10.98	13.23	6.89	6.96
KIA W/ Kallo	^	(+2.35)	(+2.74)	(+2.64)	(+1.60)	(+12.58)	+(15.03)	(+5.23)	(+3.47)
MECON wo/ Ratio		6.75	5.75	6.32	5.52	9.23	11.37	6.22	6.55
MECON	x	6.61	5.60	6.19	5.44	8.95	10.73	6.08	6.39
	^	(+2.07)	(+2.61)	(+2.06)	(+1.45)	(+3.03)	(+5.63)	(+2.25)	(+2.62

5.3 SPARSITY

490

50

504

505

507

508

509

510

519

520

521

522 523

527

529

531

533

534

In Figure 3(a), we investigate the impact of different sparsity ratios, which range from 0.1 to 0.6, on the performance of the LLaMA-2 13B model. The perplexity curve demonstrates that MECON (red curve) consistently surpasses SparseGPT, Wanda, and RIA across all tested sparsity levels. Especially at the sparsity ratio of 60%, MECON outperforms the baselines by a large margin, achieving a 10.52% relative improvement compared to RIA.

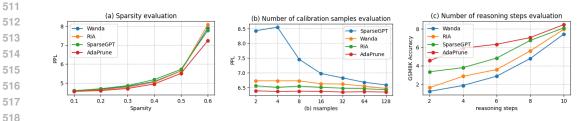


Figure 3: Sensitivity evaluation on sparsity, number of calibration samples (samples), and the reasoning steps in calibration samples for arithmetic reasoning.

5.4 **ROBUSTNESS TO CALIBRATION SAMPLES.**

We first vary the number of calibration samples for Wikitext evaluation on the LLaMA2-7B model. 524 As illustrated in Figure 3(b), we see a clear difference in trend as the number of calibration samples ranging from 2 to 128. SparseGPT appears to rely on a larger number of calibration samples, while 525 Wanda, RIA, and MECON are much more robust when there are few calibration samples. Notably, 526 MECON consistently outperforms the other methods in all cases. We then vary the difficulty of calibration samples in arithmetic reasoning by selecting samples with reasoning steps ranging from 2 528 to 10. The results, summarized in Figure 3(c), clearly indicate that increasing the number of reasoning steps in calibration samples could improve the accuracy. MECON also consistently surpasses all 530 baselines. Further ablation study, including an in-depth comparison and robustness analysis of the search algorithms and exploration of various search spaces, are provided in Appendix A.1 and A.2. 532

6 CONCLUSION

In this work, we introduce MECON, an adaptive pruning framework that automatically determines 536 optimal pruning metrics and layerwise ratios for LLMs with diverse weight distributions. Inspired by the discovery of significant weight and activation features in LLMs, we create a meta pruning metric to balance these magnitudes. MECON identifies effective sparse networks in pretrained LLMs 538 without retraining. Our evaluation shows that the metric from the best model for arithmetic reasoning also excels in simpler tasks with similar weight distributions.

540 REFERENCES 541

556

561

562

571

581

585

- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, 542 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. 543 arXiv preprint arXiv:2303.08774, 2023. 544
- Thomas Bäck and Hans-Paul Schwefel. An overview of evolutionary algorithms for parameter 546 optimization. Evolutionary computation, 1(1):1–23, 1993. 547
- 548 James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of machine learning research, 13(2), 2012. 549
- 550 James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter 551 optimization. Advances in neural information processing systems, 24, 2011. 552
- 553 James Bergstra, Daniel Yamins, and David Cox. Making a science of model search: Hyperparameter 554 optimization in hundreds of dimensions for vision architectures. In International conference on 555 machine learning, pp. 115–123. PMLR, 2013.
- Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state of neural network pruning? Proceedings of machine learning and systems, 2:129–146, 2020. 558
- 559 Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar, 560 Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.
- Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina 563 Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational 565 Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936, 566 2019. 567
- 568 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and 569 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. 570 arXiv preprint arXiv:1803.05457, 2018.
- Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, 572 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve 573 math word problems. arXiv preprint arXiv:2110.14168, 2021. 574
- 575 Kalyanmoy Deb and Himanshu Jain. An evolutionary many-objective optimization algorithm 576 using reference-point-based nondominated sorting approach, part i: solving problems with box 577 constraints. IEEE transactions on evolutionary computation, 18(4):577-601, 2013.
- 578 Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist multiob-579 jective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation, 6(2):182–197, 580 2002.
- 582 Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix 583 multiplication for transformers at scale. Advances in Neural Information Processing Systems, 35: 584 30318-30332, 2022.
- Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-586 boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized represen-587 tation for near-lossless llm weight compression. arXiv preprint arXiv:2306.03078, 2023. 588
- 589 Peijie Dong, Lujun Li, Zhenheng Tang, Xiang Liu, Xinglin Pan, Qiang Wang, and Xiaowen Chu. 590 Pruner-zero: Evolving symbolic pruning metric from scratch for large language models. In 591 Forty-first International Conference on Machine Learning, 2024.
- Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks. In International Conference on Learning Representations, 2018.

