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ABSTRACT

While multi-agent reinforcement learning (MARL) has been proven effective
across both collaborative and competitive tasks, existing algorithms often strug-
gle to scale to large populations of agents. Recent advancements in mean-field
(MF) theory provide scalable solutions by approximating population interactions
as a continuum, yet most existing frameworks focus exclusively on either fully
cooperative or purely competitive settings. To bridge this gap, we introduce MF-
MAPPO, a mean-field extension of PPO designed for zero-sum team games that
integrate intra-team cooperation with inter-team competition. MF-MAPPO em-
ploys a shared actor and a minimally informed critic per team and is trained
directly on finite-population simulators, thereby enabling deployment to realis-
tic scenarios with thousands of agents. We further show that MF-MAPPO natu-
rally extends to partially observable settings through a simple gradient-regularized
training scheme. Our evaluation utilizes large-scale benchmark scenarios using
our own testing simulation platform for MF team games (MFEnv), including of-
fense–defense battlefield tasks as well as variants of population-based rock-paper-
scissors games that admit analytical solutions, for benchmarking. Across these
benchmarks, MF-MAPPO outperforms existing methods and exhibits complex,
heterogeneous behaviors, demonstrating the effectiveness of combining mean-
field theory and MARL techniques at scale.

1 INTRODUCTION

Existing state-of-the-art MARL algorithms built upon MADDPG, MAAC and MA-PPO (Lowe
et al., 2017; Yu et al., 2022), face severe scalability challenges as the number of agents grows,
primarily due to the well-known curse of dimensionality. A promising remedy is offered by
mean-field theory, which approximates large-scale agent–environment interactions in the infinite-
population limit (Huang et al., 2006). Two major areas of mean-field research are mean-field
games (MFGs) (Huang et al., 2006; Lasry & Lions, 2007; Sen & Caines, 2019; Laurière et al.,
2022), which focus on non-cooperative agents, and mean-field control (MFC) problems (Ben-
soussan et al., 2013; Gu et al., 2021), which study fully cooperative scenarios. In contrast,
mixed collaborative–competitive scenarios that arise in many real-world domains, such as team
sports (Gaviria Alzate et al., 2025) and social dilemmas (Leibo et al., 2017), remain relatively under-
explored. To address this gap, we propose Mean-Field Multi-Agent Proximal Policy Optimization
(MF-MAPPO), the first PPO-based learning algorithm tailored for mixed cooperative–competitive
mean-field settings. Guided by existing theoretical results (Guan et al., 2024a), MF-MAPPO scales
to hundreds or thousands of agents while preserving convergence guarantees and remaining agnostic
to individual identities or private observations.

Mean-Field Teams. The single-team problem was explored in Arabneydi & Mahajan (2014), where
agents share a common team reward (MFC). In contrast, Mahajan & Nayyar (2015) established op-
timality for finite-population games only in the LQG setting, while Sanjari et al. (2022) analyzed a
two-team setting with continuous states and actions—unlike our finite state-space formulation that
directly admits the familiar MDP-type structure. Similarly, multi-population MFGs (MP-MFGs)
have been studied in the past but often restrict agent dynamics and policies to be independent of both
other agents and other population distributions, see Perolat et al. (2021) and references therein. More
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Figure 1: (a) Battlefield as a ZS-MFTG (b) Overview of the architecture of MF-MAPPO.

recently, Guan et al. (2024a) introduced zero-sum mean-field team games (ZS-MFTGs), modeling
large-population teams that compete while cooperating internally. A common-information decom-
position (Nayyar et al., 2013) enables team-size-independent learning with identical optimal team
policies using MF feedback, unlike aforementioned MP-MFGs (open-loop MF policies). However,
computing such policies numerically, especially in large state-action spaces using dynamic program-
ming, is costly. By contrast, MF-MAPPO leverages shared actor–critic networks per team and uses
only commonly accessible information (exact/estimated), ensuring tractability and scalability.

Mean-Field Theory and Learning. Recent advances in mean-field learning span Q-function–based
methods, such as MF-Q and MF-AC (Yang et al., 2020) and DDPG-MFTG (Shao et al., 2024b), to
value-function–based methods like Dec-POMFPPO (Cui et al., 2024) (MFC only). While DDPG-
MFTG incorporates team games, it is restricted to simple grid worlds, unlike our focus on tightly
coupled collaborative–competitive domains (ZS-MFTGs). We adopt it as a baseline and show that
MF-MAPPO consistently outperforms it in stability and performance. Other related works in-
clude PMD-TD for MFGs (Yardim & He, 2024) and GAN-based ECA-Net for continuous-space
attack–defense games (Wang et al., 2022), both differing in scope and structure. Moreover, Yang
et al. (2020) define mean fields over neighboring actions rather than the full state space. MF-
MAPPO extends PPO (Schulman et al., 2017) to competitive MFTGs, using team distributions as
critic inputs for scalability, a shared actor–critic per team with a single buffer for efficiency, and
simultaneous team training to avoid the inefficiencies of iterative best-response methods (Lanctot
et al., 2017; Smith et al., 2021). Unlike prior MF methods that rely on infinite-population ora-
cles (Shao et al., 2024a; Perolat et al., 2021; Carmona et al., 2021), MF-MAPPO is trained directly
in finite-population simulators, making it suitable for realistic deployment. Finally, to standardize
evaluation in large-scale MFTGs, we create novel MFTG benchmark environments (Constrained
Rock–Paper–Scissors, Battlefield) going beyond existing ones that either focus only on MFGs (Guo
et al., 2023) or omit MF coupling altogether (Terry et al., 2021; Zheng et al., 2018).

Mean-Field Estimation and Opponent Modeling. To enable reactive behavior to opponents’ ac-
tions, most existing MF approaches assume centralized or exact knowledge of the opponent’s MF,
which is rarely practical. While Cui et al. (2024) considers partial observability, it is limited to MFC.
Estimation methods such as kernel density estimation (Inoue et al., 2021) or normalizing flows (Per-
rin et al., 2021) struggle with discrete spaces and limited agent-visibility. Communication-based
methods (Benjamin & Abate, 2025b;a) address these constraints but assume uniform estimates for
unobserved states and rely on perfect multi-round communication while being restricted to fully co-
operative or competitive regimes; noisy variants may even produce invalid distributions. We instead
propose Dynamic-Projected Consensus (D-PC), a constrained consensus algorithm that ensures va-
lidity, exponential convergence, and bounded deviations when paired with a gradient-regularized
MF-MAPPO policy. Gradient regularization naturally stabilizes MF-MAPPO in partially observ-
able MFTGs. Experiments show that D-PC matches baseline performance and even outperforms
them under limited communication, especially critical in adversarial settings requiring rapid adapta-
tion (Richards et al., 2012), enhancing robustness and fault tolerance. To our knowledge, this is the
first use of MF estimation for opponent modeling in competitive team settings.

Our contributions. The main contributions of our work can be summarized as: 1) MF-MAPPO,
a scalable shared-actor–critic algorithm for large-scale MFTGs; 2) novel MFTG benchmarking
environments (MFEnv) for validating MARL scalability; 3) A gradient-regularized extension of
MF-MAPPO coupled with a decentralized mean-field estimation framework D-PC, with theoretical
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performance guarantees in partially observable MFTGs; 4) comprehensive numerical experiments
demonstrating MF-MAPPO and D-PC’s superior performance and efficiency over existing baselines.

2 PROBLEM FORMULATION

2.1 ZERO-SUM MEAN-FIELD TEAM GAME

The zero-sum mean-field team game models a discrete-time stochastic game between two large
teams of agents (Guan et al., 2024a). The Blue and Red teams consist ofN1 andN2 identical agents
for each team, with the total number of agents being N =N1+N2. Let XN1

i,t ∈ X and UN1
i,t ∈ U

represent the state and action of Blue agent i ∈ [N1] at time t. Here, X and U are the finite state and
action spaces of the Blue team. Similarly, Y N2

j,t ∈ Y and V N2
j,t ∈ V denote the state and action of

Red agent j ∈ [N2] at time t. The joint state-action variables for the Blue and Red teams are denoted
as (XN1

t ,UN1
t ) and (YN2

t ,VN2
t ), respectively. We denote the space of probability measures over a

set E as P(E). Below, dTV

(
µ, µ′) represents the total variation between µ, µ′ ∈ P(E).

Definition 1. The empirical distributions (ED) for the Blue and Red teams are defined as

MN1
t (x) =

1

N1

N1∑
i=1

1x(X
N1
i,t ), x ∈ X , and NN2

t (y) =
1

N2

N2∑
j=1

1y(Y
N2
j,t ), y ∈ Y, (1)

where 1a
(
b
)
= 1 if a = b and 0 otherwise. Specifically,MN1

t (x) gives the fraction of Blue agents
at state x and, similarly, for NN2

t (y). We useMN1
t = Empµ(X

N1
t ) and NN2

t = Empν(Y
N2
t ) to

denote the EDs computed from the given joint states. Note that the Emp operators remove agent
index information, so one cannot determine the state of a specific Blue agent i fromMN1

t .

We consider weakly-coupled dynamics where the dynamics of each individual agent is coupled
with other agents through the EDs (Huang et al., 2006; Sanjari et al., 2022). For Blue agent i, its
stochastic transition is governed by the transition kernel ft : X × U × P(X )× P(Y)→ P(X ):

P(XN1
i,t+1 = xN1

i,t+1|U
N1
i,t = uN1

i,t ,X
N1
t = xN1

t ,YN2
t = yN2

t ) = ft(x
N1
i,t+1|x

N1
i,t , u

N1
i,t , µ

N1
t , νN2

t ), (2)

where µN1
t = Empµ(x

N1
t ) and νN2

t = Empν(y
N2
t ). Similarly, the dynamics of Red agent j is

governed by the transition kernel gt : Y × V × P(X ) × P(Y) → P(Y). All agents in the Blue
team receive an identical weakly-coupled team reward, i.e., rt ≜ rt(µt, νt) : P(X ) × P(Y) → R.
The Red agents receive −rt(µt, νt) as their rewards (zero-sum). We assume that the Blue team is
maximizing while the Red team is minimizing and rt ∈ [−Rmax, Rmax] for all t.

Assumption 1 (Lipschitz Model). For all x ∈ X , u ∈ U , µ, µ′ ∈ P(X ), ν, ν′ ∈ P(Y) and
all t, there exist constants Lf , Lr > 0 such that

∑
x′∈X |ft(x′|x, u, µ, ν)− ft(x′|x, u, µ′, ν′)| ≤

Lf
(
dTV

(
µ, µ′) + dTV

(
ν, ν′

))
and |rt(µ, ν)− rt(µ′, ν′)| ≤ Lr

(
dTV

(
µ, µ′) + dTV

(
ν, ν′

))
. A

similar assumption also holds for gt.

Lipschitz continuity is commonly assumed (Huang et al., 2006; Gu et al., 2021), and at minimum
uniform continuity is required; see Cui et al. (2024) for counterexamples.

The first grid in Figure 1(a) depicts the individual agents’ local positions, with the target marked by
the green cell. The subsequent grids illustrate the state distributions µN1

t and νN2
t of both teams.

The agent interactions depend only on µN1
t and νN2

t (weakly-coupled) as described in (2).

We consider a mean-field sharing information structure (Arabneydi & Mahajan, 2015), where each
agent’s decision depends on its own state and the two team EDs. We start with assuming full ob-
servation of mean-fields and later relax this assumption. Specifically, the Blue and Red agents
seek to construct mixed Markov policies ϕi,t : U × X × P(X ) × P(Y) → [0, 1], and ψj,t :

V × Y × P(X ) × P(Y) → [0, 1], where the Blue policy ϕi,t(u|xN1
i,t , µ

N1
t , νN2

t ) dictates the prob-
ability that Blue agent i selects action u given its state xN1

i,t and the observed/estimated team EDs
µN1
t and νN2

t . Note that each agent’s individual state is its private information.
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Let Φt (Ψt) denote the set of individual Blue (Red) policies at time t. We define the Blue team policy
ϕN1
t ={ϕi,t}N1

i=1 as the collection of theN1 Blue agent individual policies, and denote the set of Blue
team policies as ΦN1

t =×N1Φt. Similarly, the Red team policy is denoted as ψN2
t ∈ ΨN2

t =×N2Ψt.

Definition 2 (Identical team policy). The Blue team policy ϕN1
t = (ϕN1

1,t , . . . , ϕ
N1

N1,t
) is identical, if

ϕi1,t = ϕi2,t for all times t and all i1, i2 ∈ [N1]. Φ represents the set of identical Blue team policies.

The definition extends naturally to the Red team, and Ψ denotes the set of identical Red team poli-
cies. The expected cumulative reward defines the performance of the team policy pair (ϕN1 , ψN2):

JN,ϕ
N1 ,ψN2 (

xN1
0 ,yN2

0

)
= EϕN1 ,ψN2

[ T∑
t=0

rt(MN1
t ,NN2

t )
∣∣∣xN1

0 ,yN2
0

]
. (3)

When the Blue team considers its worst-case performance, we have the following max-min opti-
mization problem:

JN∗(xN1
0 ,yN2

0 ) = max
ϕN1∈ΦN1

min
ψN2∈ΨN2

JN,ϕ
N1 ,ψN2

(xN1
0 ,y

N2
0 ), (4)

where JN∗ is the lower game value for the finite-population game. Similarly, the minimizing Red
team considers a min-max optimization problem, which leads to the upper game value. Note that
we allow both teams to follow non-identical team policies in (4).

2.2 INFINITE-POPULATION SOLUTION

To reduce the complexity of team policy optimization domains in (4), the authors of Guan et al.
(2024a) examined team behaviors under identical team policies at the infinite-population limit. It
was shown that the team joint states can be represented using the team population distribution, which
coincides with the state distribution of a typical agent referred to as the mean-fields (µt and νt for
the Blue and Red teams, respectively). They also proved that MFs induced by identical team policies
in an infinite-population game closely approximate the EDs induced by non-identical team policies
in the corresponding finite-population game, which justifies the simplification of the optimization
domain in (4) to identical team policies (also see Theorem 1). Furthermore, there is a one-to-one
correspondence between infinite-population coordination policies (α, β) and local identical team
policies (ϕ, ψ) ∈ Φ × Ψ. The performance of (ϕ, ψ) in the equivalent zero-sum coordinator game
is measured by

Jα,β∞ (µ0, ν0) ≡ Jϕ,ψ∞ (µ0, ν0) =

T∑
t=0

rt(µt, νt), (5)

where µt and νt follow a deterministic dynamics (Guan et al., 2024a) similar to the state dis-
tribution propagation of a controlled Markov chain. The worst-case performance of the Blue
team in this infinite-population game is then given by the lower game value J∗

∞(µ0, ν0) =
maxϕ∈Φ minψ∈Ψ Jϕ,ψ∞ (µ0, ν0), where the optimization domain is restricted to identical team
policies. Guan et al. (2024a) establishes guarantees that identical team policies resulting from the
solution of this equivalent zero-sum coordinator game are still ϵ-optimal for the original max-min
optimization problem in (4) where ϵ = O(1/

√
N) and N = min{N1, N2}.

The infinite-population limit of large-population games offers several theoretical advantages, such
as representing the population by a typical agent and deterministic dynamics that reduce (3) to the
non-stochastic optimization of (5). Previous works (Shao et al., 2024a; Perolat et al., 2021; Carmona
et al., 2021) depend on infinite-population oracles to obtain mean-field trajectories (µt, νt) in order
to compute (5). This is rather unrealistic, since in practice, only finite-population simulations and
local states (xN1

t ,yN2
t ) with actions (uN1

t ,vN2
t ) are available/observable. Moreover, a single coor-

dinator policy α(β) defines a distribution over actions for each state conditioned on the mean-field,
causing its dimensionality to scale with the joint state–action space (e.g., DDPG-MFTG), leading
to high computational cost and degraded empirical performance (see Section 5). In summary, the
infinite-population model is both impractical (due to oracle dependency) and computationally in-
tractable (due to policy size). Thus, we turn to finite-population simulators and derive guarantees of
optimality, scalability, and convergence of the policy gradient to the infinite-population ZS-MFTG.

The next result quantifies the level of suboptimality for the Blue team when it deploys the optimal
identical policy learned directly from the solution of finite-population ZS-MFTG.

4
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Theorem 1. The value of the optimal identical Blue team policy ϕ∗ obtained from the finite popula-
tion game is within ϵ of the finite-population lower game value defined in (4). Formally, for all joint
states xN1 and yN2 ,

min
ψN2

JN,ϕ
∗,ψN2

(xN1 ,yN2) ≥ JN∗(xN1 ,yN2)−O
( 1√

N

)
, where N = min{N1, N2}. (6)

Theorem 1 provides a principled justification for learning identical finite-population team policies in
competitive–collaborative team games even when being exploited by non-identical opponent team
strategies. Its motivation and proof build on the performance guarantees of the ZS-MFTG in the
infinite-population limit, i.e., the coordinator game. Moreover, the error vanishes as N1, N2 → ∞,
thereby recovering the well-studied infinite-population MF formulation (Huang et al., 2006). We
detail this finite-population training paradigm in the next section.

