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APPENDIX

A EXPERIMENTAL SETUP FOR SECTION 3

Federated Learning Setup. In Sec. 3 Limitations of Previous Work and Insights, we employ CI-
FARIO0 for an empirical comparison. We conduct six groups of experiments to simulate different
levels of label skew and scarcity, as introduced below.

* (a) The training set of CIFAR10 is uniformly distributed to 10 clients, resulting in each
local dataset having a size of 5000 (|D| = 5000) and 10 classes (IID). More specifically,
each local dataset has 500 samples per class.

* (b) CIFARI1O0 is uniformly distributed to 100 clients. Thus each local dataset has a size of
500 (|D| = 500), 10 classes (IID) with each class containing 50 samples.

* (c¢) CIFARIO is uniformly distributed to 500 clients. Each local dataset have a size of 100
(|Dx| = 100), 10 classes (IID) with each class containing 10 samples.

* (d) The training set of CIFAR10 is distributed to 10 clients, but only three out of ten classes
are distributed to each client (non-IID), resulting in each local dataset having a size of 5000
(|Dx| = 5000) and approximately 1666 samples for each class.

* (e) Similar to (d), CIFARIO is distributed to 100 clients (|Dg| = 500) with each client
containing 3 classes (non-IID). This data distribution is shown in Figure Dfa).

* (f) Similar to (d), CIFARI1O0 is distributed to 500 clients (|Dy| = 100). Each client contains
3 classes (non-I1ID) with about 33 samples per class.

For CIFARI10 classification, we employ MobileNet_V2, which has 18 blocks consisting of multiple
convolutional and pooling layers (Sandler et al.,[2018]). We use the Adam optimizer for local training
with an initial learning rate of 10~% and decay it by 2% per communication round until 10~°. For (a)
and (d), all clients will participate in the training in each round, while for the other groups, we will
randomly select 10% of the clients for each round. The size of the local batch is 64, and we run 10
local epochs for groups (a, b, d, €) and 5 local epochs for groups (c, f). We run 100 communication
rounds for all groups to ensure global convergence.

Experimental setup for Figure 1: To compare the performance of existing methods with , we
use CIFAR10 dataset and report the classification accuracy of the global model based on the global
testing set. We compare FedAvg with loss-based methods such as FedDecorr and FedNTD, as well
as data augmentation-based methods like FedMix and FedData. They are the most representative
methods in each category. FedMix is implemented by averaging every 10 samples and sharing the
result globally. The shared averaged data is then combined with local data according to a Beta
distribution (with the a = 2) for local training. In the case of FedData, we collect 10% of the
data (randomly chosen) from each client and share it globally, in the first communication round.
To simulate varying scarcity levels, we split the CIFAR10 training set (comprising 50, 000 samples
in total) into 5000, 500, and 100 training samples on average per client, which ends up with 10,
100 and 500 clients finally. Other settings are the same with the main experiments as introduced in

Sec.[511

Experimental setup for Figure 2: DB score (Davies & Bouldin, [1979) is defined as the aver-
age similarity measuring each cluster with its most similar cluster, where similarity is the ratio of
within-cluster distances to between-cluster distances. Thus, clusters which are farther apart and less
dispersed will result in a better score. The minimum score is zero, with lower values indicating
better clustering. To calculate the score for features, we use the ground-true class labels as cluster
labels, and use Euclidean distance between features to measure the similarity.

For a fair comparison, the local training for all clients starts from a same global status with an
accuracy of 40%. The features of the testing set from the initial global model present a DB of
4.8. We run one communication round and report the performance for the global model. In this
round, for |Dx| = 5000 we aggregate 10 clients while for |Dy| = 100 we aggregate 50 clients, so
that the total samples used for model training are kept unchanged. For |Dy| = 100 4 1000 group,
we additionally give the selected 50 clients 1000 samples (gathered in the first round) to aid local
training. In Figure 2, for local models, we report the averaged DB across clients.
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B NOTATIONS AND ALGORITHM

Table 3: Notations used in this paper.

