
Supplementary Material
In this supplementary material, we provide additional exper-
imental results, including further ablations and qualitative
comparisons (Appendix A), consider the limitations and
broader impacts of our work (Appendix B), and conclude
with additional details concerning the implementation (Ap-
pendix C).

A. Additional experiments
This section provides additional experimental results of
OVDiff.

A.1. Additional Comparisons
Category filter. To ensure that the category pre-filtering
does not give our approach an unfair advantage, we augment
two methods (TCL [9] and OVSegmentor [71], which are
the closest baselines with code and checkpoints available)
with our category pre-filtering. We evaluate on the Pascal
VOC dataset (where the category filter shows a significant
impact; see Table 3) and report the results in Tab. A.1. We
observe that TCL improves by 0.6, while the performance
of OVSegmentor drops by 0.1. On the contrary, our method
benefits substantially from this component, but it still shows
stronger performance without the filter than baselines with.
Influence of � segmentation method. We also further in-
vestigate the use of CutLER [64] to obtain segmentation
masks. We also provide example results of segmentation in
Fig. C.4. In Tab. A.2, we devise a baseline where CutLER-
predicted masks are used to average the CLIP image en-
coder’s final spatial tokens after projection. Averaged tokens
are compared with CLIP text embeddings to assign a class.
While relying on pre-trained components (like ours), this
avoids support set generation. In the same table, we also con-
sider whether the objectness prior provided by CutLER could
be beneficial to other methods as well. We consider a version
of TCL [9] and OVSegmentor [71] which we augment with
CutLER. That is, after methods assign class probabilities to
each pixel/patch, a majority voting for a class is performed in
every region predicted by CutLER. This combines CutLER’s
understanding of objects and their boundaries, aspects where
prior methods struggle, with open-vocabulary segmentation.
However, we observe that this negatively impacts the perfor-
mance of these methods, which we attribute to only a limited
performance of CutLER in complex scenes present in the
datasets. Finally, we also include a version of OVDiff that
does not rely on CutLER for mask extractions, instead using
thresholded masks. We observe that such a version of our
method also has strong performance.

We additionally experiment with stronger segmenters to
understand the influence of FG/BG mask quality. We replace
our FG/BG segmentation approach with strong supervised
models: with SAM, we achieve 67.1 on VOC, and with

Table A.1. Use of category filter component. OVDiff without
category filter outperforms prior work with cat. filter.

Model Category filter
7 X

OVSegmentor 53.8 53.7
TCL 51.2 51.8
TCL (+PAMR) 55.0 56.0
OVDiff 56.2 66.4

Table A.2. Application of CutLER. Prior work does not benefit
from using CutLER during inference, while OVDiff shows strong
results without it.

Model CutLER VOC Context Object

CLIP X 33.0 11.6 11.1
OVSegmentor 53.8 20.4 25.1
OVSegmentor X 38.7 14.4 16.8
TCL 51.2 24.3 30.4
TCL X 43.1 20.5 22.7
OVDiff 62.8 28.6 34.9
OVDiff X 66.3 ± 0.2 29.7 ± 0.3 34.6 ± 0.3

Grounded SAM, 68.5. This slightly improves results from
66.3 of our configuration with CutLER, but the performance
gain is not large and thus not critical.
Class prompts. We additionally consider whether correc-
tions introduced to class prompts might have similarly pro-
vided additional benefits to our approach (see Appendix C.3
for details). To that end, we also evaluate TCL and OVSeg-
menter (methods that do not rely on additional prompt cu-
ration) with our corrected prompts and consider a version
of our method without such corrections in Tab. A.3. We
observe only marginal to no impact on the performance.
Prompt template Finally, we consider the prompt tem-
plate employed when sampling support image set: “A good
picture of a hcii” for class prompt ci. This template
is generic and broadly applicable to virtually any natural
language specification of a target class. While prior work
adopts prompt expansion by considering a list of synonyms
and subcategories, it is not entirely clear how such a strat-
egy could be systematically performed for any in-the-wild
prompts, such as a “chocolate glazed donut”. We experiment
with a list of synonyms and subclasses, as employed by [48],
on VOC datasets measuring 66.4 mIoU, which is similar to
our single prompt performance 66.3 ± 0.2. Curating such
lists automatically is an interesting future scaling direction.