- 594 Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in 595 one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023. 596 Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based prompting 597 for multi-step reasoning. In The Eleventh International Conference on Learning Representations, 598 2022. 600 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, 601 Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muennighoff, 602 Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, 603 Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language model evaluation, 12 2023. URL https://zenodo.org/records/10256836. 604 605 Gene H Golub and Charles F Van Loan. Matrix computations, 1996. 606 607 Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for 608 efficient neural network. Advances in neural information processing systems, 28, 2015. 609 Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network 610 pruning. In IEEE international conference on neural networks, pp. 293–299. IEEE, 1993. 611 612 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob 613 Steinhardt. Measuring massive multitask language understanding. In International Conference on Learning Representations, 2020. 614 615 Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, Joseph Naor, and Daniel Soudry. Accelerated 616 sparse neural training: A provable and efficient method to find n: m transposable masks. Advances 617 in neural information processing systems, 34:21099–21111, 2021. 618 Himanshu Jain and Kalyanmoy Deb. An evolutionary many-objective optimization algorithm using 619 reference-point based nondominated sorting approach, part ii: Handling constraints and extending 620 to an adaptive approach. *IEEE Transactions on evolutionary computation*, 18(4):602–622, 2013. 621 622 Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, 623 Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. 624 Mistral 7b. arXiv preprint arXiv:2310.06825, 2023. 625 Olga Kovaleva, Saurabh Kulshreshtha, Anna Rogers, and Anna Rumshisky. Bert busters: Outlier 626 dimensions that disrupt transformers. Findings of the Association for Computational Linguistics: 627 ACL-IJCNLP 2021, 2021. 628 629 Woosuk Kwon, Sehoon Kim, Michael W Mahoney, Joseph Hassoun, Kurt Keutzer, and Amir 630 Gholami. A fast post-training pruning framework for transformers. Advances in Neural Information Processing Systems, 35:24101–24116, 2022. 631 632 Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman 633 Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A 176b-634 parameter open-access multilingual language model. 2023. 635 Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information 636 processing systems, 2, 1989. 637 638 Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq: Activation-639 aware weight quantization for llm compression and acceleration. arXiv preprint arXiv:2306.00978, 640 2023. 641 Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of 642 network pruning. In International Conference on Learning Representations, 2018. 643 644 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture 645 models. arXiv preprint arXiv:1609.07843, 2016. 646
- 647 Meta. Introducing meta llama 3: The most capable openly available llm to date, 2024. URL https://ai.meta.com/blog/meta-llama-3/.

648 649 650	Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct electricity? a new dataset for open book question answering. <i>arXiv preprint arXiv:1809.02789</i> , 2018.
651	2010.
652	Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh,
653	Chong Yu, and Paulius Micikevicius. Accelerating sparse deep neural networks. arXiv preprint
654	arXiv:2104.08378, 2021.
655	Yoshihiko Ozaki, Yuki Tanigaki, Shuhei Watanabe, Masahiro Nomura, and Masaki Onishi. Multiob-
656	jective tree-structured parzen estimator. Journal of Artificial Intelligence Research, 73:1209–1250,
657	2022.
658	
659	Giovanni Puccetti, Anna Rogers, Aleksandr Drozd, and Felice Dell'Orletta. Outliers dimensions that
660	disrupt transformers are driven by frequency. arXiv preprint arXiv:2205.11380, 2022.
661 662 663	Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. <i>Journal of machine learning research</i> , 21(140):1–67, 2020.
664	Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning in neural
665	network pruning. In International Conference on Learning Representations, 2019.
666	Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
667	adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
668 669	2021.
670	
671	Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
672	for large language models. In <i>The Twelfth International Conference on Learning Representations</i> , 2023.
673	2023.
674	Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive activations in large language
675	models. arXiv preprint arXiv:2402.17762, 2024.
676	Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
677	Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
678	efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.
679	Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
680	Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
681	and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.
682 683	Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. Glue:
684	A multi-task benchmark and analysis platform for natural language understanding. In <i>Proceedings</i>
685	of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
686	<i>NLP</i> , pp. 353–355, 2018.
687	Wenxuan Wang and Zhaopeng Tu. Rethinking the value of transformer components. In <i>Proceedings</i>
688	of the 28th International Conference on Computational Linguistics, pp. 6019–6029, 2020.
689	
690	Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
691	Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.
692	<i>arXiv preprint arXiv:2206.07682</i> , 2022a.
693	Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
694	Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
695	neural information processing systems, 35:24824–24837, 2022b.
696	Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong, Shanghang Zhang, Qi Zhang, Fengwei
697	Yu, and Xianglong Liu. Outlier suppression: Pushing the limit of low-bit transformer language
698	models. Advances in Neural Information Processing Systems, 35:17402–17414, 2022c.
699	Mangzhou Via Tianyu Gao. Zhiyuan Zang, and Dangi Chan. Shaqaad llama, Accelerating language
700 701	Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language model pre-training via structured pruning. In <i>The Twelfth International Conference on Learning Representations</i> , 2023.

