

Overview

Having a **robot** assistant at home that could seamlessly assist us with daily activities is a long-sought dream.

(a) 2D-Fetch-Quest

(b) HR-Handover

Challenges for human-robot collaboration: • It is unsafe and sample-inefficient to directly train

- human-robot collaboration in real-world.
- Human might have **diverse non-stationary** motions.

Human-human collaboration data

Human collaboration demos are safe and easy to collect and contains rich diverse intents and movements. Introducing **Co-GAIL**, an imitation learning framework to teach diverse human-robot collaboration skills from human-human collaboration demonstrations.

- 1. Human motion generator: Learns to generate diverse human strategies for training the robot.
- 2. **Robot policy**: Learns to predict hidden human strategy and outputs collaborative actions.

Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

Chen Wang, Claudia Pérez-D'Arpino, Danfei Xu, Li Fei-Fei, C. Karen Liu, Silvio Savarese Stanford University

Website and Code: https://sites.google.com/view/cogail/home

Co-optimization for learning collaborative skills

Forward mapping guarantees that each strategy code could lead to a unique type of human behavior.

Inverse mapping objective encourages the model to explore diverse human behavior from the data.

Experiments results

Replay evaluation results with unseen human motions

		Replay	
	2D-FetchQ.	HR-H.	HR-S.
BC-single	21.1 ± 1.9	13.3 ± 3.3	15.0 ± 2.3
BC-GAIL	27.2 ± 5.0	14.1 ± 4.6	16.6 ± 7.1
MA-GAIL[26]	30.0 ± 3.4	23.7 ± 5.3	21.0 ± 3.7
MA-InfoGAIL[25]	40.0 ± 1.7	27.8 ± 4.4	26.6 ± 8.8
DIAYN [32]	44.4 ± 8.4	22.7 ± 1.5	18.3 ± 7.1
Co-GAIL (ours)	53.3 ± 4.4	$\textbf{43.9} \pm \textbf{6.3}$	$\textbf{40.0} \pm \textbf{8.2}$

Qualitative results on diverse human behavior exploration

Dataset

MA-InfoGAIL

(c) HR-SeqManip

forward mapping from strategy space to human behaviors

inverse mapping from human behaviors to strategy space

We observe a better separation of latent strategy learned using Co-GAIL than the other two methods.

Proof-of-concept analysis with real users

Setup: We invite four human users to test the robot trained with different algorithms. Users interacted with all methods in randomized order and the success rate over 20 trials is reported.

	2D-FetchQ.			HR-H.			HR-S.					
User id	1	2	3	4	1	2	3	4	1	2	3	4
BC-single	70	65	50	65	20	65	10	20	10	5	10	15
MA-GAIL[24]	65	50	45	50	50	35	25	20	30	25	35	25
MA-InfoGAIL[25]	85	80	40	50	55	90	65	25	35	40	40	50
Co-GAIL	100	90	85	80	75	70	70	75	60	50	65	70

Results: Co-GAIL consistently outperforms the other methods with different users and environments.

References:

- [3] Ho J, Ermon S. Generative adversarial imitation learning, NeurIPS, 2016

[1] Shen B, Xia F, Li C, et al. iGibson, a Simulation Environment for Interactive Tasks in Large Realistic Scenes, IROS-21 [2] Tung A, Wong J, Mandlekar A, et al. Learning multi-arm manipulation through collaborative teleoperation, ICRA-21

[4] Li Y, Song J, Ermon S. Infogail: Interpretable imitation learning from visual demonstrations, NeurIPS, 2017

[5] Eysenbach B, Gupta A, Ibarz J, et al. Diversity is all you need: Learning skills without a reward function, ICLR, 2019.