A.2. Additional ablations

Prototype combinations. In Tab. A.6, we consider the three
different types of prototypes described in Section 3 and test
their performance individually and in various combinations.
We find that the “part” prototypes obtained by K-means

Table A.3. Using corrected prompts. We consider if corrected class
names benefit prior work. We observe negligible to no effect.

Model Correction VOC Context Object

OVSegmentor 53.8 20.4 25.1
OVSegmentor X 53.9 20.4 25.1
TCL 51.2 24.3 30.4
TCL X 50.6 24.3 30.4
OVDiff 66.1 29.5 34.9
OVDiff X 66.3 ± 0.2 29.7 ± 0.3 34.6 ± 0.3

Table A.4. Choice of K for number of centroids.

K VOC Context

8 63.8 29.2
16 64.0 29.3
32 64.4 29.4
64 64.3 28.0

Table A.5. Ablation of different SD feature configurations. Remov-
ing first and last cross attention layers, mid, 1st and 2nd upsampling
blocks (all layers in the block) has a negative effect.

1st Mid Up-1 Up-2 Last
layer block block block layer Context

X X X X X 29.4
X X X X 29.4

X X X X 29.2
X X X X 27.3
X X X X 28.9
X X X X 29.3

Table A.6. Ablation of various configurations for prototypes. We
consider average P̄ , instance Pn, and part Pk prototypes individ-
ually and in various combinations on VOC and Context datasets.
Combination of all three types of prototypes shows strongest re-
sults.

P̄ Pn Pk VOC Context

X X X 64.4 29.4
X X 61.7 29.3
X X 63.5 29.4

X X 62.5 28.4
X 63.7 28.8

X 60.0 29.0
X 62.5 28.4

clustering show strong performance when considered indi-
vidually on VOC. Instance prototypes show strong individual
performance on Context, as well as in combination with the
average category prototype. The combination of all three
types shows the strongest results across the two datasets,
which is what we adopt in our main set of experiments.

We also consider the treatment of prototypes under the

stuff filter. We investigate the impact of not excluding back-
ground prototypes for “stuff" classes. In this setting, we
measure 29.1 on Context, which is a slight reduction in per-
formance. We also investigate the benefit of categorisation
into “things” and “stuff” used in the stuff filter component.
Instead, we filter all background prototypes using all fore-
ground prototypes. In this configuration, we measure 27.6
on Context. Both configurations show a reduction from 29.4,
measuring using the stuff filter with categorisation in “stuff”
and “things”, as used in our main experiments. Finally,
we experiment by removing part-level prototypes for “stuff”
classes, which also results in a performance drop to 28.0.
K - number of clusters. In Tab. A.4, we investigate the
sensitivity of the method to the choice of K for the number
of “part” prototypes extracted using K-means clustering.
Although our setting K = 32 obtains slightly better results
on Context and VOC, other values result in comparable
segmentation performance suggesting that OVDiff is not
sensitive to the choice of K and a range of values is viable.
SD features. When using Stable Diffusion as a feature ex-
tractor, we consider various combinations of layers/blocks
in the UNet architecture. We follow the nomenclature used
in the Stable Diffusion implementation where consecutive
layers of Unet are organised into blocks. There are 3 down-
sampling blocks with 2 cross-attention layers each, a mid-
block with a single cross-attention, and 3 up-sampling blocks
with 3 cross-attention layers each. We report our findings in
Tab. A.5. Including the first and last cross-attention layers in
the feature extraction process has a small positive impact on
segmentation performance, which we attribute to the high
feature resolution. We also consider excluding features from
the middle block of the network due to small 8⇥ 8 resolu-
tion but observe a small negative impact on performance on
the Context dataset. We also investigate whether including
the first (Up-1) and the second upsampling (Up-2) blocks
are necessary. Without them, the performance drops the
most out of the configurations considered. Thus, we use a
concatenation of features from the middle, first and second
upsampling blocks and the first and last layers in our main
experiments.

A.3. Evaluation without background

One of the notable advantages of our approach is the ability
to represent background regions via (negative) prototypes,
leading to improved segmentation performance. Neverthe-
less, we hereby also evaluate our method under a differ-
ent evaluation protocol adopted in prior work, which ex-
cludes the background class from the evaluation. We note
that prior work often requires additional considerations to
handle background, such as thresholding. In this setting,
however, the background class is not predicted, and the
set of categories, thus, must be exhaustive. As in practice,
this is not the case, and datasets contain unlabelled pixels

Figure A.1. Qualitative comparison on in-the-wild images. OVDiff performs significantly better than prior state-of-the-art, TCL, on wildlife
images containing multiple instances, studio photos with simple backgrounds, images containing multiple categories and an image containing
a rare instance of a class.