702 703 704	Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant: Accurate and efficient post-training quantization for large language models. In <i>International</i> <i>Conference on Machine Learning</i> , pp. 38087–38099. PMLR, 2023.
705	Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
706 707	really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
707	Computational Linguistics. Association for Computational Linguistics, 2019.
709	Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao, Lu Hou, and Carlo Vittorio Cannistraci. Plug-
710	and-play: An efficient post-training pruning method for large language models. In <i>The Twelfth</i>
711	International Conference on Learning Representations.
712	
713	Zhengyan Zhang, Yankai Lin, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou. Moefication: Transformer food forward layers are mixtures of experts. arXiv preprint arXiv:2110.01786, 2021
714	Transformer feed-forward layers are mixtures of experts. arXiv preprint arXiv:2110.01786, 2021.
715	
716	
717	
718	
719 720	
720	
721	
723	
724	
725	
726	
727	
728	
729	
730	
731	
732	
733	
734	
735 736	
737	
738	
739	
740	
741	
742	
743	
744	
745	
746	
747	
748 749	
749 750	
750	
752	
753	
754	
755	

A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 ABLATION STUDY ON SEARCH ALGORITHMS AND ROBUSTNESS ANALYSIS

760 We conduct a robustness analysis using five search algorithms, including random search (Bergstra 761 & Bengio, 2012), which randomly samples hyperparameter values from a predefined search space and does not take into account any information about the performance of previous trials, the Tree-762 structured Parzen Estimator (TPE) (Bergstra et al., 2011; 2013; Ozaki et al., 2022), a Bayesian optimization algorithm that uses a tree structure to model the relationship between hyperparameters 764 and the objective function, and Quasi-Monte Carlo (QMC) (Bergstra & Bengio, 2012) sampler, 765 which generates a sequence of points that cover the search space more evenly compared to random 766 sampling, for more efficient exploration. Additionally, we utilize the state-of-the-art multi-objective 767 optimization algorithms Non-dominated Sorting Genetic Algorithm II (NSGA-II) (Deb et al., 2002) 768 and NSGA-III (Deb & Jain, 2013; Jain & Deb, 2013), which are based on genetic algorithms and 769 optimize multiple conflicting objectives simultaneously. NSGA-II uses a non-dominated sorting 770 approach to rank solutions based on their dominance relationship, while NSGA-III extends NSGA-II 771 by incorporating reference points to guide the search toward the Pareto front.

Table 10: Statistical results of different search algorithms on LLaMA-2 7B model. We report themean and standard deviation under 3 search process runs.

	Dataset	Random	TPE	QMC	NSGA-II	NSGA-III
,	WikiText	$6.89(\pm 0.0671)$	6.33 (±0.0714)	$6.39(\pm 0.0700)$	6.44 (±0.0632)	6.35 (±0.0640)
	GSM8K	$7.96(\pm 0.2406)$	8.33 (±0.2498)	$8.08(\pm 0.2220)$	$8.47(\pm 0.2479)$	8.49 (±0.2646)
	MMLU	31.11 (±0.3962)	31.06 (±0.4017)	31.80 (±0.4400)	32.43 (±0.4701)	33.06 (±0.4687)
	LM-harness	55.32 (±0.5300)	55.74 (±0.5367)	56.19 (±0.5234)	56.59 (±0.5689)	57.47 (±0.5718)

779 780

786

788

772

758

759

Table 10 presents the statistical analysis, specifically the mean and standard deviation, of the performance of pruned LLaMA-2 7B models across four distinct benchmarks. To validate the robustness and reliability of our results, each model was evaluated using three different search processes, each initialized with different random seeds. We report the performance outcomes of the NSGA-III search method in the main paper, as it generally outperforms other algorithms.

787 A.2 ABLATION STUDY ON SEARCH SPACE

In Table 11, we construct the sub-search spaces by randomly selecting 2-6 coefficients/operations from our candidate pool. We test three different subspaces using random seeds 0, 42, and 100. The evaluations are conducted on WikiText, and the perplexity scores are reported below. We can see that the search performed on the full set consistently yields the best results. An interesting observation is that using a very small subspace may lead to extremely poor outcomes. This occurs because the candidate coefficients/operations in the subspace are all unsuitable for the target model.