IC| | The number of classes T The number of rounds
|K| | The number of clients k Client k&
Dy | client k’s data D Global data
l From layer [ to extract features 6 Global model at ¢-th round
0,1 | Top ! layers of the model Ok,i: Layers after [ of the model
F ,it) Local feature set F® | Global feature set
a Parameter for Beta distribution A Weigh for feature mix-up in loss
@ Local feature sampling fraction || A2, A3 | Weigh in loss

Algorithm 1: Federated Learning with Feature Sharing (FLea)

Input : Total rounds 7', local learning rate 7, local training epochs E, sampled clients set (*),
a given layer [, parameter a for Beta distribution.
Output: Global model (7).
Initialize (°) for the global model
for each round t = 1,2,...,T do
Server samples clients C(*) and broadcasts 6, « #(*~1)
Server broadcasts the feature {F®) .., F(=7)} to clients in £®)  // Skip if t = 1.
for each client k € KU in parallel do
for local stepe = 1,2,.., F do
for local batchb = 1,2, ... do
sample A\ ~ Beta(a,a)
O < 0, —nVL(0) //ift =1, only use local data for training. Otherwise,
use one batch of local data Dy, and one batch of global feature F(*) according

to Eq. (6).
end
end
Client k sends 6}, to server

end
Server aggregates 6}, to a new global model #(*) refer to Eq. (EI)
for each client k € K in parallel do

Client k receives model (")

Client k extracts (without gradients) and sends F, ,Et) to server
end

end

Beta Distribution. The probability density function (PDF) of the Beta distribution is given by,

)\a—l(l _ )\)(b—l)
f()\7 a? b) - N )

where N is the normalizing factor and A € [0,1]. In our study, we choose a = b and herein,
FO) = x A1 =)t

)

C DETAILS OF EXPERIMENTS

C.1 DATA DISTRIBUTION

Image data: We test our algorithm on CIFAR10 (Krizhevsky et al.,|2009). We distribute CIFAR10
training images (containing 50, 000 samples for 10 classes) to K = 100 and K = 500 clients and
use the global CIFAR1O0 test set (containing 1,000 samples per class) to report the accuracy of the
global model. We show the data splits for 100 clients setting in Figure [9] For 500 clients setting
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the distribution is similar, but the number of samples per client reduces to one-tenth of the number
shown in Figure 0]

Audio data: We also test FLea using UrbanSound8K dataset Salamon et al.| (2014). This dataset
contains 8732 labeled sound excerpts (< 4s) of urban sounds from 10 classes: air conditioner, car
horn, children playing, dog bark, drilling, engine idling, gun shot, jackhammer, siren, and street
music. For experiments, we randomly hold out 20% (about 1700 samples) for testing and distribute
the rest (about 7000 samples) to K clients for training. We report the results for X' = 70 and
K = 140, using the Quantity(3), Dirichlet(0.5), and Dirichlet(0.1) splits.
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Figure 9: Training data split for CIFAR10, | K| = 100.
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Figure 10: The distribution of the number of samples per client | Dy | for CIFAR10.

To better illustrate the data scarcity problem, we visualize the distribution for the local data size in
Figure [T0] As it shown, when we distribute the training set of CIAFR10 (50, 000 samples) to 10
clients using a Dirichlet distribution parameterized by 0.1, these clients will present different class
distributions, and the total number of local samples ranges from 2853 to 8199. This is the commonly
explored non-IID setting. In this paper, we further explore scarce non-IID data, and thus we split the
data into 100 and 500 clients. As a result, the number of samples per client reduces significantly:
the median number drops from 5685 to 90 when the number of clients increases from 10 to 500,
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as shown in Figure [T0[a). This is the realistic scenario that we are interested in. It is also worth
mentioning that data scarcity is independent of label skew and it can happen in the IID scenario.
As shown in Figure [T0[b), the local data covers 10 classes uniformly, but the data scarcity problem
becomes severe when the number of client increase.

