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A Experiment Details

A.1 Noise Generation

For symmetric label noise, we randomly select a proportion of examples and then flip their labels to all
possible labels with equal probabilities. Following Chen et al. (2021a), for asymmetric label noise in CIFAR-
10, we randomly select a proportion of examples and flip their labels between TRUCKæAUTOMOBILE,
BIRDæAIRPLANE, DEERæHORSE, and CAT¡DOG. For asymmetric label noise in CIFAR-100, we also
randomly select a proportion of examples and flip their labels into the next class circularly. For instance-
dependent label noise, we follow the intuition that mislabeled images share visually similar patterns (Xiao
et al., 2015). To this end, we randomly choose an anchor image for each class, then we choose some similar
images to the anchor image and flip their labels like symmetric label noise, where the similarity is measured
by the L2 norm. To demonstrate this instance-dependent label noise is reasonable, we visualize a part of
images from CIFAR-10 with similar visual patterns in Figure 5.

(a) Visually similar images (b) Randomly selected images

Figure 5: We artificially corrupted images with similar visual patterns. More specifically, we first randomly
choose an anchor point for each class, shown in the first column of (a), and then we corrupted images that
are similar to these anchor images. In contrast, (b) shows the randomly selected images for each class, which
do not share similar patterns.

B Proofs for Theorem 3.1 and Proposition 4.1

Lemma B.1. We consider the probability that for any interval I� µ [≠m, b ≠ m] with the length � =
b(1 ≠ e≠d≠5), there exists at least one of those {›i}n

i=1 are within the interval I�. When n = Poly(d), the
statement holds with probability at least 1 ≠ e≠nd5 .

Proof. Calculating event that there exist at least one of those {›i}n
i=1 are within the interval I� is equivalent

to calculate the event that all {›i}n
i=1 are not within the interval I�. Specifically

Pr[At least one] = 1 ≠ Pr[None].

Pr[None] = (Pr[›i ”œ I�])n Æ [b ≠ �
b

]n = [e≠d≠5
]n = e≠nd≠5

.

Since all {›i}n
i=1 are sampled independently, we let n = d10 without the loss of generality, then

Pr[At least one] Ø 1 ≠ e≠d5 . We use this probability for the following proof.
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Proof for Theorem 3.1

Proof. With the similar proof for {’i}n
i=1, the conclusion of this LemmaB.1 also holds for {’i}n

i=1 in a di�erent
interval I� µ [a, b]. We can adopt the probability stated above for our proof. As pointed out in Soudry et al.
(2018), the gradient descent with logistic loss over a linearly separable data induces a maximum L2 margin
solution. It indicates that the induced classifier separates the data with respect to noisy labels and also
satisfies the maximum L2 margin. Specifically, Ễ = Êı

ÎÊıÎ , where Êı is given by:

Êı = argmin
ÊœRd

ÎÊÎ2 s.t. ’i : Ê€xiỹi Ø 1. (7)

The normalized optimal solution Ễ œ {a1e1 + a2e2 : a1 œ R, a2 œ R} since a3e3 + · · · + aded is orthogonal to
data point xi for any aj œ R, j œ {3, 4, · · · , d} and any i œ [n]. Let Ễ = ã1e1 + ã2e2.

By Lemma B.1 with probability at least 1 ≠ 2e≠d5 (this lower probability is adopted for simplicity), there
exists a data point (x1 = e1’1 + e2›2, ỹ1) where |’1| œ [b ≠ �, b], |›1| œ [0, �]. We analyze the case where
’1 > 0, ›1 > 0. The analysis for other cases ’1 < 0, ›1 > 0, ’1 > 0, ›1 < 0, and ’1 < 0, ›1 < 0 are similar. If
’1 > 0, ›1 > 0, then ỹ1 = 1.

Consider the worst data point with ’1 = b ≠ � and ›1 = � that decides the lowest prediction accuracy
of the classifier.To classify this point into the cluster ỹ = 1, we need at least ã1 > ≠�Ô

�2+(�≠b)2 and

ã2 > b≠�Ô
�2+(�≠b)2 . If there are other data points in this region, then the lower bound for ã1 is higher than

≠�Ô
�2+(�≠b)2 and the lower bound for ã2 is higher than b≠�Ô

�2+(�≠b)2 . Similarly, for other three cases, we have

that |ã1| < �Ô
�2+(�≠b)2 and ã2 > b≠�Ô

�2+(�≠b)2 . Therefore, area of region misclassified by the classifier Ễ is

at most 14 + 16�
b≠� (the total area is 32). Since the joint distribution of X ◊ Y is uniform over the support,

then the probability that a data is misclassified (in the misclassified region) is at most 7
16 + �

2(4≠�) , which is
upper bounded by 7

16 + �
6 . Thus, the probability

-- Pr(x,y)[sign(Ễ€x) = y] ≠ 0.5625
-- Æ 2

3 (1 ≠ e≠d≠5) Æ 2
3d5 .