Table A.7. Comparison with methods when background is excluded
(decided by ground truth). OVDiff shows comparable performance
to prior works despite only relying on pretrained feature extractors.
⇤ result from [9].

Method VOC-20 Context-59 ADE Stuff City

CLIPpy – – 13.5 – –
OVSegmentor – – 5.6 – –
GroupViT⇤ 79.7 23.4 9.2 15.3 11.1
MaskCLIP⇤ 74.9 26.4 9.8 16.4 12.6
ReCo⇤ 57.5 22.3 11.2 14.8 21.1
TCL 77.5 30.3 14.9 19.6 23.1
OVDiff 80.9 32.9 14.1 20.3 23.4

(or simply a background label), such image areas are re-
moved from consideration. Consequently, less emphasis
is placed on object boundaries in this setting. As in this
setting the background prediction is invalid, we do not con-
sider negative prototypes. For this setting, we benchmark on
5 datasets following [9]: PascalVOC without background,
termed VOC-20, Pascal Context without background, termed
Context-59, and ADE20k [78], which contains 150 fore-
ground classes, termed ADE-150, COCO-Stuff, termed Stuff,
and Cityscapes, termed City. This setting tests the ability of
various methods to discriminate between different classes,
which for OVDiff is inherent to the choice of feature ex-
tractors. Despite this, our method shows competitive perfor-
mance accross wide range of benchmarks Tab. A.7.

A.4. Qualitative results

We include additional qualitative results from the benchmark
datasets in Fig. A.2. In Fig. A.3, we show examples of
support images sampled for some things, and stuff categories.
In Fig. C.5, we show examples of support set images sampled
for rare pikachu class.

B. Broader impact

Semantic segmentation is a component in a vast and diverse
spectrum of applications in healthcare, image processing,
computer graphics, surveillance and more. As for any foun-
dational technology, applications can be good or bad. OVD-
iff is similarly widely applicable. It also makes it easier to
use semantic segmentation in new applications by leverag-
ing existing and new pre-trained models. This is a bonus
for inclusivity, affordability, and, potentially, environmental
impact (as it requires no additional training, which is usu-
ally computationally intensive); however, these features also
mean that it is easier for bad actors to use the technology.

Because OVDiff does not require further training, it is
more versatile but also inherits the weaknesses of the com-
ponents it is built on. For example, it might contain the
biases (e.g., gender bias) of its components, in particular
Stable Diffusion [53], which is used for generating support
images for any given category/description. Thus, it should
not be exposed without further filtering and detection of, e.g.,
NSFW material in the sampled support set. Finally, OVDiff
is also bound by the licenses of its components.

Figure A.2. Additional qualitative results. Images from Pascal VOC (top), Pascal Context (middle), and COCO Object (bottom).

B.1. Limitations

As OVDiff relies on pretrained components, it inherits some
of their limitations. OVDiff works with the limited resolution
of feature extractors, due to which it might occasionally

miss tiny objects. Furthermore, OVDiff cannot segment
what the generator cannot generate. For example, current
diffusion models struggle with producing legible text, which
can make it difficult to segment specific words. Furthermore,
applications in domains far from the generator’s training data

(a) boat (b) person

(c) sky (d) water

(e) light (f) parking meter

(g) mountain (h) horse

Figure A.3. Images sampled for a support set of some categories.

(e.g. medical imaging) are unlikely to work out of the box. C. OVDiff: Further details

In this section, we provide additional details concerning the
implementation of OVDiff. We begin with a brief overview
of the attention mechanism and diffusion models central to

extracting features and sampling images. We review differ-
ent feature extractors used. We specify the hyperparameter
setting for all our experiments and provide an overview of
the exchange with ChatGPT used to categorise classes into
“thing” and “stuff”.