3 MEAN-FIELD MULTI-AGENT PROXIMAL POLICY OPTIMIZATION

Motivated by Theorem 1, we present an algorithm to learn the finite-population optimal identical
team policy. We build our algorithm based on the proximal policy optimization (PPO) framework
due to its simplicity and effectiveness. While PPO has shown promising performance in cooper-
ative tasks including MFC problems (Yu et al., 2022; Cui et al., 2024), its application in mixed
competitive-collaborative scenarios is less studied. In the sequel, we introduce our key contribution:
MF-MAPPO. We initialize two pairs of actor-critic networks, one for each team, deployed to learn
the identical policy used by each team, see Figure 1(b). Specifically, we introduce a minimally-
informed critic network by exploiting the MF information structure. The key point here is that we
only require commonly accessible information for the critic network in order to learn the value func-
tion (Proposition 1). Further, the private information available to each agent only individually enters
the actor during training. This results in neural networks that scale well with the number of agents.
We present the team actor-critic networks from the Blue team’s perspective, and due to symmetry
results extend naturally to the Red team.

Minimally-Informed Critic. The MF-MAPPO critic network of the Blue team evaluates the value
function VBlue(µ, ν), which depends only on the common information (MFs)—assumed to be avail-
able at the time of training—and is independent of the joint agent states and actions. We use the
parameter vector ζBlue to parameterize the critic network while minimizing the MSE loss

Lcritic(ζBlue) =
1

|B|

|B|∑
k=1

(
VBlue(µk, νk|ζBlue)− R̂Blue,k

)2

, (7)

where B refers to the mini-batch size and R̂Blue,k is the discounted reward-to-go for sample k.
The following proposition results from weakly-coupled team rewards and the use of identical team
policies-justifying the deployment of a minimally-informed critic network with only MF inputs.

Proposition 1. Let µN1
t , and νN2

t denote the EDs of a finite-population game obtained from iden-
tical Blue and Red team policies ϕt ∈ Φt and ψt ∈ Ψt, respectively. The team reward structure
admits a critic that depends only on µN1

t and νN2
t . Specifically, for each Blue team agent i ∈

[N1], the individual critic value function V N1,ϕt

i,t (xi,t, µ
N1
t , νN2

t ) satisfies V N1,ϕt

i,t (xi,t, µ
N1
t , νN2

t ) =

V N1,ϕt

Blue,t (µ
N1
t , νN2

t ), where V N1,ϕt

Blue,t (µt, νt) is the team-level critic.

Importantly, it reduces the learning problem to one critic network per team. Specifically, the shared
team reward structure along with the assumption of homogeneous agents in each team enables us
to evaluate the performance of a team’s agent using the minimally-informed critic—even if the
individual agent has additional local observations such as their actions and private states.

Shared-Team Actor. As discussed in earlier sections, the coordinator game is a useful theoretical
construct but has limited practical value for real-world deployment since it relies on an infinite-
population oracle for training and produces policies whose size scales poorly with the state-action
space. We therefore directly train finite-population identical local policies, which preserve the mean-
field structure while reducing complexity and improving tractability, with guarantees in Theorem 1.
Not only is the approach computationally tractable in terms of the size of the policy, but is also more
realistic in terms of sampling training data. We use a single actor network per team to learn identical
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team policies. The actor optimizes a PPO-based objective with a decaying entropy bonus (Schulman
et al., 2017; Huang et al., 2022), which promotes exploration and stabilizes learning in mean-field
settings (Cui & Koeppl, 2022; Guan et al., 2022). Permutation invariance and identical team policies
further allow a single replay buffer per team, reducing memory costs and simplifying experience
collection. The PPO-based objective function of the Blue actor is given by:

L(θBlue) =
1

|B|

|B|∑
k=1

[
min

(
gk(θBlue)Ak, clip[1−ϵ,1+ϵ](gk(θBlue))Ak

)
+ ωS(ϕθBlue(xk, µk, νk))

]
, (8)

where, g(θ) = ϕθ(u|x,µ,ν)
ϕθold (u|x,µ,ν) , Ak is the generalized advantage function estimate (Schulman et al.,

2018) and the tunable parameter ω weighs the contribution of the entropy term S
(
ϕθ(x, µ, ν)

)
and

decays as training progresses.

3.1 THEORETICAL GUARANTEES

As described in Section 2, the theoretical benefits of MFTGs at the infinite-population limit remain
of significant interest. Indeed, the following theorem shows that policy gradients obtained through
finite-population training (using a finite-population simulator) converge to their infinite-population
counterparts as the population size grows.
Theorem 2. The approximate policy gradient of the infinite-population Blue (Red) team coordi-
nator policy α (β) computed using local policies from the finite-population ZS-MFTG via MF-
MAPPO (ĴN1(αθ)) uniformly tends to the true policy gradient as the population size increases,
i.e., ∥∇θJ∞(αθ)−∇θĴN1(αθ)∥2 → 0 as (N1, N2)→∞, where ∥ · ∥2 is the 2-norm.

The results extend to the Red team. We next demonstrate the scalability of MF-MAPPO as a direct
consequence of Theorem 1 and the infinite-population coordinator game, by showing that, under
certain conditions, the learned team policies generalize to varying population sizes (N̄1, N̄2) while
maintaining performance guarantees. Theorem 3 allows MF-MAPPO to be trained on a smaller pop-
ulation and deployed to larger teams without additional tuning, significantly reducing computational
costs while maintaining performance consistency and generalizability across population sizes.
Theorem 3. Let G1 denote the finite-population game where the agents utilize the identical team
policies ϕ∗t and ψ∗

t derived from MF-MAPPO trained on G1 and let the finite-population game G2
with the same state-action space, dynamics, and rewards, but with population sizes N̄1 and N̄2 such
that N̄1/N̄2 = N1/N2 and min(N̄1, N̄2) ≥ min(N1, N2). Then, (ϕ∗t , ψ

∗
t ) remain ϵ-optimal for G2.

4 MF-MAPPO FOR PARTIALLY OBSERVABLE MFTGS

To have strategies reactive to opponent’s unexpected behaviors, one needs feedback on opponent’s
MF-distribution, which in practice, is often unavailable through direct means. We consider a par-
tially observable ZS-MFTG, relevant to domains like competitive sports/battlefield, where decentral-
ized decision-making relies on estimating the opponent’s state distribution. The two main challenges
are: 1) the sensitivity of MF policies (ϕ, ψ) to the MF (µt, νt) feedback and 2) constructing valid,
performance-preserving MF estimates that can serve as inputs to the trained MF policies.

To address the first challenge, we introduce a gradient penalty to the MF-MAPPO objective (8),
enforcing Lipschitz continuity in the mean-field and ensuring robustness: small estimation errors
induce only minor changes in actions distributions. The following proposition formalizes this idea.
Proposition 2. If the log-probability of the Blue team policy is bounded such that for all x ∈ X , u ∈
U , µ ∈ P(X ), ν ∈ P(Y), ∥∇η log ϕ(u | x, µ, ν)∥2 ≤ Lϕ/2|U|, where the gradient is taken with
respect to η ∈ P(X ) × P(Y) ≜ [µT, νT]T and Lϕ > 0, then ϕ(u | x, µ, ν) is Lipschitz continuous
with Lipschitz constant Lϕ, i.e.,∑

u

|ϕt (u|x, µ̂, ν̂)− ϕt (u|x, µ̂′, ν̂′) | ≤ Lϕ
(
dTV

(
µ̂, µ̂′)+ dTV

(
ν̂, ν̂′

))
∀ x ∈ X . (9)

Similarly, we can define Lipschitz continuous policies for the Red team with constant Lψ. This idea
of penalizing the gradient of the policies was introduced in robotics to promote smooth and stable
policies in order to aid sim-to-real transfer (Chen et al., 2024; Shin et al., 2025).
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To address the second challenge, we require a filter that can estimate the opponent distribution at
every time-step for each agent (e.g., i ∈ [N1] obtains an estimate of the Red team distribution at time
t given by ν̂N2

i,t ) with accuracy guaranteed within a bounded tolerance ensuring agent actions and
overall performance (3) remain within acceptable limits. Note that we formulate the problem from
the Blue team’s perspective. The results extend naturally to the Red team’s perspective. Let the
full-information and estimated MF trajectories be {MN1 ,NN2} and {M̂N1 , N̂N2}, respectively.
We measure estimator performance for gradient-regularized MF-MAPPO (GR-MF-MAPPO) team
policies (ϕ∗t , ψ

∗
t ) via the cumulative regret between fully and partially observable MF rewards as:

∆J(ϕ∗
t , ψ

∗
t ) = Eϕ∗,ψ∗

[∣∣∣ T∑
t=0

rt(MN1
t ,NN2

t )−
T∑
t=0

rt(M̂N1
t , N̂N2

t )
∣∣∣]. (10)

In fact, any ϵ-accurate estimator can be utilized during the deployment of GR-MF-MAPPO.

Proposition 3. Consider a given ϵ-accurate estimator, i.e., dTV

(
ν̂N2
i,t , ν̂

N2
t

)
< ϵ, for all i, t, where

ν̂N2
t is the true opponent MF at time t and ϵ > 0. For the identical team-policy pair (ϕ∗t , ψ

∗
t )

obtained via gradient-regularized MF-MAPPO and deployed using this estimator, the cumulative
regret satisfies ∆J(ϕ∗t , ψ

∗
t ) ≤ Kϵ+O(1/

√
N) for some constant K > 0.

We emphasize that MF-MAPPO is modular and policy inputs can be swapped with different es-
timates (using estimation/prediction algorithms) and still have good performance. Gradient regu-
larization is key to ensure that minor errors in estimation do not result in extreme changes in MF
trajectories and performance.

In lieu of Proposition 3, we propose a communication network-based decentralized estimation fil-
ter, namely, Dynamic-Projected Consensus (D-PC). It is an extension of the control-theoretic con-
strained consensus problem (Nedić & Liu, 2016) and addresses the shortcomings of the estimation
algorithm proposed in Benjamin & Abate (2025b), namely, estimation under limited communica-
tion rounds, and ensuring valid estimates in the presence of errors. Following the connected graph
topology used in MFGs (Benjamin & Abate, 2025b), we define a state-based visibility graph Gvizt
and team-based communication graphs GcomBlue,t and GcomRed,t. We also define the projection operator
ΩR(x)[η] ≜ argminω∈R(x) ∥η − ω∥2 for η, ω ∈ R|Y| where R(x) is a closed and convex set. We
assume that all agents in the same state receive the same information, so naturally they have the
same estimate, i.e., all Blue agents at state x ∈ X at time t have the same estimate ν̂N2

x,t of the Red
team MF. We consider two time scales: t for system dynamics (2) and τ for communication rounds.
At time t, and τ = 0, each Blue agent at state x ∈ X holds a belief ν̂τ=0

x,t consistent with Gvizt . At
communication round τ , agents share estimates ν̂τ−1

x,t with neighbors defined by GcomBlue,t and perform
for Rcom communication rounds: a) weighted-average consensus; and b) a projection onto a closed
and convex constraint set R(x). The set R(x) combines the Red team’s MF components known
with certainty by the Blue agents at state x—i.e., the observable states given by Gvizt —with those
that must be estimated. R(x) guarantees that operations such as information aggregation, averaging,
or distributed communication do not alter the parts of the distribution that are known with certainty.
See Appendix A for detailed definitions.
Theorem 4. D-PC satisfies Proposition 3 with ϵ = O

(
e−cRcom

)
with c > 0.

5 NUMERICAL EXPERIMENTS

In this section, we evaluate MF-MAPPO across large-population scenarios using our custom-made
benchmark simulation platform, MFEnv. Built as an extension of Gymnasium (Towers et al., 2024),
MFEnv is developed specifically to facilitate research in MFTGs, supporting both finite-agent sim-
ulations and oracle-based infinite-population models. Unlike existing toolkits, MFEnv includes ag-
gregate reward metrics, policy-versus-policy evaluation, and flexible APIs for custom mean-field
environments that adhere to MF dynamics, rewards and information structures. We showcase MF-
MAPPO’s efficacy on two representative environments (1) a constrained-action variant of the classi-
cal rock–paper–scissors game (Raghavan, 1994), enabling validation against analytically computed
equilibria and (2) a complex battlefield setting where Blue and Red teams engage in attack–defense
tasks with higher-dimensional state and action spaces, requiring sophisticated team-level coordina-
tion. Additional results and environments (not limited to ZS-MFTGs) in Appendix E.
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Figure 2: (a) 150 initializations of µt=0 = [1, 0, 0]T and νt=0 = [0, 1, 0]T for cRPS; N1 = N2 =
1, 000 (b) Deploying MF-MAPPO trained on N1 = N2 = 1, 000 to varying team sizes.

Figure 3: I. Average test rewards for Battlefield on a 4x4 grid (100 initializations); II. Example
configuration; III. Comparing dTV

(
·
)

for D-PC and Benchmark estimator for different Rcom.

Constrained Rock-Paper-Scissors (cRPS). The state space of each individual agent is S =
{R,P,S}, representing rock, paper, and scissors, respectively. We consider a non-trivial restric-
tion of the action space to A = {CW,Stay} allowing agents to either move clockwise ( R → P,
P→ S, S→ R) or remain idle, respectively. We assume deterministic transitions, where each action
leads to a unique next state deterministically. At each time step t, the Blue (Red) team receives a
team reward rt(µt, νt) = µT

tAνt (−µT
tAνt) where A is the standard RPS payoff matrix.

Figure 2(a) compares trajectories from MF-MAPPO and DDPG-MFTG (Shao et al., 2024a). Exist-
ing algorithms such as MADDPG and MAAC (Lowe et al., 2017) are unsuitable as baselines because
their centralized action-value functions require the actions of all agents and the full state informa-
tion, leading to poor scalability in the large-population settings considered in this work. We see that
MF-MAPPO successfully reaches the equilibrium distribution. The transient time is attributed to
finite-population approximation and entropy regularization. By contrast, DDPG-MFTG diverges,
relying on a mean-field oracle, which is valid only in the infinite-population limit, and “central
players” that map mean-field distributions to deterministic policies without clipping or regulariza-
tion, making it unstable. Unlike multi-agent DDPG extensions (e.g., MADDPG), which consider
other teams’ local policies, DDPG-MFTG conditions only on its own, limiting inter-team awareness.
Figure 2(b) shows MF-MAPPO’s scalability, where larger populations reduce noise and variance,
aligning with Theorem 3. MF-MAPPO updates every Trollout steps, unlike DDPG-MFTG which
updates per time step, making MF-MAPPO significantly faster and efficient (2h vs. 60h).

Battlefield Game. To fully test the capability of MF-MAPPO on a more complex scenario, we
propose a grid-based battlefield game where an individual agent’s dynamics is highly coupled with
both teams’ distributions. The Blue agents aim is to reach their targets without being deactivated,
while the Red agents learn to guard them. Deactivation occurs when one of the opponents holds
a numerical advantage within a cell, incentivizing both teams to aggregate to reduce the risk of
being deactivated by a numerically superior opponent. The Blue team’s reward depends on the
fraction of agents active at the target, the Red team’s reward follows from the zero-sum structure,
and (to avoid degeneracy) the Red agents are restricted from entering the target. All experiments
use N1 = N2 = 100 agents on grids with varied targets (lilac) and obstacles (black).

We compare MF-MAPPO and DDPG-MFTG by pitting them against each other on a 4 × 4 grid
with full MF information. As shown in Figure 3I, MF-MAPPO consistently outperforms DDPG-
MFTG across various initializations, achieving up to 10× higher rewards when attacking and
lower/comparable rewards while defending. Figure 3II shows MF-MAPPO Red agents success-
fully cover both corridors and deactivate several Blue attackers II(a). Panels II(a) and II(b) highlight
that DDPG-MFTG Blue agents do not aggressively pursue the target, illustrating their tendency
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Figure 4: I. Red is concentrated; 30% Blue are at the bottom, rest are at the top II. Blue is evenly split,
Red is concentrated III. Comparing dTV

(
·
)

for D-PC and the Benchmark estimator for different
communication rounds IV. % error in cumulative rewards: D-PC vs. fully observable ZS-MFTG.

to passively seek zero-reward outcomes rather than take goal-directed actions, unlike II(c) where
MF-MAPPO agents exhibit coordinated maneuvering, forming coalitions to reach the target. While
cases I and II utilize complete observability, case III evaluates the proposed D-PC estimator against
the estimator in Benjamin & Abate (2025a) (Benchmark) under a gradient-penalized MF-MAPPO
policy when Red has full information and Blue estimates Red’s distribution. Both estimators yield
comparable total variation errors relative to the full-information case, with D-PC showing advan-
tages under low communication budgets (Rcom < 20). One can trivially show that the Benchmark
satisfies Proposition 3 with ϵ = 1 − O(Rcom/|X |) and assumes uniform estimates for unobserved
states, which degrades estimation accuracy under limited communication. It also relies on accurate
information from neighbors to ensure validity of estimates. In contrast, D-PC exchanges inexact
information but applies state-dependent corrections (projection), preserving privacy and robustness.

In Figure 4, the Red team faces a dilemma in deciding which target to defend, while the Blue team
exploits this ambiguity. Due to DDPG-MFTG’s high computational cost and frequent network up-
dates, it is excluded from our analysis. With no other baselines for such large-scale complex MFTGs,
we qualitatively assess MF-MAPPO’s performance. Figures 4I–II illustrate how identical policies
can generate heterogeneous team behaviors, with Blue adapting target selection and Red reallocat-
ing defenses, highlighting the flexibility of the mean-field approximation. Furthermore, D-PC again
outperforms the Benchmark under limited communication (III) (Rcom < 10) and performs competi-
tively otherwise. Cumulative rewards (IV) show only small deviations, consistent with Proposition 3
and Theorem 4, confirming that agents can rely on local observations with minimal communication.