For self-supervised learning, as it is shown in Liu et al. (2021), the minimal solution WSSL to Eq. (1) is
equivalent to the minimal solution to minimize

..M ≠ W €W
..2

F
, where M = 1

n

qn
i=1 xix€

i . In the meanwhile,
by Eckart-Young-Mirsky theorem, the span of WSSL is the top 1 eigenvector of M . Let the top 1 eigenvector
be e = pe1 + qe1 with p2 + q2 = 1. The corresponding eigenvalue is given by:

e€Me = 1
n

nÿ

i=1

#
(pe€

1 + qe€
2 )(’ie1 + ›ie2)(’ie

€
1 + ›ie

€
2 )(pe1 + qe2)

$

= 1
n

nÿ

i=1

#
p2’2

i + q2›2
i + 2pq’i›i

$

= 1
n

nÿ

i=1

#
(1 ≠ q2)’2

i + q2›2
i + 2pq’i›i

$
(p2 + q2 = 1)

= 1
n

nÿ

i=1
’2

i ≠ q2

n

nÿ

i=1
(’2

i ≠ ›2
i ) + 2pq

n

nÿ

i=1
’i›i

= 1
n

nÿ

i=1
’2

i ≠ q2

n

nÿ

i=1
(’2

i ≠ ›2
i ) + 2pqE[’›] + o(n≠1/3)

= 1
n

nÿ

i=1
’2

i ≠ q2 1
n

nÿ

i=1
(’2

i ≠ ›2
i )

¸ ˚˙ ˝
¨

+o(n≠1/3).
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When n is large enough, ¨ converges to its expectation. Let Z̄ = 1
n

qn
i=1(’2

i ≠ ›2
i ). By Hoe�ding’s inequality

P{|Z̄ ≠ E[Z̄]| Ø 1} Æ 2 exp
!

≠ 2n

162
"
,

where E[Z̄] = 63
16 ¥ 3.93. With probability at least 1 ≠ 2e≠n/128, Z̄ œ [ 47

16 , 79
16 ] and Z̄ ∫ o(n≠1/3). Therefore,

the eigenvalue corresponding to the eigenvector e is the largest when q = 0 and the top 1 eigenvector is
e = e1.

Without loss of generality, we let WSSL = e€
1 . After applying self-supervised transformation on inputs , the

transformed data {(WSSLxi, ỹi)}n
i=1 = {(yi’i, ỹi)}n

i=1. We aim to learn any classifier where ◊ > 0 to correctly
predict all labels given inputs {yi’i}n

i=1 since ’i > 0, ’i œ [n]. The negative gradient of the logistic loss L(◊)
over {(yi’i, ỹi)}n

i=1 is given by:

≠Ò◊L(◊) = 1
n

nÿ

i

exp
!

≠ ỹiyi’i◊
"

1 + exp
!

≠ ỹiyi’i◊
" ỹiyi’i.

Note that ỹ is independent with ’. And ỹiyi = 1 with probability 9/16 and ỹiyi = ≠1 with probability 7/16.
Then with high probability, ≠Ò◊L(◊) > 0. Eventually, there is a unique optimum ◊ = ◊0 ≠

q
i –iÒ◊L(◊i) > 0

that minimizes the loss over {(yi’i, ỹi)}n
i=1. When ◊ > 0, the classifier gives the best decision boundary where

sign(◊̃yi’i) = yi. Hence, we have Pr(x,y)[sign(◊̃€WSSLx) = y] Ø 1 ≠ 2e≠n/128.

Proof for Proposition 4.1

Proof. The proof for Proposition 4.1 can be adapted from the proof for Theorem 1. The optimal WSSL can
be represented by the combination of e1 and e2. So we let WSSL = pne1 + qne2, where pn and qn are optimal
solutions dependent on the sample size n. By the definition of convergence in probability, we need to show

Pr[Îpne1 + qne2 ≠ e1Î > ‘] æ 0 as n æ Œ,

for every ‘ > 0. When pn = 1 as n æ Œ, the above condition holds since pn + qn = 1. From the proof of
Theorem 1, we have

Pr[pn = 1] Ø 1 ≠ 2e≠n/128.