C.1. Preliminaries

Attention. In this work, we make use of pre-trained
ViT [16] networks as feature extractors, which repeatedly
apply multi-headed attention layers. In an attention layer,
input sequences X 2 Rlx⇥d and Y 2 Rly⇥d are linearly
project to forms keys, queries, and values: K = WkY, Q =
WqX, V = WvX . In self-attention, X = Y . Attention is
calculated as A = softmax(1p

d
QK>), and softmax is ap-

plied along the sequence dimension ly . The layer outputs an
update Z = X +A ·V . ViTs use multiple heads, replicating
the above process in parallel with different projection matri-
ces Wk,Wq,Wv . In this work, we consider queries and keys
of attention layers as points where useful features that form
meaningful inner products can be extracted. As we detail
later (Appendix C.2), we use the keys from attention layers
of ViT feature extractors (DINO/MAE/CLIP), concatenating
multiple heads if present.
Text-to-image diffusion models. Diffusion models are a
class of generative models that form samples starting with
noise and gradually denoising it. We focus on latent diffusion
models [50] which operate in the latent space of an image
VAE [28] forming powerful conditional image generators.
During training, an image is encoded into VAE latent space,
forming a latent vector z0. A noise is injected forming
a sample z⌧ ⇠ N (z⌧ ;

p
1� ↵⌧z0,↵⌧I) for timestep ⌧ 2

{1 . . . T}, where ↵⌧ are variance values that define a noise
schedule such that the resulting zT is approximately unit
normal. A conditional UNet [51], ✏✓(zt, t, c), is trained to
predict the injected noise, minimising the mean squared error
Et (↵tk✏✓(zt, t, c)� z0k2) for some caption c and additional
constants at. The network forms new samples by reversing
the noise-injecting chain. Starting from ẑT ⇠ N (ẑT ; 0, I),
one iterates ẑt�1 = 1p

1�↵t
(ẑt+↵t✏✓(ẑt, t, c))+

p
↵tẑt until

ẑ0 is formed and decoded into image space using the VAE
decoder. The conditional UNet uses cross-attention layers
between image patches and language (CLIP) embeddings to
condition on text c and achieve text-to-image generation.

C.2. Feature extractors

OVDiff is buildable on top of any pre-trained feature extrac-
tor. In our experiments, we have considered several networks
as feature extractors with various self-supervised training
regimes:
• DINO [8] is a self-supervised method that trains networks

by exploring alignment between multiple views using an
exponential moving average teacher network. We use

the ViT-B/8 model pre-trained on ImageNet2 and extract
features from the keys of the last attention layer.

• MAE [22] is a self-supervised method that uses masked
image inpainting as a learning objective, where a portion
of image patches are dropped, and the network seeks to
reconstruct the full input. We use the ViT-L/16 model
pre-trained on ImageNet at a resolution of 448 [27].3 The
keys of the last layer of the encoder network are used. No
masking is performed.

• CLIP [46] is trained using image-text pairs on an internal
dataset WIT-400M. We use ViT-B/16 model4. We consider
two locations to obtain dense features: keys from a self-
attention layer of the image encoder and tokens which are
the outputs of transformer layers. We find that keys of the
second-to-last layer give better performance.

• We also consider Stable Diffusion5 (v1.5) itself as a fea-
ture extractor. To that end, we use the queries from the
cross-attention layers in the UNet denoiser, which corre-
spond to the image modality. Its UNet is organised into
three downsampling blocks, a middle block, and three
upsampling blocks. We observe that the middle layers
have the most semantic content, so we consider the mid-
dle block, 1st and 2nd upsampling blocks and aggregate
features from all three cross-attention layers in each block.
As the features are quite low in resolution, we include the
first downsampling cross-attention layer and the last up-
sampling cross-attention layer as well. The feature maps
are bilinearly upsampled to resolution 64 ⇥ 64 and con-
catenated. A noise appropriate for ⌧ = 200 timesteps is
added to the input. For feature extraction, we run SD in
unconditional mode, supplying an empty string for text
caption.

Figure C.4. FG/BG segmenta-
tion of classes of water, snow
and grass. The foreground is
in red, while the background is
shown in blue.

Figure C.5. Example images
from the support set of a rare
pikachu class.

2Model and code available at https : / / github . com /
facebookresearch/dino.

3Model and code from https : / / github . com /
facebookresearch/long_seq_mae.

