
Singular Value Fine-tuning: Few-shot Segmentation
requires Few-parameters Fine-tuning

– Supplementary Material

Yanpeng Sun1∗, Qiang Chen2∗, Xiangyu He3∗, Jian Wang2, Haocheng Feng2
Junyu Han2, Errui Ding2, Jian Cheng3, Zechao Li1†, Jingdong Wang2

1School of Computer Science and Engineering, Nanjing University of Science and Technology
2Baidu VIS

3NLPR, Institute of Automation, Chinese Academy of Sciences

Appendix

A More details

Training Strategy: Different from the training strategy of previous methods, we set the learning rate
to 0.015 and use an SGD optimizer with cosine learning rate decay when fine-tuning the backbone.
Therefore, we compared the impact of different training strategies on benchmark datasets. As shown
in Table 1, the new training strategy does not affect the performance of FSS models. Therefore,
different training strategies are NOT the key to the success of SVF.

Table 1: Compare with different training strategy on Pascal-5i training set in terms of mIoU for
1-shot segmentation.

Method Backbone Training Strategy
1-shot

Fold-0 Fold-1 Fold-2 Fold-3 Mean

baseline

ResNet50

original 65.60 70.28 64.12 60.27 65.07
baseline ours 64.95 69.75 65.91 59.59 65.05

PFENet (9) original 66.61 72.55 65.33 60.91 66.35
PFENet (9) ours 65.58 72.49 66.12 60.30 66.12
BAM (3) original 68.97 73.59 67.55 61.13 67.81
BAM (3) ours 68.43 73.66 67.98 61.63 67.93

Table 2: Ablation study on the training trick.

Method Backbone Training Trick
1-shot

Fold-0 Fold-1 Fold-2 Fold-3 Mean

baseline

ResNet50

w/o 66.36 69.22 57.64 58.73 62.99
baseline w 65.60 70.28 64.12 60.27 65.07

PFENet (9) w/o 67.06 71.61 55.21 59.46 63.34
PFENet (9) w 66.61 72.55 65.33 60.91 66.35
CyCTR (15) w/o 67.80 72.80 58.00 58.00 64.20
CyCTR (15) w 65.17 72.52 66.60 60.9 66.30

BAM (3) w/o 68.37 72.05 57.55 60.38 64.59
BAM (3) w 68.97 73.59 67.55 61.13 67.81

Training Tricks: Following the same setting of BAM (3), we remove some images containing
novel classes of the test set from the training set. This is a novel trick in FSS to further improve
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Table 3: compare with parameter-efficient tuning methods on Pascal-5i 1-shot.

Method fine-tune method Fold-0 Fold-1 Fold-2 Fold-3 Mean

baseline

freeze backbone 65.60 70.28 64.12 60.27 65.07
SVF 67.42 71.57 67.99 61.57 67.14

Adapter 18.41 20.21 26.62 17.62 20.71
bias tuning 61.62 70.10 64.80 55.19 62.93

Table 4: Compare with different test image on COCO-20i in terms of mIoU for 1-shot segmentation.

Method backbone test image
1-shot

Fold-0 Fold-1 Fold-2 Fold-3 Mean
baseline

ResNet50

1000 38.91 46.07 42.67 39.71 41.84
baseline + SVF 1000 44.22 46.38 42.65 41.65 43.72

baseline 4000 37.19 45.30 42.90 38.49 40.97
baseline + SVF 4000 39.80 46.99 42.51 42.06 42.84

baseline 5000 36.59 45.17 43.34 38.73 40.96
baseline + SVF 5000 39.49 46.95 42.09 41.15 42.42

the performance. In Table 2, we compared the effect of this trick on FSS models. The results show
that this trick brings 2.0 mIoU improvement over the original FSS model on average. Especially on
Flod-2, the trend of improvement is very obvious. It proves that removing images with novel classes
of the test set from the training set prevents potential information leakage.