6 CONCLUSION

We introduced MF-MAPPO, a novel MARL algorithm for large-population competitive team games
that leverages finite mean-field approximation. With a minimally informed critic and shared team
actor, MF-MAPPO scales efficiently while retaining performance, as shown against baselines such
as DDPG-MFTG on cRPS and battlefield scenarios using the developed platform MFEnv. Despite
shared policies, heterogeneous sub-population behaviors emerge, confirming that mean-field ap-
proximations do not hinder performance. We showed that MF-MAPPO naturally extends to partial
observability via a simple gradient-regularized training scheme, and proposed D-PC, a decentral-
ized mean-field estimator that ensures accuracy and strong performance when integrated with it.
Empirically, D-PC outperforms baselines under limited communication. Limitations include MF-
MAPPO’s scaling with state dimensionality, which motivates future work on dimensionality reduc-
tion (e.g., kernel embeddings). Additional directions include extending D-PC to noisy settings and
to more general, time-varying network topologies.
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Mean field games flock! the reinforcement learning way, 2021. URL https://arxiv.org/
abs/2105.07933.

11

https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2203.11973
https://arxiv.org/abs/2203.11973
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/2103.00623
https://arxiv.org/abs/2105.07933
https://arxiv.org/abs/2105.07933


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Eduardo Pignatelli, Johan Ferret, Matthieu Geist, Thomas Mesnard, Hado van Hasselt, Olivier
Pietquin, and Laura Toni. A survey of temporal credit assignment in deep reinforcement learning,
2024. URL https://arxiv.org/abs/2312.01072.

TES Raghavan. Zero-sum two-person games. Handbook of game theory with economic applications,
2:735–768, 1994.

Pam Richards, Dave Collins, and Duncan RD Mascarenhas. Developing rapid high-pressure team
decision-making skills. the integration of slow deliberate reflective learning within the competitive
performance environment: A case study of elite netball. Reflective Practice, 13(3):407–424, 2012.
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Algorithm 1 Mean-Field Multi-Agent Proximal Policy Optimization (MF-MAPPO)
Initialize: NN parameters {θBlue, ζBlue} and {θRed, ζRed}; step size sequences {αm} and {βm};
entropy decay sequence {ωm}
for i = 1, 2, . . . do

(ϕθold
Blue
, ψθold

Red
)← (ϕθBlue , ψθRed)

for t = 0, 1, . . . , Trollout do
Sample joint actions
ui,t ∼ ϕθold

Blue
(xi,t, µ

N1
t , νN2

t ), vj,t ∼ ψθold
Red
(yj,t, µ

N1
t , νN2

t )

Step environment according to kernels (ft, gt)
Collect samples (xN1

t+1,y
N2
t+1, µ

N1
t+1, ν

N2
t+1,u

N1
t ,vN2

t , rt)
end for
for K epochs do

Update {θBlue, ζBlue} and {θRed, ζRed} using (7-8)
end for

end for
Return: (ϕθBlue , ψθRed)

A DETAILS OF D-PC

Definition 3 (Visibility Graph). The bipartite state-based visibility graph at time t, denoted by
Gvizt = (X ,Y, Evizt ), is an undirected graph where (i) The vertex sets consist of the states x ∈ X
and y ∈ Y; (ii) An undirected edge (x, y) ∈ Evizt exists if and only if all Blue agents at state x are
mutually visible with all Red agents at state y at time t; that is, every Blue agent at state x is visible
to every Red agent at state y at time t.

Before describing the communication architecture, we define X ot ⊆ X such that µ̂t(x) > 0 if and
only if x ∈ X ot .
Definition 4 (Communication Graph). The state-based communication graph at time t, denoted by
GcomBlue,t = (X ot , Ecomt ), is an undirected graph where (i) The vertex set X ot consists of the states
x ∈ X ot ; (ii) An undirected edge (xp, xq) ∈ Ecomt exists if and only if all agents at state xp can
communicate with all agents at state xq at time t.

We denote the set of neighbors of vertex v of Gvizt and GcomBlue,t respectively, as N viz
t (v) and

N com
Blue,t(v). Yot ⊆ Y , GcomRed,t and N com

Red,t(v) are defined similarly. The following assumption on
the topology of the communication graph will simplify the mean-field estimator design problem.
Assumption 2. We assume that GcomBlue,t and GcomRed,t are connected for all t.

At time t, we assume that each agent i ∈ [N ] observes the population distribution of its opponent’s
visible states y ∈ N viz

t (xi,t). Thus, from the perspective of agent i, the ED ν̂N2
i,t is defined on the

constrained simplex ν̂N2
i,t ∈ R(xi,t) ≜ {η ∈ P(Y) | η(z) = ν̂N2

t (z), ∀ z ∈ N viz
t (xi,t)}. given

by R(xi,t) combines the Red team’s mean-field components known with certainty by Blue agent
i—i.e., the observable states N viz

t (xi,t)—with those that must be estimated.
Proposition 4. For all x ∈ X ,R(x) is a closed and convex set.

It can be easily seen that the true mean-field distribution is an element of this constrained simplex
for each agent, i.e., ν̂N2

t ∈ R(xi,t) for all i ∈ [N1] and time t. The following assumption imposes
uniformity of the estimate of the ED across agents in a given state.

Assumption 3. We assume that ν̂N2
i,t = ν̂N2

j,t ≜ ν̂N2
x,t for all agents satisfying xN1

i,t = xN1
j,t = x.

Definition 5. Let x ∈ X . The projection operator ΩR(x) : R|Y| → R(x) where R(x) is a closed
and convex set is defined as ΩR(x)[η] = ω∗ ≜ argminω∈R(x) ∥η − ω∥2, η ∈ R|Y|. where ∥ · ∥2 is
the standard Euclidean norm.

At each communication round, D-PC performs the following two steps:
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1. Weighted average consensus:

ξτx,t =
∑

z∈N com
Blue,t(x)∪x

wBlue
(x,z)ν̂

τ−1
z,t ,

∑
z

wBlue
(x,z) = 1, x ∈ X o. (A.1)

2. Projection onto the constraint set:
ν̂τx,t = ΩR(x)

[
ξτx,t

]
, x ∈ X o. (A.2)

Assumption 4. The matrix WBlue ∈ R|Xo|×|Xo| formed by the non-negative weights is symmetric
and doubly-stochastic. Furthermore, it respects the sparsity structure of the communication graph
Gcom, that is, wBlue

(x,z) > 0 if and only if z ∈ N com(x) ∪ x. WRed is constructed similarly.

To satisfy Assumption 4, one may use the well-known Metropolis Matrix (Xiao et al., 2006). We
define the smallest non-zero entry of α as

θ ≜ min
(x,y)

{w(x,y) > 0}. (A.3)

For clarity of the D-PC pseudocode present in Algorithm A, the estimation is presented from the
Blue team’s perspective which models the distribution of its opponent Red team. One can simulta-
neously run this estimation algorithm from the Red team’s perspective.

Algorithm 2 Dynamic Projected Consensus for Mean-Field Estimation (D-PC)

Initialize: µ̂N1
t=0 = µN1

t=0 and ν̂N2
t=0 = νN2

t=0, identical MF-MAPPO trained Lipschitz policies
(ϕ∗, ψ∗) and graphs Gvizt=0 and (GcomBlue,t,GcomRed,t)
for t = 0, . . . , T do

Update the graphs Gvizt and (GcomBlue,t,GcomRed,t).
Receive reward rt(µ̂N1

t , ν̂N2
t )

Set τ = 0
Initialize ν̂N2,τ=0

x,t ( µ̂N1,τ=0
y,t ) for all x ∈ X ot (y ∈ Yot ) using Gvizt=0

Compute matrix WBlue(WRed)
for τ < Rcom do

Communicate mean-field estimate to neighbors based on GcomBlue,t(GcomRed,t)
τ = τ + 1
for all x ∈ X ot (y ∈ Yot ) do

Compute weighted average consensus (A.1)
Project result onto constraint set (A.2)

end for
end for
Return: ν̂N2,Rcom

x,t (µ̂N1,Rcom

y,t )
end for

Remark 1. One could alternatively cast this problem as a Partially Observable Markov Decision
Process (PO-MDP) (Bernstein et al., 2002), where the environment provides arbitrary observations.
However, our focus is on policies that explicitly depend on the mean-field distributions of the two
teams, for two key reasons (1) Distinct opponent strategies induce different mean-field trajectories,
and closed-loop feedback on these distributions enables an appropriate response to the strategies
deployed by the opponent (Guan et al., 2024a) and (2) Access to team-level distributions facilitates
credit assignment (Pignatelli et al., 2024) in MARL by allowing agents to reason about which col-
lective distributions are optimal. Thus, having access to MF information—particularly that of the
opponent—is desirable. Yet, it is unrealistic to assume that the environment directly provides these
distributions, which motivates the design of estimation algorithms. Finally, unlike general PO-MDP
formulations that often require maintaining long observation histories, our setting involves popula-
tion sizes for which such history-based tracking is computationally infeasible in terms of memory.

B PROOF OF THEORETICAL RESULTS

Theorem 5 (Guan et al. (2024a)). The optimal identical Blue team policy ϕ∗∞ ∈ Φ obtained from
the equivalent zero-sum coordinator game is ϵ-optimal Blue team policy. Formally, for all joint
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states xN1 and yN2 ,

min
ψN2∈ΨN2

JN,ϕ
∗
∞,ψN2

(xN1 ,yN2) ≥ JN∗(xN1 ,yN2)−O
( 1√

N

)
, where N = min{N1, N2}.

(B.4)

Theorem 1. The value of the optimal identical Blue team policy ϕ∗ obtained from the finite popula-
tion game is within ϵ of the finite-population lower game value defined in (4). Formally, for all joint
states xN1 and yN2 ,

min
ψN2

JN,ϕ
∗,ψN2

(xN1 ,yN2) ≥ JN∗(xN1 ,yN2)−O
( 1√

N

)
, where N = min{N1, N2}. (6)

Sketch of Proof. The proof follows by restricting the optimization domain in 4 to that of identical
team policies and then using the definition of the max operator in tandem with Theorem 5.

Proof. We have the following definition of the lower game value for the finite-population ZS-
MFTG:

JN∗(xN1 ,yN2) = max
ϕN1∈ΦN1

min
ψN2∈ΨN2

JN,ϕ
N1 ,ψN2

(xN1 ,yN2). (B.5)

Note that the maximization for the Blue team is being performed over the set of all team policies
ΦN1 , including identical as well non-identical team policies. If we restrict ourselves to the set of
identical team policies Φ ⊆ ΦN1 it follows immediately that

JN∗(xN1 ,yN2) ≥ max
ϕN1∈Φ

min
ψN2∈ΨN2

JN,ϕ
N1 ,ψN2

(xN1 ,yN2). (B.6)

Suppose that ϕ∗ is the optimal identical Blue team policy obtained from the finite population game.
It follows from (B.5) that

JN∗(xN1 ,yN2) ≥ min
ψN2∈ΨN2

JN,ϕ
∗,ψN2

(xN1 ,yN2). (B.7)

Furthermore, let ϕ∗∞ ∈ Φ be the optimal identical local Blue team policy obtained from the equiv-
alent zero-sum infinite-population coordinator game (recall, one-to-one correspondence between
coordinator policy and local identical team policy). By the definition of the optimality of ϕ∗ in the
space of identical team policies,

min
ψN2∈ΨN2

JN,ϕ
∗,ψN2

(xN1 ,yN2) ≥ min
ψN2∈ΨN2

JN,ϕ
∗
∞,ψN2

(xN1 ,yN2). (B.8)

Using Theorem 5, and using (B.8), yields the following sequence of inequalities,

JN∗(xN1 ,yN2) ≥ min
ψN2∈ΨN2

JN,ϕ
∗,ψN2

(xN1 ,yN2)

≥ min
ψN2∈ΨN2

JN,ϕ
∗
∞,ψN2

(xN1 ,yN2)

≥ JN∗(xN1 ,yN2)−O
( 1√

N

)
,

where N = min{N1, N2}, thereby completing the proof.

Theorem 2. The approximate policy gradient of the infinite-population Blue (Red) team coordi-
nator policy α (β) computed using local policies from the finite-population ZS-MFTG via MF-
MAPPO (ĴN1(αθ)) uniformly tends to the true policy gradient as the population size increases,
i.e., ∥∇θJ∞(αθ)−∇θĴN1(αθ)∥2 → 0 as (N1, N2)→∞, where ∥ · ∥2 is the 2-norm.

Sketch of Proof. In MF-MAPPO we directly train the finite-population local policies (ϕt, ψt). As a
result, the gradient of the coordinator policy ∇θJ(αθ) only has action samples uN1

i,t , i ∈ [N1] from
the finite-population local policies ϕt(·|xN1

i,t , µ
N1
t , νN2

t ) and not πN1
t (·|xN1

i,t ) ∼ α(µN1
t , νN2

t ) itself.
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Thus, our first step is to construct an approximation of πN1
t using the obtained finite-population ac-

tion samples uN1
i,t , i ∈ [N1], resulting in an approximate finite-population policy gradient expression

given by ∇θĴN1(αθ). Coupled with existing mean-field approximation results (Cui et al., 2023;
Guan et al., 2024a; Shao et al., 2024a) for the infinite-population limit N1, N2 →∞ (LLN, etc.) we
show convergence.

Proof. From Guan et al. (2024a) it follows that there exists a one-to-one correspondence between the
deterministic infinite-population coordinator policies and the local identical team policies followed
by the finite-population Blue and Red agents. We extend this formulation to potentially stochastic
infinite-population coordinator policies and the local finite-population policies as follows: a stochas-
tic Blue coordination policy α ∈ A induces an identical team policy ϕ ∈ Φ according to the rule

ϕt(ut|xt, µρt , ν
ρ
t ) =

∫
π∈Π

πt(ut|xt)αt(πt|µρt , ν
ρ
t )dπ ∀µt ∈ P(X ), νt ∈ P(Y), xt ∈ X and ut ∈ U ,

(B.9)
where πt(ut|xt) corresponds to the identical local policies for all states x ∈ X prescribed by the
coordinator, i.e., πt ∼ α(µρt , ν

ρ
t ).

It is important to note that in MF-MAPPO we directly work with the finite-population local policies
(ϕ, ψ), unlike prior works that train on the infinite-population coordinator policy, see Section 1. Con-
sequently, the gradient of the coordinator policy∇θJ(αθ) computed using this finite-population ap-
proximation (denoted∇θĴN1(αθ)) only has action samples uN1

i,t , i ∈ [N1] from the finite-population
local policies ϕt(·|xN1

i,t , µ
N1
t , νN2

t ) and not direct access to πN1
t ∼ α(µN1

t , νN2
t ). Thus, our first step

is to construct an approximation of the policy based on the obtained action samples. We define this
approximate policy from the obtained samples as follows,

π̂N1
t (u|x) =


∑N1

i=1 1x

(
X

N1
i,t

)
1u

(
U

N1
i,t

)
N1M

N1
t (x)

if MN1
t (x) > 0,

1/|U| if MN1
t (x) = 0.

(B.10)

We can similarly define σ̂N2
t for the Red team. Using this constructed empirical policy π̂N1

t from
the sampled actions uN1

t , the policy gradient∇θĴN1(αθ) for the finite-population ZS-MFTG is,

∇θĴN1(αθ) =

∞∑
t=0

γtEuN1∼ϕ,vN2∼ψ

[
QN,α,β(µN1

t , νN2
t , π̂N1

t , σ̂N2
t )∇θ logαθ(π̂N1

t |µ
N1
t , νN2

t )
]
,

(B.11)

where,

QN,α,β(µN1
t , νN2

t , π̂N1
t , σ̂N2

t )

= EuN1∼ϕ,vN2∼ψ

[ ∞∑
τ=0

γτr(µN1
τ , νN2

τ )
∣∣µN1
τ=0 = µN1

t , νN2
τ=0 = νN2

t , πN1
τ=0 = π̂N1

t , σN2
τ=0 = σ̂N2

t

]
.

(B.12)

Recall that uN1 and vN2 enter (B.11) and (B.12) through the construction of π̂N1
t (B.10) and σ̂N2

t re-
spectively. Furthermore, we have the following expression for the gradient of the infinite-population
coordinator game:

∇θJ(αθ) =
∞∑
t=0

γtEπ∼α,σ∼β
[
Qα,β(µt, νt, πt, σt)∇θ logαθ(πt|µt, νt)

]
, (B.13)

where,

Qα,β(µ, ν, π, σ) = Eπ∼α,σ∼β

[ ∞∑
τ=0

γτr(µτ , ντ )
∣∣µτ=0 = µ, ντ=0 = ν, πτ=0 = π, στ=0 = σ

]
.

(B.14)

While (B.12) and (B.14) utilize the joint coordinator policies (α, β), the policy gradients (B.11)
and (B.13) are taken for each team individually. Consequently the policy gradient analysis is done
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on a per-team basis. We focus on the policy gradient with respect to the Blue team but the analysis
of the Red team’s policy gradient is symmetric and can be proved by an identical approach.

The following lemma relates the expectation in (B.11) to (α, β) using (B.9).