C.2 MODEL ARCHITECTURE AND HYPER-PARAMETERS

We classify images in CIFAR10 using MobileNet_V2 (Sandler et al., [2018)) that has 18 blocks
consisting of multiple convolutional and pooling layers. The architectures of MobileNet_V2 for
CIFAR10 is summarized in Table 4l

For audio classification, the audio samples are first transformed into spectrograms and fed into a
CNN model, which we termed as AudioNet. This model consists of four blocks, each comprising
a convolutional layer, a Relu activation layer, and a Batch Normalization layer, followed by a fully
connected layeﬂ The details of the convolutional layers are summarized in Table

We use the Adam optimizer for local training with an initial learning rate of 10~ and decay it by
2% per communication round until 10~5. The size of the local batch is 64, and we run 10 local
epochs for 100 clients setting and 15 local epochs for the rest. For feature augmentation, we use
Beta(2,2). The weights in the loss function are set to A; = 1 and A2 = 3. 10% of clients are
randomly sampled at each round. We run 100 communications and take the best accuracy as the
final result. For all results, we report the mean and standard deviation of the accuracy from five runs
with different random seeds.

Table 4: Architecture of MobileNet_V2. Features used to report the results in Table[6]are underlined.

Block(CNN layers) H #Input Operator ~ #Output Channel  #Kernel  #Stride #Output
0(1) 3 x 32 x 32(image)  conv2d 32 3 1 32 x 32 %32
1(2-5) 32 x 32 x 32 conv2d x4 32,32,16,16 1,3,1,1, 1,1,1,1 16 x 32 x 32
2(6 -9) 16 x 32 x 32 conv2d x4 96,96, 24, 24 1,3,1,1 1,1,1,1 32x32x32
3(10 — 12) 32 x 32 x 32 conv2dx3 144,144,24 1,3,1 1,1,1 24 x32x32
4(13 — 14) 24 x 32 x 32 conv2dx3 144,144, 32 1,3,1 1,2,1 32x16 x 16
5&6(15 — 20) 32 x 16 x 16 conv2dx3 192,192, 32 1,3,1 1,1,1 32x16 x 16
7(21 —23) 32 x 16 x 16 conv2dx3 192,192, 64 1,3,1 1,2,1 64 x 8 x8
8,9,&10(24 — 32) 64 x 8 x 8 conv2dx3 384,384, 64 1,3,1 1,1,1 64 x 8 x 8
11(33 — 36) 64 x 8 x 8 conv2dx4  384,384,96,96 1,3,,11 1,1,1,1 9x8x8
12&13(37 — 42) 96 x 8 x 8 conv2dx3 576, 576,96 1,3,1 1,1,1 96 x 8 x 8
14(43 — 45) 96 x 8 x 8 conv2dx3 576,576, 160 1,3,1 1,2,1 160 x 4 x 4
15&16(46 — 51) 160 x 4 x 4 conv2dx3 960, 960, 160 1,3,1 1,1,1 160 x 4 x 4
17(52 — 54) 160 x 4 x 4 conv2dx3 960, 960, 320 1,3,1 1,1,1 320 x4 x4
18(55) 320 x 4 x 4 conv2d 1280 1 1 1280 x 4 x 4

Table 5: Architecture of AduioNet. Features used to report the results in Table [/|are underlined.

Index H #Input Operator  #Output Channel #Kernel #Stride #Output
1 2 x 64 x 344(2-channel spectrogram)  conv2d 8 5 2 8 x 32 x 172
2 8x32x172 conv2d 16 3 2 16 x 16 x 86
3 16 x 16 x 86 conv2d 32 3 2 32 x 8 x43
4 32 x 8 x43 conv2d 64 3 2 64 x 4 x 22

C.3 BASELINE IMPLEMENTATION

More details for baseline implementations are summarized as blew,

» FedProx: We adapt the implementation from (L1 et al., [2020b). We test the weight for local
model regularization in [0.1, 0.01, 0.001] and report the best results.

» FedL(C: it calibrates the logits before softmax cross-entropy according to the probability of oc-
currence of each class (Zhang et al.l [2022a). We test the scaling factor in the calibration from
0.1 to 1 and report the best performance.