Therefore

Pr[Îpne1 + qne2 ≠ e1Î > ‘] = Pr[Îpne1 + qne2 ≠ e1Î > ‘|pn = 1] Pr[pn = 1]
+ Pr[Îpne1 + qne2 ≠ e1Î > ‘|pn ”= 1] Pr[pn ”= 1]

Æ Pr[Îpne1 + qne2 ≠ e1Î > ‘|pn = 1] + Pr[pn ”= 1]
Æ2e≠n/128 æ 0 as n æ Œ

C Proofs for Theorem 6.1

Gradient Descent Discussion

We discuss the behaviour of the linear classifier parameterized by ÊT given ≠ÁÒL(Ê0)€µ̃ > —, where T is the
time to stop training, and 0 < — Æ 1. We first introduce the following lemma, which is used to characterize
the convexity of the logistic loss over the data.
Lemma C.1. Logistic loss L(Ê) is ‡max+1

8 -smooth when n is large enough.

Proof. The derivative of L(Ê) is given by:

ÒL(Ê) = 1
n

ÿ

i

(1 ≠ 1
1 + exp(≠ỹiÊ€xi)

)(≠ỹixi).
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Then, the hessian of L(Ê) is given by:

Ò(ÒL(Ê)) = 1
n

nÿ

i=1
xi‡(i)(1 ≠ ‡(i))x€

i ,

where ‡(i) = 1/
!
1 + exp(≠ỹiÊ€xi)

"
, and ‡max is the largest eigenvalue of �. Since x ≥ N (0, �/2), and by

the rates of convergence for law of large numbers, we have

Ò2L(Ê) Ø1
4(�/2 + o(n≠1/3)) ∞ ‡max + 1

8 .

Based on the properties of smoothness:

(ÒL(Êt+1) ≠ ÒL(Êt))€(Êt+1 ≠ Êt) Æ L Î(Êt+1 ≠ Êt)Î2 ,

where L = ‡max+1
8 . Given that the descent algorithm,

Êt+1 = Êt ≠ –tÒL(Êt)

By choosing appropriate learning rate –t (for example –t = 1
2L ), we then have

ÒL(Êt+1)€ÒL(Êt) Ø 1
4L

ÎÒL(Êt))Î2 > 0.

Or equivalently,

ÁÒL(Êt+1)€ÁÒL(Êt) Ø ÎÒL(Êt))Î
4L ÎÒL(Êt+1))Î¸ ˚˙ ˝

“t

> 0.

For two unit vectors, ÁÒL(Ê0) and µ̃, the higher cosine similarity means the lower L2 distance:
...≠ÁÒL(Ê0) ≠ µ̃

...
2

= 2 + 2ÁÒL(Ê0)€µ̃ Æ 2(1 ≠ —).

Similarly,
...ÁÒL(Êt+1) ≠ ÁÒL(Êt)

...
2

= 2 ≠ 2ÁÒL(Êt+1)€ÁÒL(Êt) Æ 2(1 ≠ “t).

Therefore,
...≠ÁÒL(Ê1) ≠ µ̃

...
2

=
...≠ÁÒL(Ê1) + ÁÒL(Ê0) ≠ ÁÒL(Ê0) ≠ µ̃

...
2

Æ2
...ÁÒL(Ê1) ≠ ÁÒL(Ê0)

...
2

+ 2
...≠ÁÒL(Ê0) ≠ µ̃

...
2

Æ2(1 ≠ “0) + 2(1 ≠ —),

Equivalently,
≠ÁÒL(Ê1)€µ̃ Ø 2(— + “0 ≠ 1).

This can be easily generalized to the equation to time t > 1.