Lemma 1. Given a function g : U → R of the joint actions uN1
t such that uN1

i,t ∼
ϕ(·|xN1

i,t , µ
N1
t , νN2

t ), or equivalently, uN1
t ∼ ϕ(·|x

N1
t , µN1

t , νN2
t ),

E
u

N1
t ∼ϕ

[
g(uN1

t )
]
= Eπ∼α

[
E
u

N1
t ∼π

[
g(uN1

t )
]]

Proof. By the definition of expectation,

E
u

N1
t ∼ϕ

[
g(uN1

t )
]
=

∑
u

N1
t

g(uN1
t )ϕ(uN1

t |x
N1
t , µN1

t , νN2
t ),

where the sum is taken over all the possible joint actions that can be sampled from ϕ. By using the
definition of ϕ from (B.9),∑

u
N1
t

g(uN1
t )ϕ(uN1

t |x
N1
t , µN1

t , νN2
t ) =

∑
u

N1
t

g(uN1
t )

∫
π∈Π

πt(u
N1
t |x

N1
t )αt(µ

N1
t , νN2

t )dπ︸ ︷︷ ︸
=Eπ∼α

[
πt(u

N1
t |xN1

t )
]

=
∑
u

N1
t

g(uN1
t )Eπ∼α

[
πt(u

N1
t |x

N1
t )

]
=

∑
u

N1
t

Eπ∼α
[
g(uN1

t )πt(u
N1
t |x

N1
t )

]

= Eπ∼α

∑
u

N1
t

g(uN1
t )πt(u

N1
t |x

N1
t )

 ,
where the last two expressions follow from linearity (and finiteness) of expectation. It follows then,

E
u

N1
t ∼ϕ

[
g(uN1

t )
]
= Eπ∼α

[
E
u

N1
t ∼π

[
g(uN1

t )
]]

We also explicitly state results regarding the boundedness of terms appearing in (B.11)-(B.14).

Remark 2. As mentioned in the main text, rt ∈ [−Rmax, Rmax]. Consequently, the Q-functions
Qα,β and QN,α,β from (B.14) and (B.12) for all γ ∈ (0, 1) are uniformly bounded with,

∥Qα,β∥∞ ≤
Rmax

1− γ
, and ∥QN,α,β∥∞ ≤

Rmax

1− γ
.

We further assume continuity with respect to the local policies, i.e.,

Assumption 5. The Q-functions Qα,β and QN,α,β from (B.14) and (B.12) are continuous in inputs
(π, σ) and (π̂N1 , σ̂N2).

It is pertinent to note that the action-space Π and Σ are continuous. Thus, although Assumption 5
seems restrictive, the use of function approximators to train Qα,β and QN,α,β like neural networks
(endowed with continuous activation functions) in such continuous action-space settings, ensures
that the resultant functions are continuous in their inputs Lillicrap et al. (2019).

The following assumption, as done in many works (Cui et al., 2024; 2023), states that the gradient
of coordinator policy is continuous and uniformly bounded, i.e.,

Assumption 6. The log-gradient ∇ logαθ(πt|µt, νt) is L∇-Lipschitz continuous and uniformly
bounded.
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Furthermore, we have the following result from Guan et al. (2024a):

Corollary 1. Let XN1
t , YN2

t ,MN1
t , and NN2

t be the joint states and the corresponding EDs of a
finite-population game. Denote the next Blue ED induced by an identical Blue team policy ϕt ∈ Φt
asMN1

t+1. Then, the following holds:

Eϕt

[
dTV

(
MN1

t+1, µt+1

)∣∣ XN1
t ,YN2

t

]
≤ |X |

2

√
1

N1
,

where µt+1 =MN1
t Ft(MN1

t ,NN2
t , ϕt).

We are interested in deriving an explicit result for ∥∇θJ(αθ) − ∇θĴN1(αθ)∥2 as the population
sizes (N1, N2)→∞. In particular, using shorthand notation Eα,β [·] ≜ Eπ∼α,σ∼β [·] and Eϕ,ψ [·] ≜
EuN1∼ϕ,vN2∼ψ [·])

∥∇θJ(αθ)−∇θĴN1(αθ)∥2

=
∥∥∥ ∞∑
t=0

γtEα,β
[
Qα,β(µt, νt, πt, σt)∇θ logαθ(πt|µt, νt)

]
− γtEϕ,ψ

[
QN,α,β(µN1

t , νN2
t , π̂N1

t , σ̂N2
t )∇θ logαθ(π̂N1

t |µ
N1
t , νN2

t )
] ∥∥∥

2
.

For the rest of the proof, we implicitly assume ∥ · ∥ ≡ ∥ · ∥2 to denote the 2-norm. By Lemma 1, we
can rewrite the above as

∥∇θJ(αθ)−∇θĴN1(αθ)∥

=
∥∥∥ ∞∑
t=0

γtEα,β
[
Qα,β(µt, νt, πt, σt)∇θ logαθ(πt|µt, νt)

− Eu∼π,v∼σ

[
QN,α,β(µN1

t , νN2
t , π̂N1

t , σ̂N2
t )∇θ logαθ(π̂N1

t |µ
N1
t , νN2

t )
] ]∥∥∥,

where π̂N1
t , σ̂N2

t depend on the random variables uN1 ∼ π,vN2 ∼ σ respectively. We add and
subtract the term EuN1∼π,vN2∼σ

[
Qα,β(µN1

t , νN2
t , π̂N1

t , σ̂N2
t )∇θ logαθ(π̂N1

t |µ
N1
t , νN2

t )
]

and split
the gradient terms as follows.

∥∇θJ(αθ)−∇θĴN1(αθ)∥

≤
∥∥∥ ∞∑
t=0

γtEα,β
[
Qα,β(µt, νt, πt, σt)∇θ logαθ(πt|µt, νt)

− EuN1∼π,vN2∼σ

[
Qα,β(µN1

t , νN2
t , π̂N1

t , σ̂N2
t )∇θ logαθ(π̂N1

t |µ
N1
t , νN2

t )
] ]∥∥∥

+
∥∥∥ ∞∑
t=0

γtEα,β,uN1∼π,vN2∼σ

[(
Qα,β(µN1

t , νN2
t , π̂N1

t , σ̂N2
t )−QN,α,β(µN1

t , νN2
t , π̂N1

t , σ̂N2
t )

)
∇θ logαθ(π̂N1

t |µ
N1
t , νN2

t )
] ]∥∥∥.

(B.15)

We analyze the two terms individually. For the first term,∥∥∥ ∞∑
t=0

γtEα,β
[
Qα,β(µt, νt, πt, σt)∇θ logαθ(πt|µt, νt)

− EuN1∼π,vN2∼σ

[
Qα,β(µN1

t , νN2
t , π̂N1

t , σ̂N2
t )∇θ logαθ(π̂N1

t |µ
N1
t , νN2

t )
] ]∥∥∥, (B.16)

Since the first term in the above expression is a constant with respect to the random variables
uN1 ,vN2 and the expectation of a constant is the value itself, we can equivalently write (B.16)
as ∥∥∥ ∞∑

t=0

γtEα,β,uN1∼π,vN2∼σ

[
Qα,β(µt, νt, πt, σt)∇θ logαθ(πt|µt, νt)

−Qα,β(µN1
t , νN2

t , π̂N1
t , σ̂N2

t )∇θ logαθ(π̂N1
t |µ

N1
t , νN2

t )
]∥∥∥, (B.17)
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We can split the sum from t = 0 to t = T and t = T + 1 to t = ∞, By uniform bounds on Qα,β

from Remark 2 and on∇θ logαθ( · | µN1
t , νN2

t ),∇θ logαθ( · | µt, νt) (Assumption 6), the sum from
t = T +1 to t =∞ goes to zero for T large enough (tail sequence). This enables us to focus on the
summation from t = 0 to t = T , namely,∥∥∥ T∑

t=0

γtEα,β,uN1∼π,vN2∼σ

[
Qα,β(µt, νt, πt, σt)∇θ logαθ(πt|µt, νt)

−Qα,β(µN1
t , νN2

t , π̂N1
t , σ̂N2

t )∇θ logαθ(π̂N1
t |µ

N1
t , νN2

t )
]∥∥∥. (B.18)

Define h(µ, ν, π, σ) ≜ Qα,β(µ, ν, π, σ)∇θ logαθ(π|µ, ν). Assumptions 5 and 6 ensure continuity
of the function h(µ, ν, π, σ) with respect to all its inputs. Using this definition of h, rewrite (B.18)
as ∥∥∥ T∑

t=0

γtEα,β,u∼π,v∼σ
[
h(µt, νt, πt, σt)− h(µN1

t , νN2
t , π̂N1

t , σ̂N2
t )

]∥∥∥. (B.19)

Using the definition of the expectation operators,∥∥∥ T∑
t=0

γtEα,β,uN1∼π,vN2∼σ

[
h(µt, νt, πt, σt)− h(µN1

t , νN2
t , π̂N1

t , σ̂N2
t )

]∥∥∥
=

∥∥∥ T∑
t=0

γt
∫
π

∫
σ

h(µt, νt, πt, σt)βt(µt, νt)αt(µt, νt)dσdπ

−
∫
π

∫
σ

[∑
uN1

∑
vN2

h(µN1
t , νN2

t , π̂N1
t , σ̂N2

t )π(uN1 |xN1
t )σ(vN2 |yN1

t )
]
βt(µt, νt)αt(µt, νt)dσdπ

∥∥∥
We already have, by weak LLN that dTV

(
µN1
t , µt

)
≤ O(1/

√
N1) and dTV

(
νN2
t , νt

)
≤

O(1/
√
N2), with the error going to zero as the population size becomes large, i.e., N1, N2 → ∞.

A similar argument using weak LLN can be made for (πN1
t , σN2

t )→ (πt, σt) as N1, N2 →∞. Fur-
thermore, as the population size becomes large, the empirical policies constructed (π̂N1

t , σ̂N2
t ) →

(πN1
t , σN2

t ) because the number of samples of uN1
t and vN2

t scale with (N1, N2).1 Thus, it follows
that (π̂N1

t , σ̂N2
t ) → (πt, σt) as the team sizes become large and, coupled with the continuity of h

with respect to π̂N1
t , σ̂N2

t , the following simplification holds:∑
u

∑
v

h(µN1
t , νN2

t , π̂N1
t , σ̂N2

t )π(u|xN1
t )σ(v|yN1

t )→
∑
u

∑
v

h(µt, νt, πt, σt)π(u|xN1
t )σ(v|yN1

t )

= h(µt, νt, πt, σt)
∑
u

π(uN1 |xN1
t )

∑
v

σ(vN2 |yN1
t )

= h(µt, νt, πt, σt)

For the second term in (B.15), we first focus on the term

(
Qα,β(µN1

t , νN2
t , π̂N1

t , σ̂N2
t )−QN,α,β(µN1

t , νN2
t , π̂N1

t , σ̂N2
t )

)
.

The expectation in (B.12) is with respect to uN1 ∼ ϕ,vN2 ∼ ψ. It follows from Lemma 1, we can
rewrite (B.12)as

QN,α,β(µN1
t , νN2

t , π̂N1
t , σ̂N2

t )

= Eπ∼α,σ∼β,uN1∼π,vN2∼σ

[ ∞∑
τ=0

γτr(µN1
τ , νN2

τ )
∣∣µN1

0 = µN1
t , νN2

0 = νN2
t , πN1

0 = π̂N1
t , σN2

0 = σ̂N2
t

]
1Note that as N1 → ∞, π̂N1

t (·|x) ̸= πN1
t (·|x) for states x such that µ(x) = 0 by the very definition of

the approximation (B.10). However, it is easy to check that the mean-field trajectories remain the same and the
unoccupied states have no role to play in the evolution.
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On the other hand, the expectation in (B.14) is with respect to α, β. Using a similar argument
as (B.17), we can write (B.14) as

Qα,β(µN1
t , νN2

t , π̂N1
t , σ̂N2

t )

= Eπ∼α,σ∼β,uN1∼π,vN2∼σ

[ ∞∑
τ=0

γτr(µτ , ντ )
∣∣µ0 = µN1

t , ν0 = νN2
t , π0 = π̂N1

t , σ0 = σ̂N2
t

]
.

We apply the following lemma along with Assumption 6 to establish convergence of the second term
in (B.15).

Lemma 2. Under Assumption 1 and Lipschitz policies B.17, QN,α,β → Qα,β as N1, N2 →∞.

Proof. Assumption 1 allows the QN,α,β , Qα,β to have compact support. Thus, it suffices to prove
pointwise convergence (Cui et al., 2023) for each τ , i.e.,

E
[
γτr(µN1

τ , νN2
τ )

∣∣µN1
0 = µN1

t , νN2
0 = νN2

t , πN1
0 = π̂N1

t , σN2
0 = σ̂N2

t

]
→

E
[
γτr(µτ , ντ )

∣∣µ0 = µN1
t , ν0 = νN2

t , π0 = π̂N1
t , σ0 = σ̂N2

t

]
(B.20)

as N1, N2 → ∞, where the expectation is taken with respect to α, β,u ∼ π,v ∼ σ (dropped for
readability). We follow an induction approach similar to the one presented in Cui et al. (2023). It
trivially holds at τ = 0. Let us assume that (B.20) holds at time step τ . For subsequent τ + 1,

γτ
∥∥∥E [

r(µτ+1, ντ+1)
∣∣µ0 = µN1

t , ν0 = νN2
t , π0 = π̂N1

t , σ0 = σ̂N2
t

]
− E

[
r(µN1

τ+1, ν
N2
τ+1)

∣∣µN1
0 = µN1

t , νN2
0 = νN2

t , πN1
0 = π̂N1

t , σN2
0 = σ̂N2

t

] ∥∥∥
≤ γτ

∥∥∥E [
r
(
µτF (µτ , ντ , πτ ), ντG(µτ , ντ , στ )

)∣∣µ0 = µN1
t , ν0 = νN2

t , π0 = π̂N1
t , σ0 = σ̂N2

t

]
− E

[
r
(
µN1
τ F (µN1

τ , νN2
τ , ϕτ ), ν

N2
τ G(µN1

τ , νN2
τ , ψτ )

)∣∣µN1
0 = µN1

t , νN2
0 = νN2

t , πN1
0 = π̂N1

t , σN2
0 = σ̂N2

t

] ∥∥∥
+ γτ

∥∥∥E [
r
(
µN1
τ F (µN1

τ , νN2
τ , ϕτ ), ν

N2
τ G(µN1

τ , νN2
τ , ψτ )

)∣∣µN1
0 = µN1

t , νN2
0 = νN2

t , πN1
0 = π̂N1

t , σN2
0 = σ̂N2

t

]
− E

[
r(µN1

τ+1, ν
N2
τ+1)

∣∣µN1
0 = µN1

t , νN2
0 = νN2

t , πN1
0 = π̂N1

t , σN2
0 = σ̂N2

t

] ∥∥∥
The convergence of the first term follows from the weak LLN Cui et al. (2023) and a similar ar-
gument as used for (B.19). By using the Lipshcitzness of the reward function (Assumption 1) and
Corollary 1, the second term in the expression is bounded by O

(
1√
N

)
, where N = min(N1, N2)

and goes to zero as (N1, N2)→∞.

It follows from the convergence of the two individual terms in B.15 that ∥∇θJ(αθ)−∇θĴN1(αθ)∥
as (N1, N2)→∞

Theorem 3. Let G1 denote the finite-population game where the agents utilize the identical team
policies ϕ∗t and ψ∗

t derived from MF-MAPPO trained on G1 and let the finite-population game G2
with the same state-action space, dynamics, and rewards, but with population sizes N̄1 and N̄2 such
that N̄1/N̄2 = N1/N2 and min(N̄1, N̄2) ≥ min(N1, N2). Then, (ϕ∗t , ψ

∗
t ) remain ϵ-optimal for G2.

Sketch of Proof. The key idea of the proof is to exploit the fact that the equivalent infinite-population
games for G1 and G2 are the same as N1/N2 = N̄1/N̄2 (Guan et al., 2024a). We first compute the
performance of ϕ∗, the optimal identical team policy derived for the G1 using MF-MAPPO (finite-
population training), when applied to the infinite-population coordinator setting. We then compare
the performance of the aforementioned ϕ∗ for G2 with the infinite-population coordinator. Then,
equating the common equivalent coordinators for G1 and G2, the result follows.
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Proof. Consider game G1. Let us restrict ourselves to the set of identical team policies Φ ⊆ ΦN1

and suppose that ϕ∗ is the optimal identical Blue team policy obtained from the (N1, N2) finite
population game via MF-MAPPO. From Theorem 1, we already know that

min
ψN2∈ΨN2

JN,ϕ
∗,ψN2

(xN1 ,yN2) ≥ JN∗(xN1 ,yN2)−O
( 1√

N

)
.

Denote JN,ϕ
∗,ψN2∗

(xN1 ,yN2) ≜ minψN2∈ΨN2 J
N,ϕ∗,ψN2

(xN1 ,yN2), where ψN2∗ is the poten-
tially non-identical policy that solves the optimization problem.

Now, for G2 we want to show that

min
ψN̄2∈ΨN̄2

J N̄,ϕ
∗,ψN̄2

(xN̄1 ,yN̄2) ≥ J N̄∗(xN̄1 ,yN̄2)−O
( 1√

N

)
, (B.21)

where ϕ∗ corresponds to the identical policy derived from G1.

We know that the N1

N2
= N̄1

N̄2
. Thus, the infinite-population coordinator games remain identical for

both G1 and G2. We prove the theorem in the following two steps.

Step 1. We first show that for ϕ∗ from G1 we have the following inequality for all joint states
xN1 ∈ XN1 and yN2 ∈ YN2 ,

J
ϕ∗,ψ̃∗

∞∞ (µN1 , νN2) ≥ JN,ϕ
∗,ψN2∗

(xN1 ,yN2)−O
( 1√

N

)
, (B.22)

where µN1 = Empµ(x
N1) and νN2 = Empν(y

N2) and ψ̃∗
∞ ∈ Ψ is given by,

J
ϕ∗,ψ̃∗

∞∞ (µ0, ν0) = min
ψ∈Ψ

Jϕ
∗,ψ

∞ (µ0, ν0). (B.23)

The above equation (B.23) determines the optimal Red team response in the infinite-population
domain, when the Blue team plays ϕ∗ derived from G1. We prove this through an inductive argument.