Table 11: WikiText perplexity for random subspaces of the search space on LLaMA2-7B model in searching for optimal pruning metric.

Seed	2 Ops & 2 Coes	3 Ops & 3 Coes	4 Ops & 4 Coes	5 Ops & 5 Coes	6 Ops & 6 Coes	Full Search Space
0	870.16	753.32	6.43	6.51	6.57	6.35
42	6.47	6.39	6.39	6.39	6.35	6.35
100	6.43	6.43	6.43	6.58	6.58	6.35

801 802

796

803 804

A.3 SEARCH COST

In Table 12, we provide the detailed search time consumed on a single Nvidia RTX A6000 GPU. We
report the total time of 350 search trials, as we empirically found that the optimal value is generally
obtained within these rounds, as illustrated in Figure 4(c). As shown in the table, the time of an
optimal search is within 2.5 GPU hours. With multiple GPUs, the search process can generally be
finished within 1 hour. Therefore, we believe that the search cost of our method is moderate and
acceptable.

810 Table 12: Cost of searching for optimal pruning metric and layerwise sparsity ratios on LLaMA-1/2/3 811 and Mistral models.

813	Search	L1-7B	L1-13B	L2-7B	L2-13B	L3-8B	L3-8B-it	M-7B	M-7B-it
814	Metric	1h10m28s	2h13m6s	1h6m14s	2h11m55s	1h30m47s	1h31m51s	1h14m22s	1h15m54s
815	Ratio	1h13m44s	2h19m28s	1h9m34s	2h22m45s	1h31m59s	1h32m51s	1h17m8s	1h18m12s

A.4 HYPERPARAMETER ANALYSIS

820 We evaluate the impact of various hyperparameters applied in the layerwise sparsity ratios search 821 procession the performance of WikiText perplexity. We use the LLaMA-2 7B model and prune to unstructured 50% sparsity. 822

824 **Sparsity step.** In layerwise sparsity ratio search, we identify the optimal sparsity ratio for each layer 825 by selecting from a predefined sparsity ratio set: [target sparsity - sparsity step, 826 target sparsity, target sparsity + sparsity step]. Here, target sparsity is the 827 pre-defined sparsity ratio for pruning the overall model. The sparsity step allows for adjustments to 828 achieve slightly higher or lower sparsity ratios.

In Figure 4(a), we vary the sparsity step ranging between 3% and 10%. We empirically find that a 5% sparsity step usually performs better than other sparsity steps, such as lower 3% or higher 8% and 10%. This is possibly because smaller steps might not significantly reduce redundancy, while 832 larger steps might overly simplify the layers, leading to a loss of important features and a decrease on overall model performance.

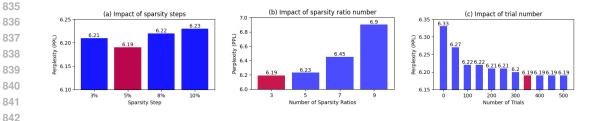


Figure 4: Sensitivity evaluation on sparsity step, number of sparsity ratios, and the number of trials in layerwise sparsity ratio search.

Number of sparsity ratios. In Figure 4(b), we fix the sparsity step as 5% and vary the number of sparsity ratios in the predefined sparsity ratio set, which ranges from 3 to 9. Specifically, one sparsity ratio in the sparsity ratio set corresponds to uniform pruning across layers. For example, a predefined sparsity ratio set with 5 sparsity ratios is defined as [target sparsity - 2*sparsity step, target sparsity - sparsity step, target sparsity, target sparsity + sparsity step, target sparsity + 2*sparsity step].

We empirically find that, for LLaMA2-7B model that contains 32 layers, a discrete sparsity set 854 of 3 sparsity ratios is able to search for better results than larger sets of sparsity ratios. This 855 possibly because a larger number of sparsity ratios significantly expands the search space, making it 856 challenging to find the optimal solution within a limited number of search trials. 857

858

812

816 817 818

819

823

829

830

831

833

834

843

844

845 846 847

848

849

850

851

852

853

859 **Number of search trials.** In Figure 4(c), we investigate the influence of varying the number of 860 trials on the performance of the NSGA-III search algorithm. The trials evaluated range from an initial 861 count of 0 up to a maximum of 500. The results reveals that the perplexity stabilizes and reaches an optimal value at the point where the number of search trials is set to 350. Based on this empirical 862 evidence, we select this specific number of trials for the NSGA-III algorithm in our experiments 863 discussed in the main paper.