This can intuitively explain how larger ≠ÁÒL(Ê0)€µ̃ > 0 a�ects the performance of the classifier ÊT . The
conclusion with more rigorous justification can be found in Theorem 1 in Liu et al. (2020).
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From another perspective, to intuitively understand why ≠ÁÒL(Ê0)€µ̃ > — guarantees the behaviour of ÊT

for 0 < — Æ 1, we first decompose the gradient into two parts:

ÒL(Ê) = 1
n

ÿ

i

(1 ≠ 1
1 + exp(≠ỹiÊ€xi)

)(≠ỹixi)

= 1
n

# ÿ

iœIc

(1 ≠ 1
1 + exp(≠Ê€xi)

)

¸ ˚˙ ˝
clean coe�cients

(≠xi) +
ÿ

iœIn

(1 ≠ 1
1 + exp(Ê€xi)

)

¸ ˚˙ ˝
mislabeled coe�cients

(xi)
$
,

where the density of x is N (µ, �), and Ic is the index set of clean examples and In is the index set of
mislabeled examples. The first part is computed by weighted instances with clean labels, and we term the
weights clean coe�cients. Similarly, we term the weights for the second part mislabeled coe�cients.

At the beginning (t = 0), clean samples dominate the gradient so we get the classifier closer to the optimal
as ≠ÁÒL(Ê0)€µ̃ > —. Based on Proposition 5 in Liu et al. (2020), the clean coe�cients decrease and the
mislabeled coe�cients increase as the training progresses. Eventually, they will achieve the balance, which
leads to small ÒL(Êt). Given that both the magnitude of ÒL(Êt) and the learning rate –t are small at time
t, according to the gradient descent algorithm,

Êt+1 = Êt ≠ –tÒL(Êt)

the learning will stop. Before that time, the learning is still dominated by clean examples and the performance
of the classifier improves until convergence.

Proof for Theorem 6.1

Proof. By the rates of convergence for the law of large numbers

ÒL(Ê) = 1
n

ÿ

i

(1 ≠ 1
1 + exp(≠ỹiÊ€xi)

)(≠ỹixi)

=E[ÒL(Ê)] + o(n≠1/3).

In this case of the symmetric label noise, the label noise function — = ≠1 with probability r and — = 1 with
probability 1 ≠ r, where r controls the noise level. We decompose the expected gradient into the following
form

E[ÒL(Ê0)] =E[E[ÒL(Ê0)]|Y, —]

=1 ≠ r

2 E[ÒL(Ê0)|Y = 1, — = 1] + r

2E[ÒL(Ê0)|Y = 1, — = ≠1]

+ 1 ≠ r

2 E[ÒL(Ê0)|Y = ≠1, — = 1] + r

2E[ÒL(Ê0)|Y = ≠1, — = ≠1],

where the derivative of L(Ê) is given by:

ÒL(Ê) = 1
n

ÿ

i

(1 ≠ 1
1 + exp(≠ỹiÊ€xi)

)(≠ỹixi). (8)

To simplify the mathematical derivation, we assume that Ê0 is initialized at 0. Based on this, the expected
gradient can be simplified:

E[ÒL(Ê0)] =r

2E[X|Y = 1, — = ≠1] ≠ 1 ≠ r

2 E[X|Y = 1, — = 1]

=(r ≠ 1
2)E[X].
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And,

E[ÒL(Ê0)€µ] = (r ≠ 1
2) ÎµÎ2 (9)

Then we compute ÎÒL(Ê0)Î. By Jensen’s inequality,

ÎÒL(Ê0)Î =1
2

.....
1
n

ÿ

i

”ixi

..... ”i is either +1 or -1

Æ 1
2n

ÿ

i

ÎxiÎ

Æ1
2

Ò
ÎµÎ2 + cTrace(�),

where the last inequality is by the concentration property of sub-gaussian random vector and c > 0 is a
constant.

Since ≠ÒL(Ê0)€µ > 0 by Eq. (9) given a su�cient number of examples, the condition ≠ ÒL(Ê0)€µ
ÎÒL(Ê0)ÎÎµÎ is then

given by:

≠ ÒL(Ê0)€µ

ÎÒL(Ê0)Î ÎµÎ =
( 1

2 ≠ r) ÎµÎ2 + o(n1/3)
ÎÒL(Ê0)Î ÎµÎ

Ø (1 ≠ 2r) ÎµÎÒ
ÎµÎ2 + cTrace(�)

+ o(n1/3).