Base case: At the terminal timestep T , the two value functions are the same. Thus, we have, for all
joint states xN1

T ∈ XN1 and yN2

T ∈ YN2 , that

J
ϕ∗,ψ̃∗

∞
∞,T (µN1

T , νN1

T ) = JN,ϕ
∗,ψN2∗

T (xN1

T ,yN2

T ) = rt(µ
N1

T , νN1

T ).

Inductive hypothesis: Assume that, at time step t + 1, the following holds for all xN1
t+1 ∈ XN1 and

yN2
t+1 ∈ YN2 ,

J
ϕ∗,ψ̃∗

∞
∞,t+1 (µ

N1
t+1, ν

N1
t+1) ≥ J

N,ϕ∗,ψN2∗

t+1 (xN1
t+1,y

N2
t+1)−O

( 1√
N

)
. (B.24)

Induction: Consider arbitrary xN1
t ∈ XN1 and yN2

t ∈ YN2 .

For simplicity, we do not emphasize the correspondence between the joint states and the EDs for the
rest of the proof, as it is clear from the context. For the identical team policies (ϕ∗t , ψt) ∈ Φ×Ψ, at
time step t, denote

µϕ
∗

t+1 ≜ µN1
t F (µN1

t , νN2
t , ϕ∗t )

νψt+1 ≜ νN2
t G(µN1

t , νN2
t , ψt). (B.25)
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For notational simplicity, we drop the conditions XN1
t = xN1

t and YN2
t = yN2

t in the following
derivations. Then, we have

JN,ϕ
∗,ψN2∗

t (xN1
t ,yN2

t )

= min
ψ

N2
t ∈Ψ

N2
t

rt(µ
N1
t , νN2

t ) + E
ϕ∗
t ,ψ

N2
t

[
JN,ϕ

∗,ψN2∗

t+1 (XN1
t+1,Y

N2
t+1)

]
(i)
≤ rt(µN1

t , νN2
t ) + min

ψ
N2
t ∈Ψ

N2
t

E
ϕ∗
t ,ψ

N2
t

[
J
ϕ∗,ψ̃∗

∞
∞,t+1 (M

N1
t+1,N

N2
t+1)

]
+O

( 1√
N

)
(ii)
≤ rt(µ

N1
t , νN2

t ) + min
ψt∈Ψt

Eϕ∗
t ,ψt

[
J
ϕ∗,ψ̃∗

∞
∞,t+1 (M

N1
t+1,N

N2
t+1)

]
+O

( 1√
N

)
(iii)
= rt(µ

N1
t , νN2

t ) +O
( 1√

N

)
+ min
ψt∈Ψt

Eϕ∗
t ,ψt

[
J
ϕ∗,ψ̃∗

∞
∞,t+1 (M

N1
t+1,N

N2
t+1)− J

ϕ∗,ψ̃∗
∞

∞,t+1 (µ
ϕ∗

t+1, ν
ψt

t+1)

+ J
ϕ∗,ψ̃∗

∞
∞,t+1 (µ

ϕ∗

t+1, ν
ψt

t+1)
]

(iv)
≤ rt(µ

N1
t , νN2

t ) +O
( 1√

N

)
+ min
ψt∈Ψt

Eϕ∗
t ,ψt

[
LJ,t+1dTV

(
MN1

t+1, µ
ϕ∗

t+1

)
+ LJ,t+1dTV

(
NN2
t+1, ν

ψt

t+1

)
+ J

ϕ∗,ψ̃∗
∞

∞,t+1 (µ
ϕ∗

t+1, ν
ψt

t+1)
]

(v)
= rt(µ

N1
t , νN2

t ) +O
( 1√

N

)
+ min
ψt∈Ψt

J
ϕ∗,ψ̃∗

∞
∞,t+1 (µ

ϕ∗

t+1, ν
ψt

t+1) + LJ,t+1Eψt

[
dTV

(
NN2
t+1, ν

ψt

t+1

)]
+ LJ,t+1Eϕ∗

t

[
dTV

(
MN1

t+1, µ
ϕ∗

t+1

)]
(vi)
≤ rt(µ

N1
t , νN2

t ) + min
ψt∈Ψt

J
ϕ∗,ψ̃∗

∞
∞,t+1 (µ

ϕ∗

t+1, ν
ψt

t+1) +O
( 1√

N

)
(vii)
= rt(µ

N1
t , νN2

t ) + min
νt+1∈Rν,t(µ

N1
t ,ν

N2
t )

J
ϕ∗,ψ̃∗

∞
∞,t+1 (µ

ϕ∗

t+1, ν
ψt

t+1) +O
( 1√

N

)
(viii)
= J

ϕ∗,ψ̃∗
∞

∞,t (µN1
t , νN2

t ) +O
( 1√

N

)
For inequality (i), we used the inductive hypothesis; for inequality (ii), we reduced the optimiza-
tion domain of the Red team to the set of identical team policies; inequality (iv) is a result of the
Lipschitz continuity of the value function (Guan et al., 2024a); for equality (v), we use the fact
that the mean-fields (µϕ

∗

t+1, ν
ψt

t+1) are induced deterministically from the distributions at time t; in-
equality (vi) holds as a consequence of Corollary 1; (vii) converts the optimization domain from
the policy space ψt ∈ Ψt to the corresponding reachable set Rν,t(µN1

t , νN2
t ) ≜ {νt+1|∃ψt ∈

Ψt s.t. νt+1 = νtGt(µt, νt, ψt)} following (Guan et al., 2024a); (vii) follows from the definition

of Jϕ
∗,ψ̃∗

∞
∞,t (µN1

t , νN2
t ). Thus, JN,ϕ

∗,ψN2∗
(xN1 ,yN2) = JN,ϕ

∗,ψN2∗

0 (xN1 ,yN2) and (B.22) follows.

Step 2. We show that for ϕ∗ from G1 we have the following inequality for all joint states xN̄1 ∈ X N̄1

and yN̄2 ∈ YN̄2 in G2,

min
ψN̄2∈ΨN̄2

J N̄,ϕ
∗,ψN̄2

(xN̄1 ,yN̄2) ≥ Jϕ
∗,ψ̃∗

∞∞ (µN̄1 , νN̄2)−O
( 1√

N̄

)
, (B.26)

where µN̄1 = Empµ(x
N̄1), νN̄2 = Empν(y

N̄2) and N̄ = min(N̄1, N̄2). The proof is constructed
based on induction. Fix an arbitrary Red team policy ψN̄2 ∈ ΨN̄2 .

Base case: At the terminal timestep T , since there is no decision to be made, both value functions are
equal to the terminal reward and are thus the same. Formally, for all xN̄1

T ∈ XN̄1 and yN̄2

T ∈ YN̄2 ,

J N̄,ϕ
∗,ψN̄2

T (xN̄1

T ,yN̄2

T ) = J
ϕ∗,ψ̃∗

∞
∞,T (µN1

T , νN1

T ) = rt(µ
N̄1

T , νN̄1

T ),

where µN̄1

T = Empµ(x
N̄1

T ) and νN̄2

T = Empν(y
N̄2

T ). For simplicity, we do not emphasize the
correspondence between the joint states and the EDs for the rest of the proof, as it is clear from the
context.
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Inductive hypothesis: Assume that at t+1, the following holds for all joint states xN̄1
t+1 ∈ XN̄1 and

yN̄2
t+1 ∈ YN̄2 :

J N̄,ϕ
∗,ψN̄2

t+1 (xN̄1
t+1,y

N2
t+1) ≥ J

ϕ∗,ψ̃∗
∞

∞,t+1 (µ
N̄1
t+1, ν

N̄1
t+1)−O

( 1√
N̄

)
. (B.27)

Induction: At timestep t, consider an arbitrary pair of joint states xN̄1
t ∈ XN̄1 and yN̄2

t ∈ YN̄2 ,
and their corresponding EDs µN̄1

t and νN̄2
t .

For the identical team policy ϕ∗ ∈ Φ, denote µϕ
∗

t+1) from (B.25). Furthermore, from Theorem 1

in Guan et al. (2024a) there exists a νψ
N̄2
t

apprx,t+1 for the Red team policy ψN2
t such that

E
ψ

N̄2
t

[
dTV

(
N N̄2
t+1, ν

ψ
N̄2
t

apprx,t+1

)∣∣XN̄1
t = xN̄1

t ,YN̄2
t = yN̄2

t

]
≤ |Y|

2

√
1

N̄2
. (B.28)

Then, for all joint states xN̄1
t ∈ XN̄1 and yN̄2

t ∈ YN̄2 , we have

J N̄,ϕ
∗,ψN̄2

t (xN̄1
t ,yN̄2

t )

= rt(µ
N̄1
t , νN̄2

t ) + Eϕ∗,ψN̄2

[
J N̄,ϕ

∗,ψN̄2

t+1 (XN̄1
t+1,Y

N̄2
t+1)

]
(i)
≥ rt(µN̄1

t , νN̄2
t ) + Eϕ∗,ψN̄2

[
J
ϕ∗,ψ̃∗

∞
∞,t+1 (M

N̄1
t+1,N

N̄2
t+1)

]
−O

( 1√
N

)
= rt(µ

N̄1
t , νN̄2

t )−O
( 1√

N̄

)
+ Eϕ∗,ψN̄2

[
J
ϕ∗,ψ̃∗

∞
∞,t+1 (M

N̄1
t+1,N

N̄2
t+1)

− Jϕ
∗,ψ̃∗

∞
∞,t+1 (µ

ϕ∗

t+1, ν
ψ

N̄2
t

apprx,t+1) + J
ϕ∗,ψ̃∗

∞
∞,t+1 (µ

ϕ∗

t+1, ν
ψ

N̄2
t

apprx,t+1)
]

(ii)
≥ rt(µ

N̄1
t , νN̄2

t ) + J
ϕ∗,ψ̃∗

∞
∞,t+1 (µ

ϕ∗

t+1, ν
ψ

N̄2
t

apprx,t+1)−O
( 1√

N̄

)
− LJ,t+1 Eϕ∗

[
dTV

(
MN̄1

t+1, µ
ϕ∗

t+1

)]
︸ ︷︷ ︸
=O( 1√

N̄1
) due to Corollary 1

− LJ,t+1EψN2

[
dTV

(
NN2
t+1, ν

ψ
N̄2
t

apprx,t+1

)]
︸ ︷︷ ︸

=O( 1√
N̄2

) due to(B.28)

(iii)
≥ rt(µ

N̄1
t , νN̄2

t ) + J
ϕ∗,ψ̃∗

∞
∞,t+1 (µ

ϕ∗

t+1, ν
ψ

N̄2
t

apprx,t+1)−O
( 1√

N̄

)
(iv)
≥ rt(µ

N̄1
t , νN̄2

t ) + min
νt+1∈Rν,t(µ

N̄1
t ,ν

N̄2
t )

J
ϕ∗,ψ̃∗

∞
∞,t+1 (µ

ϕ∗

t+1, νt+1)−O
( 1√

N̄

)
(v)
= J

ϕ∗,ψ̃∗
∞

∞,t (µN̄1
t , νN̄2

t )−O
( 1√

N̄

)
.

For inequality (i), we used the inductive hypothesis; for inequality (ii), we utilized the Lipschitz
continuity of the coordinator value function (Guan et al., 2024a) using mean-field distributions

(µϕ
∗

t+1, ν
ψ

N̄2
t

apprx,t+1) from (B.25) and the the deterministic transitions from t to t + 1; inequality (iv)
follows from the definition of the min operator; and equality (v) follows from the definition of

J
ϕ∗,ψ̃∗

∞
∞,t (µN1

t , νN2
t ) which completes the induction.

Since the Red team policy ψN̄2 ∈ ΨN̄2 is arbitrary, we have that, for all joint states xN̄1 ∈ XN̄1 and
yN̄2 ∈ YN̄2 ,

min
ψN̄2∈ΨN̄2

J N̄,ϕ
∗,ψN̄2

(xN̄1 ,yN̄2) = min
ψN̄2∈ΨN̄2

J N̄,ϕ
∗,ψN̄2

0 (xN̄1 ,yN̄2)

≥ Jϕ
∗,ψ̃∗

∞
∞ (µN̄1 , νN̄2)−O

( 1√
N̄

)
.
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Step 3. Combining (B.22) from Step 1 with Theorem 1, we have for all joint states xN1 ∈ XN1 and
yN2 ∈ YN2 ,

J
ϕ∗,ψ̃∗

∞∞ (µN1 , νN1) ≥ JN,ϕ
∗,ψN2∗

(xN1 ,yN2)−O
( 1√

N

)
≥ JN∗(xN1 ,yN2)−O

( 1√
N

)
, (B.29)

where µN1 = Empµ(x
N1) and νN2 = Empν(y

N2).

Assuming that the initial distributions are the same for G1 and G2, i.e., µN1 = µN̄1 and νN2 = νN̄2

we have the following sequence of inequalities

min
ψN̄2∈ΨN̄2

J N̄,ϕ
∗,ψN̄2

(xN̄1 ,yN̄2)
(i)
≥ Jϕ

∗,ψ̃∗
∞∞ (µN̄1 , νN̄2)−O

( 1√
N̄

)
(ii)
≥ JN∗(xN1 ,yN2)−O

( 1√
N

)
−O

( 1√
N̄

)
(iii)
≥ Jϕ

∗
∞,ψ∗

∞
∞ (µN1 , νN1)−O

( 1√
N

)
−O

( 1√
N̄

)
(iv)
≥ J N̄∗(xN̄1 ,yN̄2)−O

( 1√
N

)
,

where Jϕ
∗
∞,ψ∗

∞∞ (µ0, ν0) = maxϕ∈Φ minψ∈Ψ Jϕ,ψ∞ (µ0, ν0). Note that (i) follows from Step 2 (B.26);
(ii) is a consequence of (B.29) and inequalities (iii) and (iv) follow from Lemmas 5 (applied on
game G1) and 6 (applied on game G2) in Guan et al. (2024b) respectively, combined with the fact
that min(N̄1, N̄2) > min(N1, N2), completing the proof.

Proposition 2. If the log-probability of the Blue team policy is bounded such that for all x ∈ X , u ∈
U , µ ∈ P(X ), ν ∈ P(Y), ∥∇η log ϕ(u | x, µ, ν)∥2 ≤ Lϕ/2|U|, where the gradient is taken with
respect to η ∈ P(X ) × P(Y) ≜ [µT, νT]T and Lϕ > 0, then ϕ(u | x, µ, ν) is Lipschitz continuous
with Lipschitz constant Lϕ, i.e.,∑

u

|ϕt (u|x, µ̂, ν̂)− ϕt (u|x, µ̂′, ν̂′) | ≤ Lϕ
(
dTV

(
µ̂, µ̂′)+ dTV

(
ν̂, ν̂′

))
∀ x ∈ X . (9)

Proof. We prove the proposition in two parts.

Step 1. We first show that ∥∇η log ϕ(u | x, µ, ν)∥2 ≤
Lϕ

2|U| implies∑
u

| log ϕt (u|x, µ̂, ν̂)− log ϕt (u|x, µ̂′, ν̂′) | ≤ Lϕ
(
dTV

(
µ̂, µ̂′)+ dTV

(
ν̂, ν̂′

))
∀ x ∈ X .

(B.30)

By the Definition of η, we can denote log ϕt (u|x, η) ≜ log ϕt (u|x, µ̂, ν̂). By the Mean-Value
Theorem and the bounded gradient from Step 1 we have for all x ∈ X , u ∈ U , η ∈ P(X )× P(Y),

| log ϕt (u|x, η)− log ϕt (u|x, η′) | ≤ sup
η∈P(X )×P(Y)

∥∇η log ϕ(u | x, η)∥2 ∥η − η
′∥2

≤ sup
η∈P(X )×P(Y)

∥∇η log ϕ(u | x, η)∥2 ∥η − η
′∥1

≤ Lϕ
2|U|

· 2
(
dTV

(
µ̂, µ̂′)+ dTV

(
ν̂, ν̂′

))
=
Lϕ
|U|

(
dTV

(
µ̂, µ̂′)+ dTV

(
ν̂, ν̂′

))
.
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Summing over all actions for any given x ∈ X ,∑
u

| log ϕt (u|x, η)− log ϕt (u|x, η′) | ≤
∑
u

Lϕ
|U|

(
dTV

(
µ̂, µ̂′)+ dTV

(
ν̂, ν̂′

))
≤ Lϕ

(
dTV

(
µ̂, µ̂′)+ dTV

(
ν̂, ν̂′

))∑
u

1

|U|

≤ Lϕ
(
dTV

(
µ̂, µ̂′)+ dTV

(
ν̂, ν̂′

))
,

completing the proof of Part 1.

Step 2. Using Step 1, we show that (B.30) implies (9). Define h(z) ≜ ez and values a ≜
log ϕt (u|x, µ̂′, ν̂′) and b ≜ log ϕt (u|x, µ̂, ν̂). It follows from the Mean-Value Theorem that for
all x ∈ X and u ∈ U ,

|h(b)− h(a)| = |h′(c)||b− a|, min(a, b) ≤ c ≤ max(a, b)

|ϕt (u|x, µ̂, ν̂)− ϕt (u|x, µ̂′, ν̂′) | = ec| log ϕt (u|x, µ̂, ν̂)− log ϕt (u|x, µ̂′, ν̂′) |
≤ emax(a,b)| log ϕt (u|x, µ̂, ν̂)− log ϕt (u|x, µ̂′, ν̂′) |.