'https://www.kaggle.com/code/longx99/sound-classification/notebook
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Table 6: Overall performance comparison. Accuracy is reported as mean =+ std across five runs.
The best baseline (excluding FedData) under each column is highlighted.

|| #Clients: 100 (500 samples per client on average) || #Clients: 500 (100 samples per client on average)
|| Quantity(3) Dirichlet(0.5)  Dirichlet(0.1) || Quantity(3) Dirichlet(0.5)  Dirichlet(0.1)

FedAvg 43.55+0.82 50.36+0.89 28.214+1.20 30.25+1.33 32.58+1.09 20.464+2.15
FedProx 44.37+0.89 49.30+1.00 34.66+1.11 31.92+1.45 32.01+1.25 20.864+1.97
FedDecorr 44.0940.90 51.27+0.93 30.89£1.40 31.12+1.57 33.57+1.22 21.344+1.59
FedLC 49.35+1.01 53.58+1.02 36.05+£1.21 32.05+1.60 30.17+£1.18 18.8242.01
FedNTD 53.01+£1.23 56.06+0.97 41.48+0.90 39.98+0.97 39.82+0.86 26.784+2.34
FedBR 44.58+0.73 51.65+1.02 32.11+1.45 31.66+1.07 33.08+1.12 20.9842.54
CCVR 49.11£0.67 51.21+0.98 34.47£1.35 35.95+1.63 35.02+1.43 24.21+2.67
FedGen 46.66+2.87 52.89+1.09 33.18£1.29 32.32+1.21 34.27+1.56 22.56+2.89
Each client shares 10% of the data or features
FedData 67.60+1.33 72.17+1.34 70.344+1.68 54.64+1.02 56.47+1.22 55.3541.46
FedMix 52.78+1.99 57.97+1.24 40.68+1.50 44.04+£1.53 45.50+1.88 38.13+2.06
FLea (I = 5) 58.27+0.95 59.63+1.28 43.65+1.47 47.03£1.01 48.86+£1.43 44.40+1.23

Table 7: Overall performance comparison for audio classification. Accuracy is reported as mean =+
std across five runs. The best baseline (excluding FedData) under each column is highlighted.

|| #Clients: 70 (100 samples per client on average) || #Clients: 140 (50 samples per client on average)
|| Quantity(3) Dirichlet(0.5) Dirichlet(0.1) || Quantity(3) Dirichlet(0.5)  Dirichlet(0.1)

FedAvg 43.69+0.56 46.77+0.87 34.59+2.64 39.35+0.60 43.98+0.89 31.21+1.62
FedProx 38.45+0.48 39.58+1.02 34.81+0.46 39.05+0.56 42.21+0.76 32.85+1.22
FedDecorr 45.01+£0.57 46.77+0.65 35.87+1.03 39.67+0.58 44.23+0.95 33.67+1.34
FedLC 50.98+0.49 50.11+0.83 37.05+0.87 44.33+0.79 45.15+0.80 39.87+1.04
FedNTD 44.80+0.45 51.09+0.97 36.53+0.99 42.21+0.63 48.63+0.78 40.15+1.22
FedBR 44.05+0.63 47.58+0.90 36.15+£1.17 41.15£0.70 44.37+0.82 34.89+1.36
CCVR 47.12+0.72 49.26+0.92 39.62+1.20 44.05+0.87 46.68+0.83 36.80+1.37
FedGen 45.20+0.89 48.33+1.12 38.27+1.44 40.89+0.72 44.54+0.81 35.78+1.40
Each client shares 10% of the data or features
FedData 62.83+£1.25 64.45+0.76 61.11+£0.98 60.31+0.82 60.48+0.91 59.67+1.55
FedMix 51.56+0.59 54.184+0.62 43.35+0.72 46.55+0.81 50.00£0.92 42.27+1.15
FLea (I =2) 57.73+0.51 59.22+0.78 45.94+0.77 54.35+0.80 55.68+0.87 45.05+1.32

FedDecorr: This method applies a regularization term during local training that encourages
different dimensions of the low-dimensional features to be uncorrelated (Shi et al., [2022). We
adapt the official implementatio and suggested hyper-parameter in the source paper. We found
that this method can only outperform FedAvg with fewer than 10 client for CIFAR10.

FedNTD: 1t prevents the local model drift by distilling knowledge from the global model (Lee
et all 2022). We use the default distilling weights from the original paper as the setting are
similail|

FedBR (Guo et al, 2023): this approach leverage 32 mini-batch data averages without class
labels as data augmentation. A min-max algorithm is designed, where the max step aims to
make local features for all classes more distinguishable while the min step enforces the local
classifier to predict uniform probabilities for the global data averages. We adapt the official
implementatior]']in our framework.