A.5 **OPTIMAL PRUNING METRIC AND LAYERWISE SPARSITY RATIOS**

Our meta pruning metric adjusts the relationship between weight and activation magnitudes by applying specific coefficients and operations to both weight and activation magnitudes. The operation sets include (1) no op, which leaves the matrix unchanged, (2) sqrt, which computes the square root of each matrix element, and (3) square, which raises each element to the power of two. The coefficient sets include (1) no coe, which leaves the scaling of the matrix elements unchanged, (2) F norm, using the reciprocal of the Frobenius norm of the matrix, (3) to sum, and (4) to mean, setting the coefficients as the reciprocal of the total sum and the average of the matrix elements, respectively. (5) row sum and (6) column sum, using the reciprocal of the sums of specific rows or columns, respectively. Finally, (7) relative sum calculates coefficients as the sum of the row sums and column sums for each matrix element. The detailed calculation equations are illustrated in Table 13, using matrix $A = A_{ij}$ with m rows and n columns as input for demonstration.

The detailed calculations for the coefficient sets utilized in our pruning metric are comprehensively illustrated in Table 13. For these calculations, we use a matrix $A = A_{ij}$ that consists of m rows and n columns as input demonstration.

Table 13: Detailed calculations for the coefficient sets in meta pruning metric.

coefficient	Equation	coefficient	Equation
no coe	$\alpha=\beta=1$	F norm	$\alpha = \beta = 1/\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}^{2}}$
to sum	$\alpha = \beta = 1/\sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}$ $\alpha = \beta = 1/\sum_{j=1}^{n} A_{ij}$	to mean	$\alpha = \beta = mn / \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}$ $\alpha = \beta = 1 / \sum_{i=1}^{m} A_{ij}$
row sum	$\alpha = \beta = 1 / \sum_{j=1}^{n} A_{ij}$	column sum	$\alpha = \beta = 1 / \sum_{i=1}^{m} A_{ij}$
relative sum	$\alpha = \beta = \text{row sum } (A_{ij}) + \text{column sum } (A_{ij})$		

Optimal pruning metrics. In Table 14, we present the optimal coefficients and operations for pruning metrics using samples from the C4 dataset as calibration data. Table 15 displays the optimal coefficients and operations for pruning metrics using samples from the GSM8K dataset as calibration data. Compared to the results based on the C4 dataset, the metrics derived from the GSM8K dataset show a greater divergence from RIA metric (Zhang et al.). Notably, most of these metrics do not incorporate the relative sum as a weight coefficient.

Table 14: Optimal coefficients and operations for pruning metrics on C4 calibration data.

Metric	LLaN	MA-1	LLaN	MA-2	LLaMA	A-3	Mistr	al
Metric	7B 13B		7B	13B	8B	8B-Inst	7B	7B-Inst
α	relative sum	no coe	relative sum	F norm				
β	to mean	to mean	to mean	no coe	F norm	F norm	to mean	to mean
$ au_1$	no op	square	no op	square	no op	no op	square	sqrt
τ_2	sqrt	no op	sqrt	sqrt	no op	no op	no op	sqrt

Table 15: Optimal coefficients and operations for pruning metrics on GSM8K calibration data.

Metric	LLaMA-1		LI	LLaMA-2		aMA-3	M	listral
Wietric	7B	13B	7B	13B	8B	8B-Inst	7B	7B-Inst
α	row sum	to mean	F norm	column sum	to mean	relative sum	row sum	relative sum
β	relative sum	F norm	to sum	relative sum	to sum	no coe	no coe	to mean
$ au_1$	no op	no op	no op	square	square	no op	square	square
$ au_2$	sqrt	sqrt	sqrt	sqrt	sqrt	no op	no op	no op

Optimal layerwise pruning ratio. In Figure 5, we report the optimal layerwise sparsity ratios for LLaMA-1/2/3 and Mistral models. The results generally indicate that the upper layers contain more redundant parameters compared to the lower layers, as higher sparsity ratios are more common in the top layers, while lower sparsity ratios are more frequent in the lower layers.

918

919

920

921

922

923

924

925

926

927 928

929

930

931

932

933 934

935

936 937

938 939 940

941

943

954

Ratio 0.55 0.55 0.55 LLaMA2 7B LLaMA1 13B LLaMA1 7B -ayerwise 0.50 0.50 0.50 0.45 0 0.45 10 15 20 25 Ó 5 30 ò 10 20 30 40 ò 5 10 15 20 25 30 Layers Layers Layers Ratio 0.55 0.55 0.55 Mistral 7B Mistral 7B Inst LLaMA2 13B Layerwise 0.50 0.50 0.50 0.45 0.4 Ò 15 20 25 30 10 15 30 Ò 10 20 30 ò 10 20 25 40 5 Layers Layers Layers 0.55 Batio 0.55 LLaMA3 8B LLaMA3 8B Inst -ayerwise 0.50 0.500.45 0.4Ò 5 10 15 20 25 30 5 0 10 15 20 25 30 Layers Layers

Figure 5: Searched layerwise sparsity ratios for LLaMA-1/2/3 and Mistral models.