Note that ea = ϕt (u|x, µ̂′, ν̂′) ≤ 1 and eb = ϕt (u|x, µ̂, ν̂) ≤ 1. Consequently emax(a,b) ≤ 1 and
we have for all x ∈ X ,

|ϕt (u|x, µ̂, ν̂)− ϕt (u|x, µ̂′, ν̂′) | ≤ | log ϕt (u|x, µ̂, ν̂)− log ϕt (u|x, µ̂′, ν̂′) |∑
u

|ϕt (u|x, µ̂, ν̂)− ϕt (u|x, µ̂′, ν̂′) | ≤
∑
u

| log ϕt (u|x, µ̂, ν̂)− log ϕt (u|x, µ̂′, ν̂′) |∑
u

|ϕt (u|x, µ̂, ν̂)− ϕt (u|x, µ̂′, ν̂′) | ≤ Lϕ
(
dTV

(
µ̂, µ̂′)+ dTV

(
ν̂, ν̂′

))
,

where the last inequality follows from (B.30)

Proposition 3. Consider a given ϵ-accurate estimator, i.e., dTV

(
ν̂N2
i,t , ν̂

N2
t

)
< ϵ, for all i, t, where

ν̂N2
t is the true opponent MF at time t and ϵ > 0. For the identical team-policy pair (ϕ∗t , ψ

∗
t )

obtained via gradient-regularized MF-MAPPO and deployed using this estimator, the cumulative
regret satisfies ∆J(ϕ∗t , ψ

∗
t ) ≤ Kϵ+O(1/

√
N) for some constant K > 0.

Sketch of Proof. MFs induced by identical team policies in an infinite-population game closely ap-
proximate the EDs induced in the corresponding finite-population game. Combining this conse-
quence with Lipschitz continuity in the dynamics, rewards (Assumption 1) and policies (Proposi-
tion 2), we prove the statement.

Proof. For the performance guarantee, from (10), we have,

∆J(ϕ∗t , ψ
∗
t ) = Eϕ∗,ψ∗

[ ∣∣∣∣∣
T∑
t=0

rt(MN1
t ,NN2

t )−
T∑
t=0

rt(M̂N1
t , N̂N2

t )

∣∣∣∣∣ ∣∣∣xN1
0 = x̂N1

0 ,yN2
0 = ŷN2

0

]
.

From Lipschitz rewards (Assumption 1), we have,

∆J(ϕ∗t , ψ
∗
t ; Γ)

= Eϕ∗,ψ∗

[ ∣∣∣∣∣
T∑
t=0

rt(MN1
t ,NN2

t )−
T∑
t=0

rt(M̂N1
t , N̂N2

t )

∣∣∣∣∣ ∣∣∣xN1
0 = x̂N1

0 ,yN2
0 = ŷN2

0

]
≤ Eϕ∗,ψ∗

[ T∑
t=0

Lr

(
dTV

(
MN1

t ,M̂N1
t

)
+ dTV

(
NN2
t , N̂N2

t

)) ∣∣∣xN1
0 = x̂N1

0 ,yN2
0 = ŷN2

0

]
≤ Lr

T∑
t=0

Eϕ∗,ψ∗

[
dTV

(
MN1

t ,M̂N1
t

)
+ dTV

(
NN2
t , N̂N2

t

)∣∣∣xN1
0 = x̂N1

0 ,yN2
0 = ŷN2

0

]
, (B.31)
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where the last inequality follows from the linearity of expectations.

Step 1. We first show the following for all time steps t,

Eϕ∗,ψ∗

[
dTV

(
MN1

t+1,M̂
N1
t+1

)
+ dTV

(
NN2
t+1, N̂

N2
t+1

)∣∣∣xN1
t , x̂N1

t ,yN2
t , ŷN2

t

]
≤ κ1 + κ2

(
dTV

(
MN1

t ,M̂N1
t

)
+ dTV

(
NN2
t , N̂N2

t

))
,

where κ1 ≜ 1
2 (Lϕ + Lψ)ϵ+O

(
1√
N

)
and κ2 ≜ (1 + Lf +

1
2Lϕ +

1
2Lψ).

By the linearity property of expectations,

Eϕ∗,ψ∗

[
dTV

(
MN1

t+1,M̂
N1
t+1

)
+ dTV

(
NN2
t+1, N̂

N2
t+1

)∣∣∣xN1
t , x̂N1

t ,yN2
t , ŷN2

t

]
= Eϕ∗

[
dTV

(
MN1

t+1,M̂
N1
t+1

)∣∣∣xN1
t , x̂N1

t ,yN2
t , ŷN2

t

]
+ Eψ∗

[
dTV

(
NN2
t+1, N̂

N2
t+1

)∣∣∣xN1
t , x̂N1

t ,yN2
t , ŷN2

t

]
We now bound the Blue team’s mean-field, i.e., the first term on the RHS. The Red team can be
bounded similarly (second term).

Eϕ∗

[
dTV

(
MN1

t+1,M̂
N1
t+1

)∣∣∣xN1
t , x̂N1

t ,yN2
t , ŷN2

t

]
≤ Eϕ∗

[
dTV

(
MN1

t+1,Mt+1

)∣∣∣xN1
t , x̂N1

t ,yN2
t , ŷN2

t

]
+ Eϕ∗

[
dTV

(
Mt+1,M̂t+1

)∣∣∣xN1
t , x̂N1

t ,yN2
t , ŷN2

t

]
+ Eϕ∗

[
dTV

(
M̂N1

t+1,M̂t+1

)∣∣∣xN1
t , x̂N1

t ,yN2
t , ŷN2

t

]
, (B.32)

whereMt+1 =MN1
t F (MN1

t ,NN2
t , ϕ∗) and M̂t+1 = M̂N1

t F (M̂N1
t , N̂N2

t , ϕ∗,ΓD-PC) are short-
hand notations for the next induced mean-field from the infinite-population deterministic dynam-
ics (Guan et al., 2024a) with and without the estimator ΓD-PC. From Corollary 1 in Guan et al.
(2024a), we have

Eϕ∗

[
dTV

(
MN1

t+1,Mt+1

)∣∣∣xN1
t , x̂N1

t ,yN2
t , ŷN2

t

]
≤ O

( 1√
N

)
,

Eϕ∗

[
dTV

(
M̂N1

t+1,M̂t+1

)∣∣∣xN1
t , x̂N1

t ,yN2
t , ŷN2

t

]
≤ O

( 1√
N

)
.

Thus, we are left to simplify

Eϕ∗

[
dTV

(
Mt+1,M̂t+1

)∣∣∣xN1
t , x̂N1

t ,yN2
t , ŷN2

t

]
= dTV

(
MN1

t F (MN1
t ,NN2

t , ϕ∗),M̂N1
t F (M̂N1

t , N̂N2
t , ϕ∗,ΓD-PC)

)
,

where the expectation vanishes due to deterministic transitions under identical policies (ϕ∗, ψ∗).
Now,

2dTV

(
MN1

t F (MN1
t ,NN2

t , ϕ∗),M̂N1
t F (M̂N1

t , N̂N2
t , ϕ∗,ΓD-PC)

)
(B.33)

=
∑
x′∈X

∣∣∣ ∑
x∈X

∑
u∈U

ft(x
′|x, u,MN1

t ,NN2
t )ϕ∗t (u|x,M

N1
t ,NN2

t )MN1
t (x)

−
∑
x∈X

∑
u∈U

ft(x
′|x, u,M̂N1

t , N̂N2
t )ϕ∗t (u|x,M̂

N1
t , N̂N2

x,t )M̂
N1
t (x)

∣∣∣
≤

∑
x′∈X

∑
x∈X

∑
u∈U

∣∣∣ft(x′|x, u,MN1
t ,NN2

t )ϕ∗t (u|x,M
N1
t ,NN2

t )MN1
t (x)

− ft(x′|x, u,M̂N1
t , N̂N2

t )ϕ∗t (u|x,M̂
N1
t , N̂N2

x,t )M̂
N1
t (x)

∣∣∣.
Firstly, we add and subtract ft(x′|x, u,M̂N1

t , N̂N2
t )ϕ∗t (u|x,M̂

N1
t , N̂N2

t )M̂N1
t (x) to split absolute

value as
2dTV

(
MN1

t F (MN1
t ,NN2

t , ϕ∗),M̂N1
t F (M̂N1

t , N̂N2
t , ϕ∗,ΓD-PC)

)
≤

∑
x′∈X

∑
x∈X

∑
u∈U

(I1 + I2),
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where,

I1 ≜
∣∣∣ft(x′|x, u,MN1

t ,NN2
t )ϕ∗t (u|x,M

N1
t ,NN2

t )MN1
t (x)− ft(x′|x, u,M̂N1

t , N̂N2
t )ϕ∗t (u|x,M̂

N1
t , N̂N2

t )M̂N1
t (x)

∣∣∣
I2 ≜

∣∣∣ft(x′|x, u,M̂N1
t , N̂N2

t )ϕ∗t (u|x,M̂
N1
t , N̂N2

t )M̂N1
t (x)− ft(x′|x, u,M̂N1

t , N̂N2
t )ϕ∗t (u|x,M̂

N1
t , N̂N2

x,t )M̂
N1
t (x)

∣∣∣.
Similar to (9), we can simplify I2 using Proposition 2 and obtain

∑
x′∈X

∑
x∈X

∑
u∈U

I2 < Lϕϵ.

We now individually bound the terms in I1 using the definition of total variation distance, the identity
|abc− a′b′c′| ≤ |a− a′|bc+ a′|b− b′|c+ a′b′|c− c′|, a, b, c ≥ 0,

Assumption 1 and Proposition 2 as follows:

∑
x′∈X

∑
x∈X

∑
u∈U

I1 ≤ 2dTV

(
MN1

t ,M̂N1
t

)
+ (Lϕ + Lf )

(
dTV

(
MN1

t ,M̂N1
t

)
+ dTV

(
NN2
t , N̂N2

t

))
Thus we can substitute the expressions for I1 and I2 back in (B.33) and rewrite (B.32) to get

Eϕ∗

[
dTV

(
MN1

t+1,M̂
N1
t+1

)∣∣∣xN1
t , x̂N1

t ,yN2
t , ŷN2

t

]
< dTV

(
MN1

t ,M̂N1
t

)
+

1

2
(Lϕ + Lf )

(
dTV

(
MN1

t ,M̂N1
t

)
+ dTV

(
NN2
t , N̂N2

t

))
+

1

2
Lϕϵ+O

( 1√
N

)
(B.34)

By symmetry,

Eψ∗

[
dTV

(
NN2
t+1, N̂

N2
t+1

)∣∣∣xN1
t , x̂N1

t ,yN2
t , ŷN2

t

]
< dTV

(
NN2
t , N̂N2

t

)
+

1

2
(Lψ + Lf )

(
dTV

(
MN1

t ,M̂N1
t

)
+ dTV

(
NN2
t , N̂N2

t

))
+

1

2
Lψϵ+O

( 1√
N

)
(B.35)

Adding (B.34) and (B.35) we obtain,

Eϕ∗,ψ∗

[
dTV

(
MN1

t+1,M̂
N1
t+1

)
+ dTV

(
NN2
t+1, N̂

N2
t+1

)∣∣∣xN1
t , x̂N1

t ,yN2
t , ŷN2

t

]
< (1 + Lf +

1

2
Lϕ +

1

2
Lψ)

(
dTV

(
MN1

t ,M̂N1
t

)
+ dTV

(
NN2
t , N̂N2

t

))
+

1

2
(Lϕ + Lψ)ϵ+O

( 1√
N

)
= κ1 + κ2

(
dTV

(
MN1

t (x),M̂N1
t (x)

)
+ dTV

(
NN2
t , N̂N2

t

))
.

Step 2. Define

at ≜ Eϕ∗,ψ∗

[
dTV

(
MN1

t ,M̂N1
t

)
+ dTV

(
NN2
t , N̂N2

t

)∣∣∣xN1
0 = x̂N1

0 ,yN2
0 = ŷN2

0

]
At t = 0, MN1

0 = M̂N1
0 and NN2

0 = N̂N2
0 as we begin the fully observable and estimated

scenarios under the same initial joint states , i.e., xN1
0 = x̂N1

0 ,yN2
0 = ŷN2

0 . Thus, a0 = 0. We
proceed to show that at+1 ≤ κ1 + κ2at where κ1 and κ2 are the same as Step 1. By the law of
iterated expectations,

Eϕ∗,ψ∗

[
dTV

(
MN1

t+1,M̂
N1
t+1

)
+ dTV

(
NN2
t+1, N̂

N2
t+1

)∣∣∣xN1
0 = x̂N1

0 ,yN2
0 = ŷN2

0

]
= Eϕ∗,ψ∗

[[
Eϕ∗,ψ∗dTV

(
MN1

t+1,M̂
N1
t+1

)
+ dTV

(
NN2
t+1, N̂

N2
t+1

)∣∣∣xN1
t , x̂N1

t ,yN2
t , ŷN2

t

]∣∣∣xN1
0 = x̂N1

0 ,yN2
0 = ŷN2

0

]
< Eϕ∗,ψ∗

[
κ1 + κ2

(
dTV

(
MN1

t ,M̂N1
t

)
+ dTV

(
NN2
t , N̂N2

t

))
|xN1

0 = x̂N1
0 ,yN2

0 = ŷN2
0

]
= κ1 + κ2Eϕ∗,ψ∗

[
dTV

(
MN1

t ,M̂N1
t

)
+ dTV

(
NN2
t , N̂N2

t

)
|xN1

0 = x̂N1
0 ,yN2

0 = ŷN2
0

]
= κ1 + κ2at,
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where we use the result obtained from Step 1 along with the linearity property of expectations. Using
this new notation, (B.31) simplifies to

∆J(ϕ∗t , ψ
∗
t ) ≤ Lr

T∑
t=0

at

We have a0 = 0, a1 < κ1, a2 < κ1 + κ2a1 or a2 < κ1(κ2 + 1), a3 < κ2a2 + κ1 or a3 <
κ1(κ

2
2 + κ2 + 1) and so on. This can be written compactly for all t > 0 as

at < κ1

t−1∑
τ=0

κτ2 = κ1
κt2 − 1

κ2 − 1
,

as κ2 = (1 + Lf +
1
2Lϕ +

1
2Lψ) ̸= 1. This is a geometric sum and thus we have

∆J(ϕ∗t , ψ
∗
t ) ≤ Lr

T∑
t=0

at

= Lr

T∑
t=1

at

< Lr

T∑
t=1

κ1
κt2 − 1

κ2 − 1

=
Lrκ1
κ2 − 1

T∑
t=1

κt2 − 1

=
Lrκ1
κ2 − 1

(
κ2
κT2 − 1

κ2 − 1
− T

)
=

1

2

Lr(Lϕ + Lψ)

κ2 − 1

(
κ2
κT2 − 1

κ2 − 1
− T

)
︸ ︷︷ ︸

K

ϵ+O
( 1√

N

) Lr
κ2 − 1

(
κ2
κT2 − 1

κ2 − 1
− T

)

= Kϵ+O
( 1√

N

)
.

Theorem 4. D-PC satisfies Proposition 3 with ϵ = O
(
e−cRcom

)
with c > 0.

Sketch of Proof. The exponential convergence of D-PC at each time-step t follows directly from
Theorems 6-8 in Nedić & Liu (2016) as the number of communication rounds Rcom → ∞. There-
fore, for finite communication rounds, there exist constants cx, cy > 0 and ρx, ρy ∈ (0, 1) such that
for any number of communication rounds Rcom and any underlying distributions (µ̂N1

t , ν̂N2
t ) D-PC

satisfies

dTV

(
ν̂N2
x,t , ν̂

N2
t

)
< cxρ

Rcom
x ≜ ϵx, for all x ∈ X o and t

dTV

(
µ̂N1
y,t , µ̂

N1
t

)
< cyρ

Rcom
y ≜ ϵy, for all y ∈ Yo and t. (B.36)

We define ϵ = max(ϵx, ϵy).

Proof. We begin by defining set regularity.

Definition 6 (Set Regularity (Nedić & Liu, 2016)). Let Z ⊆ Rn be a nonempty set. A (finite)
collection of closed convex sets {Yj}Jj=1 ⊆ Rn is regular (in Euclidian norm) with respect to the set
Z, if there exists a constant r ≥ 1 such that

inf
y∈Y
∥z − y∥2 ≤ rmax

j
inf
y∈Yj

∥z − y∥2, z ∈ Z,

where Y ≜
⋂
j=1,...,J Yj is non-empty. We refer to the scalar r as the regularity constant. When the

preceding relation holds with Z = Rn, we say that the sets {Yj}Jj=1 are uniformly regular.
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Proposition 5. The constraint sets R(x) for all x ∈ X o are uniformly regular with regularity
constant κ ≥ 1, i.e.,

inf
ν∈F
∥ω − ν∥2 ≤ κmax

x∈X
inf

νx∈R(x)
∥ω − νx∥2, ω ∈ R|X |.

Proof. Refer to Proposition 1 from Nedić & Liu (2016).

Following Theorem 8 from Nedić & Liu (2016), we have

ρx =

(
1− θ2

4|X o|diam(GcomBlue)(κ+ 1)2

)
, cx =

1

2

√
|Y|

∑
x∈Xo

∥ν̂τ=0
x − ξτ=1

x ∥22

ρy =

(
1− θ2

4|Yo|diam(GcomRed )(κ+ 1)2

)
, cy =

1

2

√
|X |

∑
x∈Yo

∥µ̂τ=0
y − ξτ=1

y ∥22,

where κ is the regularity constant as in Proposition 5 and θ follows from (A.3).