4Model and code from https://github.com/openai/CLIP.
5We use implementation from https : / / github . com /

huggingface/diffusers.

https://github.com/facebookresearch/dino
https://github.com/facebookresearch/dino
https://github.com/facebookresearch/long_seq_mae
https://github.com/facebookresearch/long_seq_mae
https://github.com/openai/CLIP
https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers

C.3. Datasets

We evaluate on validation splits of PASCAL VOC (VOC),
Pascal Context (Context) and COCO-Object (Object)
datasets. PASCAL VOC [17, 18] has 21 classes: 20 fore-
ground plus a background class. For Pascal Context [42],
we use the common variant with 59 foreground classes and
1 background class. It contains both “things” and “stuff”
classes. The COCO-Object is a variant of COCO-Stuff [7]
with 80 “thing” classes and one class for the background.
Textual class names are used as natural language specifica-
tions of names. We renamed or specified certain class names
to fix errors (e.g. pottedplant ! potted plant),
resolve ambiguity better (e.g. mouse ! computer
mouse) or change to more common spelling/word (e.g.
aeroplane ! airplane), resulting in 14 fixes. We
experiment and measure the impact of this in Appendix A.1
for our and prior work.

C.4. Comparative baselines

We briefly review the prior work in used in our experi-
ments, mainly in Table 1. We consider baselines that do
not rely on mask annotations and have code and check-
points available or detail their evaluation protocol that
matches that used in other prior works [9, 70, 71].Most
prior work [9, 35, 37, 49, 70, 71] trains image and text
encoders on large image-text datasets with a contrastive
loss. The methods mainly differ in their architecture and
use of grouping mechanisms to ground image-level text on
regions. ViL-Seg [35] uses online clustering, GroupViT [70]
and ViewCo [49] employ group tokens. OVSegmentor [71]
uses slot-attention and SegCLIP [37] a grouping mecha-
nism with learnable centers. CLIPPy [48], TCL [9], and
MaskCLIP [79] predict classes for each image patch: [48]
use max-pooling aggregation, [9] self-masking, and [79]
modify CLIP for dense predictions. To assign a background
label [9, 35, 37, 49, 70] use thresholding while [48] uses
dataset-specific prompts. CLIP-DIY [68] leverages CLIP
as a zero-shot classifier and applies it on multiple scales to
form a dense segmentation. ReCO [56] is closer in spirit to
our approach as it uses a support set for each prompt; this set,
however, is CLIP-retrieved from curated image collections,
which may not be applicable for any category in-the-wild.

We also note that prior work builds on top of similar
pre-trained components such as CLIP in [9, 37, 56, 79],
OpenCLIP in [68], DINO + T5/RoBERTa in [48, 71]. We
additionally make use of StableDiffusion, which is trained
on a larger dataset (3B, compared to 400M of CLIP or 2B or
OpenCLIP). OVDiff is, however, fundamentally different to
all prior work, as (a) it generates a support set of synthetic
images given a class description, and (b) it does not rely on
additional training data and further training for learning to
segment.

C.5. Hyperparameters
OVDiff has relatively few hyperparameters and we use the
same set in all experiments. Unless otherwise specified,
N = 32 images are sampled using classifier-free guid-
ance scale [25] of 8.0 and 30 denoising steps. We employ
DPM-Solver scheduler [36]. When sampling images for
the support sets, we also use a negative prompt “text, low
quality, blurry, cartoon, meme, low resolution, bad, poor,
faded". If/when segmenter � fails to extract any components
in a sampled image, a fallback of adaptive thresholding of
An is used, following [34]. During inference, we set ⌘ = 10,
which results in 1024 text prompts processed in parallel, a
choice made mainly due to computational constraints. We
set the thresholds for the “stuff” filter between background
prototypes for “things” classes and the foreground of “stuff”
at 0.85 for all feature extractors. When sampling, a seed
is set for each category individually to aid reproducibility.
With our unoptimized implementation, we measure around
110±10s to calculate prototypes (sample images, extract fea-
tures and aggregate) for a single category or 50.2±2s without
clustering using SD. Using CLIP, we measure 49.2± 0.2s
with clustering and 47.7± 0.2s without. We note that sam-
pling time grows linearly: we measure 55s for 16, 110s for
32, and 213s for 64 images per class. The prototype storage
requirements are 0.39MB using CLIP/DINO for each class.

We additionally measure the speed of inference at 0.6s
per image, which is slightly slower but comparable to 0.2s
for TCL and 0.08s for OVSegmentor. We performed infer-
ence measurements using SD on the same machine with a
2080Ti GPU using 21 classes and the same resolution/sliding
window settings for all methods.