Test image of COCO-20i: We found that the number of test sets used in previous work was different
when testing on COCO. For example, BAM (3), HSNet (6) were tested with 1000 images, yet
Yang (12) was tested with 4000 images, and CyCTR (15) was tested with 5000 images. This is very
detrimental to the development of the community. In Table 4, we compare the different number of
test images on COCO-20i to observe changes in model performance. The experimental results show
that as the number of test images increases, the performance of the baseline shows a downward trend.
Therefore, we call on researchers to use the same training samples for a fair comparison. Meanwhile,
SVF brings positive results in different numbers of test sets. It again shows the effectiveness of SVF.

B Compare with other methods.

To clear the doubts of dataset, we use the unprocessed training set to make a fair comparison with other
SOTA methods, as show in Table5. It can be seen that baseline with SVF achieves best performance
on both Pascal-5i 1-shot and 5-shot settings. The experimental results prove that the advantages of
SVF will not disappear due to the introduction of the training trick. Meanwhile, the experimental
results prove that finetuning backbone is not only feasible in FSS, but also brings positive results to
FSS models.

Table 5: Compare with SOTA on Pascal-5i(8) in terms of mIoU for 1-shot and 5-shot segmentation.

Method backbone
1-shot 5-shot

Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean

PANet (10)

ResNet50

44.00 57.50 50.80 44.00 49.10 55.30 67.20 61.30 53.20 59.30
CANet (14) 52.50 65.90 51.30 51.90 55.40 55.50 67.80 51.90 53.20 57.10
PGNet (13) 56.00 66.90 50.60 50.40 56.00 57.70 68.70 52.90 54.60 58.50
RPMM (11) 55.20 66.90 52.60 50.70 56.30 56.30 67.30 54.50 51.00 57.30
PPNet (4) 47.80 58.80 53.80 45.60 51.50 58.40 67.80 64.90 56.70 62.00
CWT (5) 56.30 62.00 59.90 47.20 56.40 61.30 68.50 68.50 56.60 63.70

PFENet (9) 61.70 69.50 55.40 56.30 60.80 63.10 70.70 55.80 57.90 61.90
CyCTR (15) 67.80 72.80 58.00 58.00 64.20 71.10 73.20 60.50 57.50 65.60

baseline 66.36 69.22 57.64 58.73 62.99 70.75 72.92 58.86 65.56 67.02
baseline + SVF 66.88 70.84 62.33 60.63 65.17 71.49 74.04 59.38 67.43 68.09
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Figure 1: The mIoU curve of baseline with different finetune strategies on Pascal-5i Fold-0.

Table 6: Ablation study of BN on Pascal-5i under 1-shot setting. ✓represents fine-tuning this feature
space. The best mean results are show in bold.

Method BN scale Fold-0 Fold-1 Fold-2 Fold-3 Mean

65.60 70.28 64.12 60.27 65.07

baseline
✓ 61.93 70.67 62.02 57.86 63.12(−1.95)

✓ ✓ 63.46 70.66 64.93 57.75 64.20(−0.87)

✓ 67.42 71.57 67.99 61.57 67.14(+2.07)

C Detailed Ablation Study

Different finetune strategy: In Figure 1, we visualize the mIoU curve of different fine-tuning
strategies. It can be seen that both layer-based and convolution-based fine-tuning methods bring
over-fitting problems. This result shows that traditional fine-tuning methods are not suitable for
few-shot segmentation tasks. Directly fine-tuning the parameters of backbone in few-shot learning
affects the robustness of FSS models. Therefore, we propose a novel fine-tuning strategy, namely
SVF. It decompose pre-trained parameters into three successive matrices via the Singular Value
Decomposition (SVD). Then, It only fine-tunes the singular value matrices during the training phase.
The experimental results show that SVF can effectively avoid over-fitting while bringing positive
results to FSS model.