When the label noise is asymmetric, the results are the same though the mathematical expression is slightly
di�erent. For asymmetric label noise, we denote the label noise function —(y) = ≠1 with probability r when
y = ≠1, —(y) = 1 with probability 1 ≠ r when y = ≠1, —(y) = ≠1 with probability 2r when y = 1, and
—(y) = 1 with probability 1 ≠ 2r when y = 1. Following similar derivations for the symmetric label noise,

E[ÒL(Ê0)] =E[E[ÒL(Ê0)]|Y, —]

=1 ≠ r

2 E[ÒL(Ê0)|Y = ≠1, — = 1] + r

2E[ÒL(Ê0)|Y = ≠1, — = ≠1]

+ 1 ≠ 2r

2 E[ÒL(Ê0)|Y = 1, — = 1] + 2r

2 E[ÒL(Ê0)|Y = 1, — = ≠1]

=3r ≠ 1
2 E[X|Y = 1].

And,

E[ÒL(Ê0)€µ] = 3r ≠ 1
2

# ⁄ +Œ

≠Œ
(ÎµÎ2 + W ) dPW

$

= 3r ≠ 1
2 ÎµÎ2 .

Therefore,

≠ ÒL(Ê0)€µ

ÎÒL(Ê0)Î ÎµÎ =
( 1

2 ≠ 3r
2 ) ÎµÎ2 + o(n1/3)

ÎE[ÒL(Ê0)]Î ÎµÎ

Ø (1 ≠ 3r) ÎµÎÒ
ÎµÎ2 + cTrace(�)

+ o(n1/3).
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D Proofs for Lemma 7.2, Lemma 7.3, and Proposition 7.4

Proof for Lemma 7.2

Proof. The function ≠ logE[et] is concave since for any t1, t2, and – œ [0, 1]

≠ logE[e–t1+(1≠–)t2 ] = ≠ logE[(et1)–(et2)1≠–]
= ≠ logE[m–

1 m1≠–
2 ],

where m1 = et1 , m2 = et2 . By Holder’s inequality, the above equality is further given by

≠ logE[m–
1 m1≠–

2 ] Ø ≠ log
!
(E[m1])–(E[m2])1≠–

"

= ≠ – logE[et1 ] ≠ (1 ≠ –) logE[et2 ].

Therefore,

≠ 1
|Ji|

ÿ

kœJi

logE[e≠Îf(uk)≠f(ug(k))Î2
] Æ ≠ logE[e≠ 1

|Ji|

q
kœJi

Îf(uk)≠f(ug(k))Î2

]

Æ ≠ logE[e
≠

... 1
|Ji|

q
kœJi

(f(uk)≠f(ug(k)))
...

2

]

Æ ≠ E[log e
≠

... 1
|Ji|

q
kœJi

(f(uk)≠f(ug(k)))
...

2

]

=E
5.....

1
|Ji|

ÿ

kœJi

(f(uk) ≠ f(ug(k)))

.....

26

=E[Îµi ≠ µjÎ2].

Note that ≠ Î·Î2 is concave and ≠ log(·) is convex. The proof is complete since

≠ 1
|Ji|

ÿ

kœJi

logE[e≠Îf(uk)≠f(ug(k))Î2
] = ≠ 1

|Ji|
ÿ

kœJi

log
!
LUniform(k, g(k))

"
.

Proof for Lemma 7.3

Proof. Let the region Rij = Si fl Sj .

E
# ..f(ui) ≠ f(u+

i )
..2 $

=E
# ..f(ui) ≠ f(u+

i )
..2 |u+

i œ Rij

$
Pr[u+

i œ Rij ]

+ E
# ..f(ui) ≠ f(u+

i )
..2 |u+

i ”œ Rij

$
Pr[u+

i ”œ Rij ]

Ø”E
# ..f(ui) ≠ f(u+

i )
..2 |u+

i œ Rij

$
(10)

It shows that controlling the variance of a random variable controls the expected distance. For any di�erent
indices i, j œ Jy, with Eq.(10), we have for any uij œ Rij

E[Îf(ui) ≠ f(uj)Î2] Æ2E[Îf(ui) ≠ f(uij)Î2] + 2E[Îf(uj) ≠ f(uij)Î2]

Æ2
”
E[

..f(ui) ≠ f(u+
i )

..2] + 2
”
E[

..f(uj) ≠ f(u+
j )

..2], (11)

where we omit the subscriptions for the expectation of simplicity when the context is clear.

The sample variance of the cluster y is given by

‚�y = 1
|Jy|

ÿ

iœJy

(f(ui) ≠
q

jœJy
f(uj)

|Jy| )(f(ui) ≠
q

jœJy
f(uj)

|Jy| )€
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By the property Trace(AB) = Trace(BA),

Trace(E[‚�y]) = 1
|Jy|3E

ÿ

iœJy

......