C RPS AND CRPS SETUP

C.1 STATE SPACE

We have three states in this representation of the game: rock, paper and scissors. We denote this
state space as S = {R,P,S}. The empirical distribution of the Blue team is denoted by µ ∈ P(S)
and that of the Red team is denoted by ν ∈ P(S). Since we have three states for each team, both
EDs lie in a three-dimensional simplex denoted by P(S).

C.2 ACTION SPACE

C.2.1 RPS

At each state, we define three actions denoted by A = {CW,CCW,Stay}. These actions represent
the ability of the agents to move from one state to the other in the following fashion:

1. CW denotes a clockwise cyclic action from one state to the other, i.e., from R→ P, P→ S,
S→ R.

2. CCW denotes a counterclockwise cyclic movement, i.e., from R→ S, S→ P, P→ R.

3. Stay denotes the idle action (remain in the same state as before).

C.2.2 CRPS

At each state we have two actions denoted by A = {CW,Stay}. These actions represent the ability
of the agents to move from one state to the other in the following fashion:

1. CW denotes a clockwise cyclic action from one state to the other, i.e., from R→ P, P→ S,
S→ R.

2. Stay denotes the idle action (remain in the same state as before).

Thus, we cannot directly jump from R to S within a single step, but must go via P. Mathematically,
S does not lie in the reachable set of R. The reachable set R(s) for each state s at a given time step
under this modified action space is as follows

R(R) = {R,P}, R(P) = {P,S}, R(S) = {S,R}.

The state-action space of both RPS and cRPS are presented in Figure C.1.
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C.3 DYNAMICS AND TRANSITION PROBABILITIES

For both RPS and cRPS, we consider deterministic transitions T (s, a, s′), which implies that given a
state-action pair (s, a), the agent reaches a unique next state s′ with certainty (no distribution over the
reachable states). Thus, for state R and action Stay, the transition function T : S×A×S → {0, 1}
is given as:

T (R,Stay,R) = 1, T (R,Stay,P) = 0, T (R,Stay,S) = 0.

This implies that an agent in the state R upon taking the Stay action remains in state R. Similarly,
T (R,CW,R) = 0, T (R,CW,P) = 1, T (R,CW,S) = 0.

represent the method to transition from R to P .

C.4 REWARD STRUCTURE

In a two player RPS game, the reward matrix for Player 1 is defined as:

A =

[
0 −1 1
1 0 −1
−1 1 0

]
.

We extend this two-player framework to the multi-agent team game formulation. Define the pairwise
reward for an agent at state x ∈ S within the Blue team and at state y ∈ S from the Red team as

r(x, y) ≜ Axy,

where Axy represents the element from the reward matrix A corresponding to the states x (row
player) and y (column player). In lieu of the zero-sum structure, the reward for the agent at y with
respect to x becomes −r(x, y). Thus, for each player xi ∈ S and i = 1, 2, . . . , N1 in the Blue team
and yj ∈ S and j = 1, 2, . . . , N2 in the Red team, the reward for the Blue team can be defined as

RBlue(x,y) =
1

N1

N1∑
i=1

[ 1

N2

N2∑
j=1

r(xi, yj)
]

︸ ︷︷ ︸
reward for agent i

.

Rewriting the term inside the square brackets as

1

N2

N2∑
j=1

r(xi, yj) =
1

N2

∑
y∈S

N2∑
j=1

r(xi, y)1yj=y

= Axis0

N2∑
j=1

1

N2
1yj=s0 +Axis1

N2∑
j=1

1

N2
1yj=s1

+Axis2

N2∑
j=1

1

N2
1yj=s2

= Axis0ν(s0) +Axis1ν(s1) +Axis2ν(s2)

= A(xi)ν, (C.37)

Figure C.1: State-action spaces for RPS and cRPS.
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where A(xi) is the row of the reward matrix corresponding to state xi. Using (C.37), the total Blue
reward can be expressed as

RBlue(x,y) =
1

N1

N1∑
i=1

A(xi)ν

=
( 1

N1

∑
x∈S

N1∑
i=1

A(xi)1xi=x

)
ν

=
(
A(s0)µ(s0) +A(s1)µ(s1) +A(s2)µ(s2)

)
ν

= µTAν.

Proposition 6. With initial conditions µt=0 = [1, 0, 0]T and νt=0 = [0, 1, 0]T, all mean-field optimal
trajectories satisfy µ∗

t = ν∗t = [ 13 ,
1
3 ,

1
3 ]

T for all t ≥ 2, and µ∗
1 = [0, 1− η, η]T where η ∈ [ 13 ,

2
3 ] and

ν∗1 = [0, 23 ,
1
3 ]

T. Furthermore, the unique game value is given by − 1
3 .

Proof. For the constrained RPS game under the stated initial condition, we cannot obtain the target
distribution

[
1
3

1
3

1
3

]T
after a single time step but this may be possible for t ≥ 2. To this end,

consider the following candidate trajectory respecting the transition dynamics:

µT
0 = [1 0 0] ,

µT
1 = [1− x1 x1 0] ,

µT
2 = [1− x1 − x2 x1 + x2 − x3 x3] ,

µT
t =

[
1
3

1
3

1
3

]
, ∀t > 2.

νT
0 = [0 1 0] ,

νT
1 = [0 1− y1 y1] ,

νT
2 = [y3 1− y1 − y2 y1 + y2 − y3] ,
νT
t =

[
1
3

1
3

1
3

]
, ∀t > 2.

In order to respect the simplex structure for µt and νt, we have the following constraints at all times:

0 ≤ x1, x2, x3 ≤ 1, x2 ≤ 1− x1, x3 ≤ x1.

Similarly,
0 ≤ y1, y2, y3 ≤ 1, y2 ≤ 1− y1, y3 ≤ y1.

For the distribution at t = 2 to be
[
1
3

1
3

1
3

]T
for both teams, we get the additional constraints

x3 = y3 =
1

3
,

x1 + x2 − x3 = y1 + y2 − y3 =
1

3
,

⇒ x1 + x2 = y1 + y2 =
2

3
,

which implies that

x1, y1 ≤
2

3
,

since x2, y2 ≥ 0. The constraints now take the form

1

3
≤ x1 ≤

2

3
, (C.38)

and similarly,

1

3
≤ y1 ≤

2

3
. (C.39)
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The objective function for cRPS is given by

JN,ϕ,ψ
(
µ0, ν0

)
= Eϕ,ψ

[ T∑
t=1

µT
tAνt

∣∣∣µ0, ν0

]
, (C.40)

which leads to the optimization problem

max
ϕt

min
ψt

JN1,N2,ϕ
t,ψt

(µ0, ν0) = µT
1Aν1 . (C.41)

Substituting µT
1 = [1− x1, x1, 0] and νT

1 = [0, 1− y1, y1] results in the following expression for the
maximizing Blue team:

max
ϕt

JN1,N2,ϕ
t,ψt

(µ0, ν0) = x1 + 2y1 − 3x1y1 − 1

= x1(1− 3y1) + (2y1 − 1).

Since this equation is linear in x1, the solution to the maximization problem subject to the constraint
(C.38) is

x1 =
1

3
, y1 >

1

3
, (C.42)

x1 =
2

3
, y1 <

1

3
, (C.43)

x1 ∈ [
1

3
,
2

3
], y1 =

1

3
. (C.44)

Following the same approach for the minimizing Red team, we get the following objective,

min
ψt

JN1,N2,ϕ
t,ψt

(µ0, ν0) = x1 + 2y1 − 3x1y1 − 1

= y1(2− 3x1) + (x1 − 1),

subject to the constraint (C.39), with the solution being:

y1 =
1

3
, x1 <

2

3
, (C.45)

y1 =
2

3
, x1 >

2

3
, (C.46)

y1 ∈ [
1

3
,
2

3
], x1 =

2

3
. (C.47)

Constraint (C.38) ensures that (C.46) cannot hold, while constraint (C.39) similarly prevents (C.43)
from holding.

Consider now the case when y1 > 1
3 . From (C.42) it follows that x1 = 1

3 . Conversely, if the Blue
team commits to a distribution with x1 = 1

3 , the Red team’s best response given by (C.45) gives
y1 = 1

3 , resulting in an incentive for the Red team to deviate from y1 >
1
3 . Thus, (C.42) does not

constitute an optimal solution. Following a similar argument, it can be shown that (C.47) is not an
optimal solution either, as illustrated below.

Assume that x1 = 2
3 . From (C.47), y1 ∈ [ 13 ,

2
3 ]. Now, if the Red team announces that it will deploy

the distribution y1 ∈ [ 13 ,
2
3 ], the Blue team’s response for x1 follows from (C.42) and (C.44). We

have already established that (C.42) is not an optimal solution. This implies that x1 ∈ [ 13 ,
2
3 ] can be

a possible response to the Red team. However it violates (C.47), where x1 = 2
3 follows from strict

equality. Thus, (C.47) does not constitute an optimal solution as the Blue team has an incentive to
deviate.

Now, suppose the Blue team announces a distribution where x1 ∈ [ 13 ,
2
3 ]. In this case, the Red team’s

optimal response, derived from (C.45) and (C.44), is y1 = 1
3 . Conversely, if the Red team announces

that its distribution will be y1 = 1
3 , the Blue team will still follow x1 ∈ [ 13 ,

2
3 ]. Since neither team has
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an incentive to deviate from these distributions, they form an optimal trajectory. Thus, the solution
to the bilinear optimization problem for two-time step convergence takes the form:

µ∗
1 =

[
1− x1
x1
0

]
and ν∗1 =

023
1
3

 , (C.48)

such that x1 ∈ [ 13 ,
2
3 ], leading to a game value of − 1

3 . This establishes the distribution at t = 1
and confirms the existence of a two-time step optimal trajectory, thereby proving the first part of the
proposition.

Now note the following:

1. The original objective function (C.40) can be expressed in a bilinear form (similar to the
expressions for µ0, µ1, µ2 using x1, x2, x3). This makes it concave in the first argument
and convex in the second argument.

2. The mean-fields µ and ν lie on a simplex and are hence, compact and convex.

Thus, by the generalized version of von Neumann’s minimax theorem Sorin (2002), we conclude
that the game value is unique, proving the second part of the proposition 2.

C.5 IMPLEMENTATION DETAILS AND HYPERPARAMETERS

The state distributions are represented as arrays that are concatenated together to form the global
observation. This becomes the input to the critic network which consists of a single hidden layer
of 64 neurons and two tanh activation functions. The output is a single value that is equal to the
estimated value function. On the other hand, the actor-network consists of a single MLP layer of 64
neurons that is concatenated with the local agent observation. Additionally, the logits are converted
to a probability distribution through a softmax layer. The dimension scales with |A|. Both the actor
and critic networks are initialized using orthogonal initialization (Huang et al., 2022).

The single-stage RPS game is trained for 5,000 time steps with the actor and critic learning rates
set to 0.0005 and 0.001, respectively, which remain constant throughout training. The networks are
updated using the ADAM optimizer Kingma & Ba (2017) every 50 time steps for 10 epochs and a
PPO clip value of 0.1. The entropy is decayed from 0.01 to 0.001 geometrically. We use an episode
length of 1 after which the rewards are bootstrapped.

Moreover, since we have a single “team” buffer and the input/output dimensions are small, we do
not use a mini-batch based update. For cRPS we use an episode length of 10 after which the rewards
are bootstrapped. cRPS is trained using 200,000 time steps (=20,000 episodes) and is updated every
100 time steps. The algorithm was trained on a single NVIDIA GeForce RTX 3070 GPU and the
training times are given in Tables 1 and 2.

D BATTLEFIELD SETUP

D.1 STATE AND ACTION SPACE

We consider a large-scale two-team (Blue and Red) ZS-MFTG on an n× n grid world. The state of
the ith Blue agent is defined as the pair xi = (pxi , s

x
i ) where pxi ∈ Sposition denotes the position of the

agent in the grid world and sxi ∈ Sstatus = {0, 1} defines the status of the agent: 0 being inactive and
1 being active. Similarly, we define the state of the Red agent as yi = (pyi , s

y
i ). The state spaces for

the Blue and Red teams are denoted by X = Y = Sposition ×Sstatus, respectively. The mean-fields of
the Blue (µ) and Red (ν) teams are distributions over the joint position and status space, i.e., µ, ν ∈
P(Sposition × Sstatus). The action spaces are given by U = V = {Up,Down,Left,Right,Stay}
for both teams, representing discrete movements in the grid world. The learned identical team

2Note: The optimal infinite horizon trajectory itself need not be unique (we have shown that x1 can take a
range of values).
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policy assigns actions based on an agent’s local position and status, as well as the observed mean-
fields of both teams. In the following subsections, we elaborate on the weakly coupled transition
dynamics and reward structure introduced in the game, followed by a detailed discussion of the
training procedure and network architecture for MF-MAPPO in this example.

D.2 INTERACTION BETWEEN AGENTS

The transitions between states for agents belonging to both teams are characterized by their dy-
namics. These dynamics are probabilistic and depend on interactions among agents and are weakly
coupled through their mean-field distributions. The weak coupling dynamics is keeping in line with
the assumption in Guan et al. (2024a).

An agent at a given grid cell can be deactivated by the opponent team with a nonzero probability
if the empirical mean-field of the opponent team at the grid cell supersedes that of the agent’s own
team. Similarly, a deactivated agent can be revived if the empirical mean-field of the agent’s team
is greater than the opponent’s. This is referred to as numerical advantage. The total transition
probability from state (p, s) to state (p′, s′) by taking an action a is given by

P
(
(p′, s′) | (p, s), a, µ, ν

)
= P

(
p′ | (p′, s′), a

)
P
(
s′ | (p, s), µ, ν

)
,

where the first term on the right-hand side corresponds to the deterministic position transition when
the agent is active. The second term corresponding to the status transition is given by

P
(
0 | (p, 1), µ, ν

)
= clip[0,1]

(
αx(ν(p)− µ(p))

)
,

P
(
1 | (p, 1), µ, ν

)
= 1− P

(
0 | (p, 1), µ, ν

)
,

and

P
(
1 | (p, 0), µ, ν

)
= clip[0,1]

(
βx(µ(p)− ν(p))

)
,

P
(
0 | (p, 0), µ, ν

)
= 1− P

(
1 | (p, 0), µ, ν

)
,

where ν(p)−µ(p) is the Red team’s numerical advantage over the Blue team at p Similarly, the Blue
team’s numerical advantage over Red is given by µ(p) − ν(p). αx and βx are tuning parameters to
control the Red team’s deactivation power and Blue team’s reactivation power respectively. The Red
team, being the defending team, is given a slight advantage in terms of higher deactivation power.
This enables the possibility of capturing Blue team agents. However, to avoid degeneracy, the Red
team agents are not allowed to enter the target. For our experiments, we assume αx = 15, αy = 5,
and βx = βy = 0.

D.3 REWARD STRUCTURE

The team rewards only depend on the mean-fields of the two teams. For the battlefield scenario,
the Blue team agents receive a positive reward corresponding to the fraction of agents that reach
the target alive. This is a one-time reward that depends on the change in the fraction of the pop-
ulation of the agents at the target, i.e., if µt|target = µt+1|target, then the team does not receive any
positive reward. Each agent in the team receives an identical “team reward.” The reward function is
mathematically formulated as

RBlue,t+1(µ, ν) = κ∆µt+1|target,

where,

∆µt+1|target = µt+1(p
x = Target, sx = 1)− µt(px = Target, sx = 1).

We have chosen κ = 100 in our simulations (heavier emphasis on reaching the target). The Red
team’s reward is the negative of the Blue team since we have a zero-sum game. Each team aims to
maximize its own expected reward.

D.4 IMPLEMENTATION AND HYPERPARAMETERS

The state distribution for a grid world of size n×n is represented as a three-dimensional array of size
(2, n, n) for each team. The first layer depicts the mean-field of the agents over an n×n grid that are
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alive and active, while the second layer gives information about the team’s deactivated population.
Each team’s distribution is then concatenated together to form the global observation. This becomes
the common information that is the input to the critic network which in our case is of size (4, n, n)
as we have two teams. Both neural networks consist of two main parts: a convolutional block and a
fully connected block.

For the critic, the first CNN layer is the input layer that takes the 4 channels and outputs 32 channels,
with a kernel size of 3x3, stride of 1, and padding of 1. Followed by ReLU activation, we have a
hidden layer that takes 32 channels and outputs 64 channels, with the same kernel size, stride, and
padding. Lastly, after another ReLU activation, we have the output layer that takes 64 channels and
outputs 64 channels, again with the same kernel size, stride, and padding. After another ReLU layer,
the output of the CNN is passed through an MLP. Namely, a fully connected (dense) layer takes the
flattened output of the convolutional block and reduces it to 128 units. Between the input and the
output layers, we have a single tanh activation function.

On the other hand, the input to the actor-network is split into two CNN blocks: one to process the
common information and one to process the local information. The local information channel, is an
array of size (1, n, n) that locates the position of the agent with value +1 if it is active and -1 if it
has been deactivated. This local information is passed through a single CNN layer that outputs 16
channels with a kernel size of 3x3, stride of 1, and padding of 1 while the common information is
passed through two such layers with the output of 32 channels. Both outputs are then followed by a
ReLU activation function and the latent representation of the common information combined with
the local agent observation is then passed through an MLP architecture.

A fully connected (dense) layer takes the flattened output of the convolutional block and reduces
it to 512 units. We have a single hidden layer that reduces the dimension further to 128 and then
the output logits. The layers are separated by the tanh activation functions. Finally, the logits are
converted to a probability distribution through a softmax layer. Both the actor and critic networks
are initialized using orthogonal initialization (Huang et al., 2022). The architectures of the shared-
team actor and minimally-informed critic networks for this example are shown in Figures D.2 and
D.3 respectively.