A.6 **RELATIONSHIP BETWEEN TRANSFORMED WIGHTS AND ACTIVATIONS**

942 In our analysis of the optimal searched pruning metrics, We find that the differences between transformed weights and transformed activations may affect the effectiveness of different pruning metrics. 944 Specifically, we analyze each pruning metric, such as Wanda, RIA, and Mecon, by decomposing 945 them into two distinct components: the transformed weights and the transformed activations, each 946 defined by specific coefficients or operations. As the SparseGPT metric combines weights and the 947 Hessian matrix, and the Wanda metric serves as a simpler approximation of the SparseGPT metric. Due to this relationship, we omit the weight and activation analysis for SparseGPT. 948

949 We measure the difference between transformed weights and activations as the layer-wise absolute 950 difference, which is calculated by summing the average absolute differences across all linear sub-951 modules in each layer. We report the average layer-wise differences between the operated weights 952 and the operated activations across the Wanda, RIA, and Mecon pruning metrics in Table 16, with 953 detailed layer-wise difference curves available in Figures 6, 7, 8, 9.

955 Table 16: Average absolute difference between operated weights and operated activations for Wanda, RIA and Mecon on C4 Calibration Data. 956

Method	LLaMA-2 7B	LLaMA-2 13B	LLaMA-3 8B	Mistral 7B
Wanda	82.66	78.30	79.31	392.13
RIA	22.34	21.91	21.15	44.77
Mecon	1.09	0.0001	0.1263	0.0304

Table 16 shows that the RIA pruning metric reduces the absolute difference compared to Wanda, 963 while the Mecon searched metric further minimizes this difference, bringing it close to zero. The 964 weighted transformation operation in the Mecon pruning metric effectively scales both weights and 965 activations into a similar numerical range, facilitating a balanced evaluation of each weight relative to 966 its corresponding activation. 967

968 Coupled with the performance results of each pruning metric presented in Table 2, the difference analysis in Table 1 suggests that pruning metrics with smaller absolute differences between trans-969 formed weights and activations are more likely to achieve effective pruning. Thus, the performance of 970 Wanda and other methods may be influenced by how well they account for these differences regarding 971 different models with different weight magnitudes and distributions.

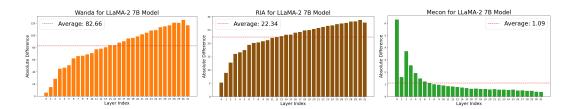


Figure 6: Layerwise absolute distance between transformed weights and transformed activations for Wanda, RIA, and Mecon metrics on LLaMA-2 7B models.

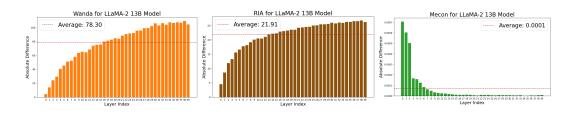


Figure 7: Layerwise absolute distance between transformed weights and transformed activations for Wanda, RIA, and Mecon metrics on LLaMA-2 13B models.

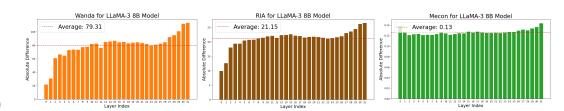


Figure 8: Layerwise absolute distance between transformed weights and transformed activations for Wanda, RIA, and Mecon metrics on LLaMA-3 8B models.

Figure 9: Layerwise absolute distance between transformed weights and transformed activations for Wanda, RIA, and Mecon metrics on Mistral 7B models.

A.7 TASK-WISE RESULTS ON LM HARNESS

For LM-harness results, the 7 evaluated zero-shot tasks are: BoolQ (Clark et al., 2019), RTE (Wang et al., 2018), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021), ARC Easy and Challenge (Clark et al., 2018), and OpenbookQA (Mihaylov et al., 2018). For reproducibility, we used v0.4.0 release. All tasks were evaluated on task version 0 except for BoolQ on task version 1. We show the task-wise performance of mean zero-shot accuracies of pruned LLaMA-1/2/3 and Mistral models in Tables 17, 18, 19, 20, 21, 22, 23, 24.