C.6. Interaction with ChatGPT
We interact with ChatGPT to categorise classes into “stuff”
and “things” for the stuff filter component. Due to input lim-
its, the categories are processed in blocks. Specifically, we
input “In semantic segmentation, there are "stuff" or "thing"
classes. Please indicate whether the following class prompts
should be considered "stuff" or "things":”. We show the out-
put in Tab. C.8. Note there are several errors in the response,
e.g. glass, blanket, and trade name are actually in-
stances of tableware, bedding and signage, respectively, so
should more appropriately be treated as “things”. Similarly,
land and sand might be more appropriately handled as
“stuff”, same as snow and ground. Despite this, We find
ChatGPT contains sufficient knowledge when prompted with
"in semantic segmentation". We have estimated the accuracy
of ChatGPT in thing/stuff classification using the categories
of COCO-Stuff, which are defined as 80 "things" and 91
"stuff" categories. ChatGPT achieves an accuracy rate of
88.9% in this case. We also measure the impact the potential
errors have on our performance by providing “oracle" an-
swers on the Context dataset. We measure 29.6 mIoU, which

Table C.8. Response from interaction with ChatGPT. We used
ChatGPT model to automatically categorise classes in “stuff” or
“things”.

airplane: thing window: thing awning: thing
bag: thing wood: stuff streetlight: thing
bed: thing windowpane: thing booth: thing
bedclothes: stuff earth: thing television receiver: thing
bench: thing painting: thing dirt track: thing
bicycle: thing shelf: thing apparel: thing
bird: thing house: thing pole: thing
boat: thing sea: thing land: thing
book: thing mirror: thing bannister: thing
bottle: thing rug: thing escalator: thing
building: thing field: thing ottoman: thing
bus: thing armchair: thing buffet: thing
cabinet: thing seat: thing poster: thing
car: thing desk: thing stage: thing
cat: thing wardrobe: thing van: thing
ceiling: stuff lamp: thing ship: thing
chair: thing bathtub: thing fountain: thing
cloth: stuff railing: thing conveyer belt: thing
computer: thing cushion: thing canopy: thing
cow: thing base: thing washer: thing
cup: thing box: thing plaything: thing
curtain: stuff column: thing swimming pool: thing
dog: thing signboard: thing stool: thing
door: thing chest of drawers:thing barrel: thing
fence: stuff counter: thing basket: thing
floor: stuff sand: thing waterfall: thing
flower: thing sink: thing tent: thing
food: thing skyscraper: thing minibike: thing
grass: stuff fireplace: thing cradle: thing
ground: stuff refrigerator: thing oven: thing
horse: thing grandstand: thing ball: thing
keyboard: thing path: thing step: stuff
light: thing stairs: thing tank: thing
motorbike: thing runway: thing trade name: stuff
mountain: stuff case: thing microwave: thing
mouse: thing pool table: thing pot: thing
person: thing pillow: thing animal: thing
plate: thing screen door: thing lake: stuff
platform: stuff stairway: thing dishwasher: thing
plant: thing river: thing screen: thing
road: stuff bridge: thing blanket: stuff
rock: stuff bookcase: thing sculpture: thing
sheep: thing blind: thing hood: thing
shelves: thing coffee table: thing sconce: thing
sidewalk: stuff toilet: thing vase: thing
sign: thing hill: thing traffic light: thing
sky: stuff countertop: thing tray: stuff
snow: stuff stove: thing ashcan: thing
sofa: thing palm: thing fan: thing
table: thing kitchen island: thing pier: thing
track: stuff swivel chair: thing crt screen: thing
train: thing bar: thing bulletin board: thing
tree: thing arcade machine: thing shower: thing
truck: thing hovel: thing radiator: thing
monitor: thing towel: thing glass: stuff
wall: stuff tower: thing clock: thing
water: stuff chandelier: thing flag: thing

is similar to 29.7±0.3 of using ChatGPT, showing that small
errors do not drastically affect the method, however, enable
using “stuff" filter component, which improves performance
(see Table 3).

	. Introduction
	. Related work
	. Method
	. OVDiff: Diffusion-based open-vocabulary segmentation
	. Support set generation
	. Representing categories
	. Segmentation via prototype matching

	. Experiments
	. Grounding feature extractors
	. Comparison to existing methods
	. Ablations
	. Explaining segmentations
	. In-the-wild

	. Conclusion
	. Additional experiments
	. Additional Comparisons
	. Additional ablations
	. Evaluation without background
	. Qualitative results

	. Broader impact
	. Limitations

	. OVDiff: Further details
	. Preliminaries
	. Feature extractors
	. Datasets
	. Comparative baselines
	. Hyperparameters
	. Interaction with ChatGPT