Figure D.2: MF-MAPPO: Shared-team actor for battlefield

All maps are trained using a single NVIDIA GeForce RTX 3070 GPU. The actor and critic learning
rates are set to 0.0005 and 0.001 and both decay geometrically by a factor of 0.999. The networks
are updated using the ADAM optimizer (Kingma & Ba, 2017) with two mini-batches for 10 epochs
and a PPO clip value of 0.1. The entropy coefficient is initialized to 0.01 and decays with a factor of
0.995.

Maps 1 and 2 which are 4×4 grid worlds are trained for 5×106 and 4.5×106 time steps, respectively,
and in both cases, the episode length is 20 time steps and the update frequency is every 500 time
steps. The total training period is about one day. On the other hand, Map 3 being 8×8 in dimension,
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Figure D.3: MF-MAPPO: Minimally-informed critic for battlefield

has an episode length of 64, is trained for 9× 106 time steps and its network is updated every 1,000
time steps. The total training period is approximately three days.

For evaluating D-PC, we employ MF-MAPPO to learn Lipschitz policies under a fully observable
mean-field regime, and use these policies to evaluate the performance of our dynamic estimation
algorithm, D-PC. We consider a time-invariant, edgeless visibility graph, wherein agents have access
only to the mean-field distribution of their opponent corresponding to their current cell. For the
communication graph, we assume a subgrid based topology that we detail in Section E.3. The
communication graph is naturally time-varying since the number of states occupied by the agents
need not be fixed. In accordance with Assumption 2 and the theoretical requirements of both D-
PC and benchmark algorithms, we explicitly impose the constraint that the communication graph is
connected at all time steps.

At each time step t, the initial Red team’s estimate for the D-PC algorithm by the Blue team (i.e., at
τ = 0) for every state x is taken as the projection of the estimate from the previous time step t − 1
onto the constraint setR(x), that is,

ν̂N2,τ=0
x,t = ΩR(x)

[
ν̂N2,Rcom

x,t−1

]
, x ∈ X ot .

At t = 0 and τ = 0, we assume ν̂N2,τ=0
x,t=0 ∼ unif (R(x)) for all x ∈ X ot .

E ADDITIONAL RESULTS

In this section, we present additional simulation results from various environments present on
MFEnv. In particular, we look at the standard version of Rock-Paper-Scissors and more experi-
ments on the zero-sum battlefield game - both trained using MF-MAPPO. We also present a single
team grid world navigation task wherein agents learn a Lipschitz constrained MF-MAPPO policy
and use D-PC to estimate their empirical distributions. This grid world navigation task in particu-
lar highlights the applicability of the presented algorithms to general mean-field team settings, not
restricted to competitive zero-sum team games.

E.1 ROCK-PAPER-SCISSORS (RPS)

We first extend the two-player Rock-Paper-Scissors (RPS) game to a game played between two
populations as described in Appendix C. The Nash equilibrium for this population-based RPS game
is the uniform population distribution [1/3, 1/3, 1/3] over the 3 states (Raghavan, 1994).

We compare MF-MAPPO with DDPG-MFTG (Shao et al., 2024b) based on the training time, aver-
age test rewards and attainment of the computed Nash distributions for N1 = N2 = 1, 000 agents.
We exclude MADDPG (Lowe et al., 2017) from our comparison, as it scales poorly to hundreds or
thousands of agents due to its reliance on all agents’ local and global observations and actions as
inputs to its critic networks. We include the training curve and performance for cRPS in Figure E.4
and Table 2 respectively, for reference.
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From the learning curves in Figure E.4 one can see that the DDPG-MFTG algorithm failed to con-
verge to the analytical game value of zero, while MF-MAPPO almost immediately attained the Nash
game value. This corroborates with the results presented for cRPS in the main text. However, as
shown in Table 1, MF-MAPPO does take slightly longer to train since, unlike DDPG-MFTG, since
MF-MAPPO avoids mini-batch training, following Yu et al. (2022).

We tested the learned policy with a fixed initial distribution µt=0 = [1, 0, 0]T and νt=0 = [0, 1, 0]T,
and the resulting trajectories are visualized in Figure E.5. All simulations were run for 150 instances.
The trajectories of the Blue and Red team ED are depicted in cyan and pink, respectively, alongside
the mean trajectory. The randomness in these trajectories arises from the finite-population approx-
imation under a stochastic optimal policy, resulting in stochastic EDs. As shown in Figures E.5,
DDPG-MFTG diverges from the equilibrium whereas MF-MAPPO converges immediately.

E.2 BATTLEFIELD

E.2.1 VALIDATION CASES FOR MF-MAPPO

The following subsection qualitatively discusses the battlefield game for different map layouts. For
these results, both teams are deploying policies trained using MF-MAPPO.

Map A. The first map is a simple 4 × 4 grid world with a single target that we use to validate our
algorithm. The target is partially blocked by an obstacle, see Figure E.6. For the initial condition in
Figure E.6, the Blue team is initially split into two equal groups. The Blue team decides to merge the
two sub-groups of agents into a single group. With this formation, the Red team has zero numerical
advantage over the Blue team when they encounter in (g), resulting in all Blue agents safely arriving
at the target. In comparison, if the two Blue subgroups do not merge but move toward the target one
at a time, it will lead to 50% of the Blue team population being deactivated (first subgroup), followed
by the remaining 50% (second subgroup). This demonstrates how the observation of mean-field
distributions guides rational decision-making.

Map B. This map is identical to the one presented in Section 5. In the first scenario (Figure E.7),
70% of the Blue agents start at cell [2, 2], and 30% at cell [1, 1], while the Red team is evenly split
between cells [0, 1] and [3, 3]. Half of the Red team at [0, 1] successfully blocks the 30% Blue agent
group from entering the left corridor due to its numerical advantage, which forces the Blue agents
to opt for the right corridor. At the same time, the larger Blue group with 70% of the population
utilized their numerical advantage over the half Red team at the top right and deactivated all the Red
agents as shown in (c) and reached the target at time step (d). This allowed the smaller 30% group

Figure E.4: Training curves for RPS and cRPS.

Table 1: Performance comparison for RPS
Approach Training Time Average Reward NE Attained?

MF-MAPPO 5min 17s 0.0 ✓
DDPG-MFTG 1min 34s 0.334 ✗
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Table 2: Performance comparison for cRPS
Approach Training Time Average Reward NE Attained?

MF-MAPPO 2h 17min 15s -0.331 ✓
DDPG-MFTG 60h 49min 41s 3.774 ✗

Figure E.5: ED trajectories induced by learned team policies on the state distribution simplex. Mean
trajectories are averaged based on the 150 runs from fixed initialization µt=0 = [1, 0, 0]T and νt=0 =
[0, 1, 0]T; N1 = N2 = 1, 000.

to follow through the same corridor without losing agents. In the second scenario (Figure E.8), with
the Red team evenly distributed at the corners, 30% of the Blue agents start at cell [2, 2] and 70% at
cell [3, 1]. The Red team’s numerical advantage at [3, 3] forces the Blue agents to move around and
regroup (Figures E.8(b)-E.8(f)). Once united, the Blue team’s numerical advantage forces the Red
subgroup at [0,1] to disperse to avoid deactivation, allowing Blue to reach the target.

Map C. In Figure E.9, we deploy the MF-MAPPO policies trained with N1 = N2 = 100 (from
the main text) to larger populations of N̄1 = N̄2 = 1500 and N̄1 = N̄2 = 1000 using the same
initial condition as Figure 4I and II respectively. The teams continue to achieve their objectives
as established in Theorem 3, exhibiting behaviors similar to N1 = N2 = 100 setting. Section 5
presented scenarios featuring structured initial configurations for both teams over an 8× 8 grid. It is
important to emphasize, however, that the algorithm is trained on a diverse set of initial conditions
for a given map, ranging from agents concentrated within a few selected cells to agents distributed
randomly across the grid world. The following examples demonstrate that the teams are able to
accomplish their objectives even in scenarios where agents are dispersed across the environment
rather than clustered into just 1-2 subgroups using the same policy from Section 5. In Figure E.10,
the Blue team is initialized randomly, and local subgroups of agents emerge and coordinate to reach
the target. This behavior is particularly pronounced near the upper target, where a greater numerical
advantage facilitates successful coalition formation (Figures E.10(c)–(e)).

Turning to the randomly distributed Red team agents in Figure E.11, it is observed that they concen-
trate near the two target entrances and successfully neutralize most Blue team subgroups.

E.2.2 COMPARISON OF MF-MAPPO WITH BASELINE

Initial Condition 1. Figure E.12I. compares the two algorithms against the baseline defending team.
MF-MAPPO Blue agents exhibit coordinated maneuvering, forming coalitions to reach the target
(a), whereas DDPG-MFTG Blue agents (b) show limited coordination, with only nearby agents
reaching the target and distant agents failing to engage. In (c) we pit the Blue team against the MF-
MAPPO defenders instead of the DDPG-MFTG defenders. The results align with those in Figure
3, where MF-MAPPO Blue agents effectively leverage their numerical advantage, enabling a larger
number of agents to reach the target. (d) represents MF-MAPPO vs. MF-MAPPO to illustrate the
goal strategies and expected behavior.

Initial Condition 2. We present a different initial condition for the 4 × 4 Battlefield game (Figure
E.12II.), where, using similar arguments as in the previous case and the main text, we can establish
the superiority of MF-MAPPO agents over the baseline DDPG-MFTG, whether MF-MAPPO serves
as the attacker or the defender.
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Figure E.6: Red is concentrated; Blue is evenly split.

Figure E.7: Red is evenly split; 30% Blue are at [1, 1] and 70% are at [2, 2].

E.3 MEAN-FIELD ESTIMATION FOR GRID WORLD NAVIGATION USING D-PC

We consider a 9× 9 grid with a target region at the center that is surrounded by penetrable obstacles
(see Figure E.13). At a given cell, the population can penetrate an adjacent obstacle-state xobstacle
with a probability proportional to its distribution at that cell, according to

f(xobstacle|x, u, µt) ∝ expb(µt(x)−c), (E.49)

where b > 0 and c ∈ (0, 1). We run the algorithms for T = 1, 000 time steps for varying values
of Rcom under a subgrid-based communication topology. For each value of Rcom, we evaluate our
algorithm as well as the benchmark over multiple seeds of different initial mean-field distributions
µNt=0 = µ̂Nt=0 and report the average estimation error over these seeds.

We use an edgeless visibility graph and a subgrid-based communication graph. In the subgrid com-
munication topology, an agent located at state x can exchange information with its neighboring
states arranged in a 3 × 3 grid centered around x, as depicted in Figure E.13. Naturally, agents
at the boundary have reduced connectivity: edge cells communicate within a 2 × 3 neighborhood,
and corner cells within a 2 × 2 configuration, also shown in Figure E.13. We evaluate the estima-
tion performance for communication rounds Rcom ∈ {1, 2, 3, 4, 5, 6, 7, 8} and consider population
sizes of N = 100 and N = 1, 000 (Recall, Theorem 3). From Figures E.14 and E.16 we see that
up to approximately Rcom = 4, the proposed algorithm consistently outperforms the benchmark,
particularly in the early phases where communication is limited.

The benchmark algorithm (Benjamin & Abate, 2025b) assumes that each state directly acquires the
exact distributions of its communication neighbors N com(x). Consequently, it achieves better ac-
curacy when Rcom approaches diam(Gcomt ) communication rounds. While our method converges
slightly more gradually, it offers notable practical advantages: it avoids relying on direct access to
neighbor distributions—thereby preserving privacy—and performs competitively even under tighter
communication constraints. Furthermore, for Rcom < diam(Gcomt ), the benchmark estimates un-
observed states using a uniform distribution assumption—potentially leading to inaccurate repre-
sentations of the actual mean-field. This inaccuracy is especially visible for small communication
budgets (Rcom = 1, 2, 3). Although increasing rounds mitigates this error, in real-world scenarios
where fast decision-making is critical such as in real-time opponent modeling, large-scale commu-
nication may be infeasible. In contrast, our algorithm remains tractable, communication-efficient,
and robust across a range of practical deployment settings, offering a compelling trade-off between
estimation quality and operational cost. The reward plots in Figures E.15 and E.17, corresponding
to both population sizes, demonstrate that our method exhibits notably lower regret compared to the
benchmark when evaluated against the fully observable policy. This improvement is particularly ev-
ident when Rcom < 1

2diam(Gcomt ). For higher number of communication rounds our performance
remains competitive with the benchmark. The plots also show that the estimation error incurred
reduces with an increase in population size, predominantly noticeable at the peak around t = 100.
Furthermore, the increase in population size from N = 100 to N = 1, 000 results in reduced noise
in the total variation errors and smoother error plots, thereby resulting in smaller variance. Both

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Figure E.8: Red is evenly split; 70% Blue are at [3, 1] and 30% are at [2, 2].

Figure E.9: I. 1500 agents in each team where Red is concentrated; 30% Blue are at the bottom, rest
are at the top II. 1000 agents in each team with Blue evenly split; Red is concentrated.

these results corroborate with the finite population mean-field approximation guarantees presented
from Theorem 5. Empirically, we assert that our algorithm is particularly well-suited for scenarios
with limited communication budgets, especially when Rcom < 1

2diam(Gcomt ), where it consistently
delivers competitive accuracy with substantially reduced overhead.

A direct consequence of Theorem 4 is that increasing the number of communication rounds Rcom
enables the estimation error ϵ to be made arbitrarily small. In finite populations, however, stochas-
ticity in the MF approximation causes the full-information and estimated trajectories, MN1 ,NN2

and M̂N1 , N̂N2 , to vary across runs of GR-MF-MAPPO even under identical initial conditions. We
confirm that D-PC achieves exponential convergence, which becomes most apparent in the infinite-
population limit where state evolution is deterministic. Figure E.18 illustrates this behavior by
plotting the estimation error at selected time steps against Rcom, consistent with Theorem 4.

E.4 NON-LIPSCHITZ POLICIES AND ESTIMATION

While introducing partially observable ZS-MFTGs, we emphasized the importance of enforcing Lip-
schitz continuity of policies with respect to the mean-field distribution. In this section, we examine
how varying the Lipschitz gradient penalty coefficient λ influences the accuracy of the mean-field
estimation procedure. Specifically, we introduce the following term in the objective (8):

λE
[
∇η∥ log ϕ(u | x, µ, ν)∥2

]
, (E.50)

where λ denotes the Lipschitz gradient penalty coefficient. Larger values of λ enforce stronger
smoothness constraints on the policy, promoting more regular behavior across variations in the
mean-field input. In contrast, setting λ = 0 removes this constraint entirely. We conduct two
sets of experiments in the finite-population grid world setting.

Battlefield. We utilize the same 4 × 4 battlefield introduced in Section 5 and consider the case
wherein the Red team is estimating the Blue team’s distribution and the Blue team has full infor-
mation. We consider three distinct policies, each trained under a different value of λ, and allow the
teams to estimate mean-field distributions that evolve accordingly. From Table 3 we observe that for
most cases, ∆J(ϕ∗t , ψ

∗
t ) (represented as % for normalized values) is higher for the policy trained

without a Lipschitz constraint and the error reduces as λ is increased, especially for larger values of
Rcom. This is because even small inaccuracies in the estimated distributions can lead to large dis-
crepancies in the resulting mean-field, causing substantial deviations from the ideal fully observable
behavior. Thus, enforcing Lipschitz continuity in policies offers tangible practical benefits by pro-
moting smoother and more robust behaviors. Moreover, such policies tend to yield behaviors that
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Figure E.10: Blue team is randomly spread around the map.

Figure E.11: Red team is randomly spread around the map.

are better aligned with the demands of real-world deployment, making them a compelling design
choice when evaluating estimation performance.

Navigation. We consider the navigation problem defined above and now focus on the cumulative
total variation error, i.e.,

∑
t dTV

(
µt, µ̂t

)
. Figure E.19 show the performance of our proposed D-PC

algorithm and the benchmark method from Benjamin & Abate (2025b). In both estimation settings,
once again, gradient-regularization yields trajectories that closely resemble the fully-observable sce-
nario (lower errors).

Table 3: Effect of gradient-regularization on ∆J(ϕ∗t , ψ
∗
t )

λ Rcom = 5 Rcom = 10 Rcom = 15 Rcom = 20

0.0 0.39 0.20 1.15 2.10
0.005 0.09 0.65 0.47 0.27
0.01 0.49 0.26 0.38 0.03

F ROLE OF LLMS

The authors acknowledge the use of GPT-4 and GPT-5 for polishing the main text and for quick
access to existing results in probability theory, in particular, for Theorem 2 and Proposition 3.
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Figure E.12: a. MF-MAPPO Blue vs. DDPG-MFTG Red; b. DDPG-MFTG Blue vs. DDPG-MFTG
Red; c. MF-MAPPO Red vs. DDPG-MFTG Blue; d. MF-MAPPO Red vs. MF-MAPPO Blue.

Figure E.13: Subgrid Communication Graph.

Figure E.14: Total variation error at each time step for different values of Rcom with N = 100.
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Figure E.15: Regret at each time step for different values of Rcom with N = 100.

Figure E.16: Total variation error at each time step for different values of Rcom with N = 1000.
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Figure E.17: Regret at each time step for different values of Rcom with N = 1000.

Figure E.18: Exponential convergence of D-PC at the infinite population limit, in the absence of
stochasticity.

Figure E.19: Cumulative total variation error by various estimation algorithms in a 9× 9 grid world
for different values of λ under a subgrid communication graph with N = 1, 000.
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