Method	BoolQ	RTE	HellaSwag	WinoGrande	ARC-e	ARC-c	OBQA	Average
Dense	75.06	66.23	56.93	69.54	74.82	41.02	34.30	59.70
Magnitude	55.10	54.51	45.49	59.10	58.65	32.97	22.40	46.89
SparseGPT	72.03	54.15	51.43	67.87	71.39	37.54	29.60	54.86
Ŵanda	71.04	54.51	51.93	65.90	69.40	36.95	28.80	54.08
RIA	72.84	57.76	51.93	66.85	70.50	36.43	29.40	55.10
Pruner-Zero	70.28	56.68	47.27	64.96	66.92	33.25	26.80	52.31
Our Metric	$\bar{7}\bar{2.87}^{-}$	$\bar{57.40}$		67.25	70.33	- 36.35 -	- 29.60 -	55.10
GSM8K Metric	71.04	58.48	52.39	67.17	69.91	37.46	30.20	55.24
LLaMA2 Metric	70.73	57.63	53.24	67.01	70.24	37.97	30.20	55.15

¹⁰²⁶

Table 18: Accuracies (%) of LLaMA-1 13B model for 7 zero-shot tasks with unstructured 50% 1041 sparsity. 1042

1043	Method	BoolQ	RTE	HellaSwag	WinoGrande	ARC-e	ARC-c	OBQA	Average
1044	Dense	78.03	70.51	59.63	72.89	77.28	46.55	33.20	62.58
1045	Magnitude	55.19	52.23	43.65	63.36	57.82	32.53	26.60	47.34
1046	SparseGPT	76.89	60.95	54.99	71.46	72.15	42.17	31.20	58.54
1047	Wanda	75.73	62.48	55.70	71.68	72.91	43.45	32.20	59.18
	RIA	76.44	62.34	56.13	72.73	72.42	43.87	32.20	59.45
1048	Pruner-Zero	73.91	62.36	52.65	69.41	70.83	41.62	28.80	57.08
1049	Our Metric	76.67	62.45	56.11	73.63	73.25	-43.62 -	$\bar{3}2.4\bar{0}$	59.73
1050	GSM8K Metric	76.62	62.89	55.48	72.79	72.58	43.78	32.00	59.45
1051	LLaMA2 Metric	76.51	62.32	56.43	71.82	73.39	43.84	32.40	59.53

1054 Table 19: Accuracies (%) of LLaMA-2 7B model for 7 zero-shot tasks with unstructured 50% sparsity. 1055

77.74			WinoGrande	ARC-e	ARC-c	OBQA	Average
//./4	62.82	57.14	69.14	76.35	43.43	31.40	59.72
62.57	52.35	52.99	65.35	67.97	37.20	28.40	52.40
75.78	57.75	52.90	69.14	71.34	37.97	26.60	55.90
75.35	53.43	52.63	67.25	72.35	39.42	30.80	55.89
75.66	53.79	52.25	67.25	72.05	37.71	31.00	55.67
73.48	53.29	49.18	65.83	69.92	38.36	26.60	53.81
74.62	$\overline{62.82}$	57.14	68.03	71.00	- 38.91 -	- 29.80 -	57.47
75.11	53.79	53.55	67.25	72.31	39.93	30.40	56.05
75.11	53.79	53.55	67.25	72.31	39.93	30.40	56.05
	75.78 75.35 75.66 73.48 74.62 75.11	$\begin{array}{cccc} \textbf{75.78} & 57.75 \\ 75.35 & 53.43 \\ 75.66 & 53.79 \\ 73.48 & 53.29 \\ \overline{74.62} & \textbf{62.82} \\ 75.11 & 53.79 \end{array}$	$\begin{array}{cccccccc} \textbf{75.78} & 57.75 & 52.90 \\ 75.35 & 53.43 & 52.63 \\ 75.66 & 53.79 & 52.25 \\ 73.48 & 53.29 & 49.18 \\ \overline{74.62} & \textbf{62.82} & - \ \textbf{57.14} & - \\ 75.11 & 53.79 & 53.55 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

1066 1067

Table 20: Accuracies (%) of LLaMA-2 13B model for 7 zero-shot tasks with unstructured 50% 1068 sparsity. 1069

Method	BoolQ	RTE	HellaSwag	WinoGrande	ARC-e	ARC-c	OBQA	Average
Dense	80.52	65.34	60.33	71.95	79.38	48.47	35.20	63.03
Magnitude	57.62	55.87	54.53	65.85	70.47	38.13	27.80	52.90
SparseGPT	81.42	65.26	55.83	72.64	74.91	42.23	32.60	60.70
Wanda	81.86	64.08	56.92	71.37	76.12	43.81	32.00	60.88
RIA	81.93	64.02	57.73	71.89	76.24	43.46	32.00	61.03
Pruner-Zero	77.86	61.22	56.89	67.90	74.16	39.81	29.40	58.18
Our Metric	- 80.97	$\bar{66.17}$	59.68	72.35	76.29	43.68	- 30.80 -	61.42
GSM8K Metric	81.56	64.06	58.41	72.23	76.98	43.73	32.00	61.28
LLaMA2 Metric	80.25	66.14	59.73	71.57	77.36	43.85	32.00	61.56