ÿ

jœJy

(f(ui) ≠ f(uj))

......

2

Æ 1
|Jy|2E

ÿ

iœJy

ÿ

jœJy

Îf(ui) ≠ f(uj)Î2

Æ 2
|Jy|”

ÿ

iœJy

E[
..f(ui) ≠ f(u+

i )
..2] by Eq. (11)

= 2
”|Jy|

ÿ

iœJy

LAlign(i)

Proof for Proposition 7.4

Proof. We assume |Jy| for all y œ Y are the same as it is the most convenient and clear way to represent our
results. We allow the di�erent sizes for clusters and our results are una�ected. Note that logE[et] is convex,
following the spirits of proof from Lemma 5, we have

log[ 1
n(n ≠ 1)

ÿ

mœY

ÿ

i,jœJm
i ”=j

LUniform(i, j)] Ø ≠ 1
n(n ≠ 1)

ÿ

mœY

ÿ

i,jœJm
i ”=j

Eui≥P (u|xi)
uj≥P (u|xj)

#
Îf(ui) ≠ f(uj)Î2 $

(12)

We replace terms in the right hand side of Eq.(12) associated with the the bound in Eq.(11), then we get

≠ 1
n(n ≠ 1)

ÿ

mœY

ÿ

i,jœJm
i ”=j

Eui≥P (u|xi)
uj≥P (u|xj)

#
Îf(ui) ≠ f(uj)Î2 $

Ø ≠ 2
”n(n ≠ 1)

ÿ

mœY
(|Jm ≠ 1|)

ÿ

iœJm

E[
..f(ui) ≠ f(u+

i )
..2]

= ≠2(n/|Y| ≠ 1)
”n(n ≠ 1)

ÿ

mœY

ÿ

iœJm

E[
..f(ui) ≠ f(u+

i )
..2]

= ≠2(n/|Y| ≠ 1)
”n(n ≠ 1)

ÿ

mœY

ÿ

iœJm

LAlign(i)
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E Hyperparameter analysis on augmentation strength

We conduct the sensitive analysis on di�erent data augmentation strengths ⁄ = 1 in Table 7 and 8. The results
show that our method is stable under di�erent augmentation strengths and shows consistent improvement
over supervised learning.

Table 7: CIFAR-10 and CIFAR-100 datasets with IDN label noise over di�erent augmentation strengths.

Dataset CIFAR-10 CIFAR-100
Noise 20% 40% 60% 80% 90% 20% 40% 60% 80% 90%
SSL+CE 91.86 90.79 89.65 87.80 80.01 65.78 63.19 61.47 58.84 54.86
⁄ = 0.8 MoCo+ELR 94.61 94.43 94.31 95.51 89.15 70.41 69.73 68.23 63.21 57.42
⁄ = 0.9 MoCo+ELR 95.16 94.97 96.42 94.86 90.67 71.64 70.91 69.11 64.34 58.28
⁄ = 1.0 MoCo+ELR 95.77 95.70 95.65 95.58 91.35 72.74 71.56 69.69 65.94 59.80
⁄ = 1.1 MoCo+ELR 95.67 95.72 95.45 94.68 92.01 71.92 72.46 68.65 67.34 61.23
⁄ = 1.2 MoCo+ELR 95.21 94.98 96.23 94.88 92.20 70.64 70.46 70.79 67.13 60.21

Table 8: CIFAR-10 and CIFAR-100 datasets with IDN label noise over di�erent augmentation strengths.

Dataset CIFAR-10 CIFAR-100
Noise 20% 40% 60% 80% 90% 20% 40% 60% 80% 90%
SSL+CE 91.86 90.79 89.65 87.80 80.01 65.78 63.19 61.47 58.84 54.86
⁄ = 0.8 BYOL+ELR 93.31 91.78 92.29 96.27 91.21 73.71 71.74 69.53 62.19 56.43
⁄ = 0.9 BYOL+ELR 94.81 94.81 96.12 94.21 93.81 71.01 69.32 67.41 62.32 56.65
⁄ = 1.0 BYOL+ELR 95.45 95.25 95.08 95.07 94.91 72.11 70.64 68.72 63.75 57.54
⁄ = 1.1 BYOL+ELR 94.91 97.15 96.18 94.27 95.10 70.81 71.74 67.98 65.48 58.44
⁄ = 1.2 BYOL+ELR 95.31 94.10 94.98 94.71 95.10 71.10 72.64 69.42 65.32 57.14
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