Sigular value subspace: In Figure 2, we visualize the changes of initial Top-30 largest singular
values of all 3×3 convolutional in layer 3 after SVF. The experimental results show that the change of
last 3x3 convolution is the most obvious, and the change of singular value gradually moderates as the
network becomes shallower. To verify the above point, we visualize the singular value change map of
all 3x3 convolutions of layer 2 in Figure 3. The variation of singular values in layer2 is more gradual.
Furthermore we visualize the singular value changes from the 1× 1 convolution of layer 3 and layer
2 in Figure 4 and Figure 5. where the 1× 1 convolution is the last 1× 1 convolution of each block in
ResNet. This result is the same trend as 3× 3 convolution. It shown that the information concerned
by deep convolutions in pre-train backbone is not conducive to few-shot segmentation tasks. SVF
improves the expressiveness of FSS model by focusing on adjusting distribution of singular value
subspace in the deep convolution. Meanwhile, It proves that semantic cues in deep convolutions have
the greatest impact on few-shot segmentation. In addition, Figure 6 shows the variation of all singular
values. It can be easy seen that the change of singular values afterward tends to 0. Therefore, the
change of top-30 singular values can describe the change of all singular values.

In Table 6, Table 7, Table 8, Table 9 and Tbale 10, we give more detail ablation study results. It
contains the results for each flod in different ablation study.
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Figure 2: Statistics chart about the changes of initial Top-30 largest singular values of the 3 × 3
convolutional in layer3 after SVF.
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Figure 3: Statistics chart about the changes of initial Top-30 largest singular values of the 3 × 3
convolutional in layer2 after SVF.
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Figure 4: Statistics chart about the changes of initial Top-30 largest singular values of the 1 × 1
convolutional in layer3 after SVF.
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Figure 5: Statistics chart about the changes of initial Top-30 largest singular values of the 1 × 1
convolutional in layer2 after SVF.
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Figure 6: Statistics chart about the changes of all singular values of the last 3 × 3 and 1 × 1
convolutional in layer3 after SVF.

Table 7: Comparative experiment with fine-tuning different layer of backbone on Pascal-5i.

Method layer Fold-0 Fold-1 Fold-2 Fold-3 Mean

baseline - 65.60 70.28 64.12 60.27 65.07

+fully fine-tune 1, 2, 3, 4 57.97 70.51 61.33 53.80 60.90(−4.17)

+ part fine-tune
2, 3, 4 55.34 71.16 62.72 55.38 61.15(−3.92)

3, 4 56.85 71.44 61.72 54.32 61.08(−3.99)

4 56.19 70.63 59.98 55.50 60.58(−4.49)

+SVF 2, 3, 4 67.42 71.57 67.99 61.57 67.14(+2.07)

Table 8: Comparative experiment with fine-tuning different convolutional layer of backbone on
Pascal-5i.

Method layer 3 × 3 1 × 1 Fold-0 Fold-1 Fold-2 Fold-3 Mean

baseline - - - 65.60 70.28 64.12 60.27 65.07

+part fine-tune
2, 3, 4 ✓ ✓ 55.34 71.16 62.72 55.38 61.15(−3.92)

2, 3, 4 ✓ 59.57 69.96 61.74 56.16 61.86(−3.21)

2, 3, 4 ✓ 58.30 70.50 62.04 55.63 61.62(−3.45)

+SVF 2, 3, 4 - - 67.42 71.57 67.99 61.57 67.14(+2.07)

Table 9: Ablation study of SVF fine-tuning different subspace on Pascal-5i.

Method U S V Fold-0 Fold-1 Fold-2 Fold-3 Mean

baseline

✓ 58.14 70.06 60.91 55.24 61.09
✓ 67.42 71.57 67.99 61.57 67.14

✓ 53.87 70.63 63.65 55.36 60.88
✓ ✓ 57.54 70.19 62.12 56.41 61.57

✓ ✓ 53.30 71.21 62.24 54.92 60.42
✓ ✓ 53.81 70.75 61.92 53.60 60.02
✓ ✓ ✓ 56.64 70.47 63.48 54.36 61.24

Table 10: Ablation study of SVF fine-tuning different layer on Pascal-5i.