¹⁰³⁸ 1039 1040

2 Metho	d Bo	olQ RTE	HellaSwag	WinoGrande	ARC-e	ARC-c	OBOA	Average
Dense		.44 69.68	60.17	72.85	80.09	50.43	34.80	64.21
Magni	tude 49	.14 53.43	38.55	55.09	60.69	32.42	24.80	44.87
Sparse	GPT 74	.80 54.15	49.90	68.35	67.05	36.43	26.40	53.87
Ŵanda	73	.43 52.71	41.80	63.22	64.86	29.78	21.80	49.66
RIA	75	.20 53.12	43.00	64.56	65.87	30.55	23.00	50.76
Prunei	-Zero 72	.32 54.51	45.78	65.19	70.58	35.41	23.60	52.48
Our M	etric 79	.54 53.07	43.24	70.24	72.05	<u>41.13</u>	29.20	55.50
GSM8	K Metric 73	.88 63.90	49.68	68.90	70.37	37.80	24.60	55.59
LLaM	A3 Metric 73	.88 63.90	49.68	68.90	70.37	37.80	24.60	55.59

Table 21: Accuracies (%) of LLaMA-3 8B model for 7 zero-shot tasks with unstructured 50% sparsity.

1092Table 22: Accuracies (%) of Instruction-tuned LLaMA-3 8B model for 7 zero-shot tasks with
unstructured 50% sparsity.

Method	BoolQ	RTE	HellaSwag	WinoGrande	ARC-e	ARC-c	OBQA	Averag
Dense	83.06	67.51	57.68	71.98	81.61	52.99	34.20	64.15
Magnitude	68.84	60.65	36.31	53.75	49.83	26.19	21.80	45.31
SparseGPT	77.00	60.65	49.61	66.46	70.92	40.19	26.40	55.89
Ŵanda	76.57	54.51	41.18	63.61	67.63	33.70	22.20	51.34
RIA	78.17	54.51	42.29	64.25	68.35	34.13	22.80	50.64
Pruner-Zero	76.88	54.51	45.32	65.67	69.44	36.95	25.00	55.60
Our Metric	81.56	54.15	42.32	68.11	74.28	⁻ 41.55 ⁻	- <u>29.60</u> -	55.94
GSM8K Metric	78.17	54.51	42.29	64.25	68.35	34.13	22.80	50.64
LLaMA3 Metric	76.82	62.45	48.18	66.30	71.34	39.59	26.80	55.9

1105 Table 23: Accuracies (%) of Mistral 7B model for 7 zero-shot tasks with unstructured 50% sparsity.

Method	BoolQ	RTE	HellaSwag	WinoGrande	ARC-e	ARC-c	OBQA	Average
Dense	81.44	69.68	60.17	72.85	80.09	50.43	34.80	64.21
Magnitude	75.87	55.60	56.74	68.35	74.20	42.15	27.80	57.24
SparseGPT	76.73	61.01	54.52	67.72	74.24	41.64	26.60	57.49
Wanda	76.12	55.60	48.95	65.59	72.69	37.46	23.00	54.20
RIA	76.48	56.68	49.05	66.30	72.47	37.12	22.60	54.39
Pruner-Zero	77.46	60.65	50.25	68.90	71.84	37.46	22.40	55.57
Our Metric	82.35	56.68	55.77	70.88	76.18	45.22	- 28.22 -	59.33
GSM8K Metric	81.53	55.60	54.43	69.38	74.16	42.15	26.40	57.66
LLaMA3 Metric	80.52	56.32	55.94	69.53	75.00	42.41	28.40	58.30

Table 24: Accuracies (%) of Instruction-tuned Mistral 7B model for 7 zero-shot tasks with unstructured 50% sparsity.

Method	BoolQ	RTE	HellaSwag	WinoGrande	ARC-e	ARC-c	OBQA	Average
Dense	83.06	67.51	57.68	71.98	81.61	52.99	34.20	64.15
Magnitude	79.09	65.06	59.31	67.43	77.96	49.77	31.80	62.34
SparseGPT	81.56	72.92	58.77	70.01	76.85	48.72	28.40	62.46
Wanda	83.73	66.79	55.68	67.48	77.06	48.12	28.40	61.04
RIA	83.88	66.79	55.61	67.32	77.78	47.95	27.60	60.48
Pruner-Zero	83.18	68.95	56.17	68.27	76.43	47.44	29.40	61.41
Our Metric	84.40	66.79		70.24	80.13	51.45	32.80	63.51
GSM8K Metric	84.59	67.87	58.97	68.90	78.11	51.11	31.80	63.05
LLaMA3 Metric	84.13	66.06	59.87	69.14	78.79	51.37	32.00	63.05