Method layer Fold-0 Fold-1 Fold-2 Fold-3 Mean

baseline + SVF

4 68.28 71.04 65.59 59.91 66.21
3, 4 67.21 71.88 68.12 61.57 67.20

2, 3, 4 67.42 71.57 67.99 61.57 67.14
1, 2, 3, 4 67.06 71.69 67.77 61.94 67.12
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Figure 7: Different implementations of SVF.

Table 11: Comparing with only fine-tuning BN on Pascal-5i.

Method Backbone Fine-tuning Method Fold-0 Fold-1 Fold-2 Fold-3 Mean

baseline ResNet-50

Freeze Backbone 65.60 70.28 64.12 60.27 65.07
Fine-tuning BN scale (weight) 62.28 68.66 61.19 58.18 62.58

Fine-tuning BN shift (bias) 61.62 70.10 64.80 55.19 62.93
Fine-tuning BN (weight+bias) 61.93 70.67 62.02 57.86 63.12

SVF 67.42 71.57 67.99 61.57 67.14

D Discussion

D.1 Discussion on other SVD

In this section, we discuss the differences between other SVD-based methods (1; 7) and SVF. Both
SVB (1) and Hanie (7) constrain the distribution of the singular values s where SVB (1) forces the
singular value around 1 and Hanie (7) clamps the large singular values into a constant, hence serving
as a regularization term. We did not pose an extra constraint on s, instead, encouraged the fully
trainable singular values. As illustrated in SVB’s Figure 1, the singular values of well-trained weights
are widely spread around [0,2]. The strong regularization proposed in SVB (1) and Hanie (7) should
damage the performance of pre-trained networks. Therefore, they turn to training from scratch, which
is infeasible in the circumstance of few-shot segmentation. Our method coupled with pre-trained
parameters can further exploit the capacity of the backbone, leading to superior results.

D.2 Discussion on different implementation

In this section, we provide a discussion on our SVF. The main idea of SVF is learning to change
singular values in the backbone weights. It has different implementations. We show two possible
ways to achieve SVF in Figure 7: (i) treat the single value matrix S as trainable parameters directly;
(ii) freeze the original singular value matrix S and introduce another trainable singular value matrix
S

′
(we use exponential function exp to keep it positive and initialize it with zeros), where the final

singular value matrix is a product of S (frozen) and S
′

(trainable). In the second implementation,
SVF keeps the backbone frozen (as all its weights are frozen) while introducing a small part of
extra trainable parameters. It shares similarities with the recently proposed Visual Prompt Tuning
(VPT) (2). The difference between VPT and SVF is that VPT introduces the trainable parameters
in the input space while SVF introduces them in the singular value space. Although SVF and VPT
freeze the original backbone, they can produce optimization on the feature maps of the backbone.
This property enables SVF to perform better in few-shot segmentation (FSS) and is the essential

Table 12: introduce a new small part of parameters S’ to verify the importance of singular values on
Pascal-5i.

Method Backbone Expression of weight Fine-tune param Fold-0 Fold-1 Fold-2 Fold-3 Mean

baseline ResNet-50

W - 65.60 70.28 64.12 60.27 65.07
S’W S’ 60.96 71.99 62.54 58.58 63.52
WS’ S’ 62.82 71.69 62.84 61.13 64.62

USVT S 67.42 71.57 67.99 61.57 67.14
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Table 13: Compare with different implementations of SVF on Pascal-5i 1-shot.

Method Backbone Expression of weight Fine-tune param Fold-0 Fold-1 Fold-2 Fold-3 Mean

baseline ResNet-50

W - 65.60 70.28 64.12 60.27 65.07
USVT S 67.42 71.57 67.99 61.57 67.14

USS’VT S’ 67.16 71.58 68.59 61.08 67.10
USS’VT S + S’ 66.42 71.73 67.23 61.12 66.63

Table 14: Compare with other SVD-based methods on Pascal-5i 1-shot.

Method Backbone Expression of weight Fine-tune param Fold-0 Fold-1 Fold-2 Fold-3 Mean

baseline ResNet-50

W - 65.60 70.28 64.12 60.27 65.07
USVT S 67.42 71.57 67.99 61.57 67.14
S’W S’ 60.96 71.99 62.54 58.58 63.52

RS’R’W S’ 32.91 51.93 51.00 37.60 43.36

difference from the properties in previous SSF methods with frozen backbone (they do not change
the feature maps of the backbone).

D.3 Discussion on success of SVF

In this section, we discuss the truly responsible for the success of SVF from three question. First,
Does fine-tune another small part of parameters in the backbone work? We conduct experiments
on Pascal-5i with the 1-shot setting. We compare our SVF with methods that only fine-tune the
parameters in the BN layers. The results in Table 11 show that only fine-tuning the parameters in BN
layers does not bring over-fitting in few-shot segmentation methods, but they perform worse than
the conventional paradigm (freezing backbone). While our SVF outperform other methods by large
margins.

Second, Is it really necessary to fine-tune the singular values? What if we introduce a new small
part of parameters S’, which is not in the singular value space, and only fine-tune the S’? To answer
this question, we conduction two experiments, where the weight becomes S’W or WS’, and only
fine-tune the introduced small part of parameters S’. The results in Table 12 are consistence with
Table 11. Both of them can avoid over-fitting but show slightly worse performance than the freezing
backbone baseline. The above experimental results suggest that fine-tuning a small part of parameters
is a good way to avoid over-fitting when fine-tuning the backbone in few-shot segmentation. But it is
non-trivial to find such a small part of parameters that can bring considerable improvements.

Third, What causes the differences between SVF and WS’ or S’W? In this question, we try to
provide our understanding of what causes the superior performances of SVF over WS’ and S’W.
We conjecture that this may be related to the context that S or S’ can access when fine-tuning the
parameters. Assume that W has the shape of [M,N ]. S and S’ are diagonal matrices. S has the shape
of [Rank, Rank], and S’ has the shape of [M,M ] or [N,N ]. When optimizing the parameters, S’
only has relations on dimension M or dimension N in a channel-wise manner, while S can connect all
channels on both dimension M and dimension N, as S is in the singular value space. This differences
can affect the received gradients when training S or S’, which results in different performance. To
give more evidences, we design more variants of SVF and provide their results in Table 13.

Finaly, To verify whether SVF depends crucially on the singular value space, or simply on the number
of effective updated parameters. we design a experiment: let R be a random rotation matrix, and
set U=R’ and V=RW, where W is the original weight matrix for the given layer. The formulation of
the weight becomes RS’R’W. Note that S’ is initialized with an identity matrix as done in previous
experiments. During the fine-tuning, we only train S’ while keep others frozen in the backbone. We
provide the results in Table 14. Random rotation formulation gives poor results. In fact, if we set R as
an identity matrix (identity matrix is a rotation matrix), RS’R’W = S’W. As shown in the table, S’W
is much better than random RS’R’W. It seems that the selection of the rotation matrix R is critical to
the final segmentation performance. Meanwhile, If we consider RS’R’ (it is a diagonal matrix in the
initialization stage) as a whole, RS’R is only related to one dimension of the weight W. Thus for the
middle matrix S’, it is also channel-aligned with respect to weight W.

In addition, if R is random initialized, we can not guarantee that RS’R’ is a diagonal matrix when
updating S’ during training (we verify this phenomenon with the saved checkpoints when we finish the
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training). Note that the weight W is the one from the pre-trained backbone, which contains semantic
clues or learned knowledge. The non-diagonal matrix RS’R’ may bring unexpected transformation to
the pre-trained weight W, leading to poor results.
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