CCVR: 1t collects a global feature set before the final fully connected linear of the converged
global model, i.e., the model trained via FedAvg, to calibrate the classifier on the server (Luo
et al., 2021). For a fair comparison, we use the same amount of features as our method for this
baseline, and we fit the model using the features instead of distributions as used in (Luo et al.,
2021)). This allows us to report the optimal performance of CCVR.

FedGen: It is a method that trains a data generator using the global model as the discriminator
to create synthetic data for local training (Liu et al.| 2022). The generator outputs Z; with input
(yi, z;) where z; is a sample for Normal distribution. The generator is a convolutional neural

https://github.com/bytedance/FedDecorr
*https://github.com/Lee-Gihun/FedNTD.git
*nttps://github.com/lins-lab/fedbr
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Figure 11: Accuracy of the global model for CIFAR10.

network consisting of four ConvTranspose2d layers to upsample feature maps. We train the first
30 rounds by normal FedAvg and after 30 rounds, we use the global model as the discriminator
to distinguish with the generated data &; is real or not.

* FedData: In this baseline, we assume the server waits until all the clients have shared 10% of
their local data in the beginning round. The gathered data will be sent to clients to mix with local
data for model training.

¢ FedMix: Similar with FedData, we assume the server waits until all the clients have shared their
data averages.we use a mini-batch of 10 to aggregate the samples. Different from FedBR The
gathered data will be sent to clients, combing with local data based on the Beta distribution.

C.4 EXTENDED RESULTS

Tables [6] and [7] for additional results corresponding to different local data sizes, supplementing the
information presented in Table 2]

Results for CIFARIO classification. The analysis for Table [6]is elaborated on as follows. Among
loss-based approaches, FedNTD is the best, showing a strong ability to handle data scarcity and label
skew (about 10% improvement from FedAvg), while other loss-based FL methods present marginal
gain from FedAvg. The outstanding performance of FedNTD are mainly attributed to its knowledge
distillation component, mitigating the local over-fitting as well as model bias. FLea further improves
FedNTD by 3 ~ 5% when the average local data size is 500, and the superiority of FLea is more
remarkable with increasing level of data scarcity, e.g., when the average local data size reduces to
100, the performance gain reaches 17.6% (Dirichlet(0.1) group).

For data augmentation-based baselines, FedMix performs the best and for most of the cases, it is the
SOTA baseline excluding FedData. When sharing the same proportion of global proxies (FedMix
shares data averages while FLea shares features), FLea outperforms FedMix by 2 ~ 6% across all
experiments. We report the performance of FedData as an Oracle. It is plausible that FLea cannot
beat FedData given FedData shares raw data with privacy protection.

FLea also presents more stable performance compared to FedNTD and FedMix. As shown in Fig-
ure[T1] FLea converges after 40 communication rounds, with notably higher averaged accuracy and
smaller variance compared to the other two best baselines. We also demonstrate each component in
FLea yields independent contribution to the overall performance in Appendix[C|Sec. [C.5]

Results for UrbanSound8K classification. Similarly to the performance for audio classification,
FLea consistently achieve the best accuracy across different settings. Given that the total size of Ur-
banSound8K is smaller than CIFAR10, this audio classification has more sever data scarcity problem
globally and locally. This explains why FedMix is the best baseline uniformly for this task. Never-
theless, FLea outperforms FedMix by 2.59% ~ 7.80%.
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Table 8: More results for FLea (o« = 10%, |K| = 100).
|| Quantity(3) Dirichlet(0.5) Dirichlet(0.1)

FedMix 44.04+£1.53 45.50£1.88 38.13£2.06
FLea (I = 5) 47.03£1.01 48.86+1.43 44.40£1.23

FLea(l =5,A=0.5) || 45.87£1.23 46.91£1.22 42.01£1.14
FLea (I =5,A; =0) 45.16£1.06 46.89+1.42 40.98+1.09

FLea (I =1) 49.67+1.12 50.23+1.35 46.17£1.30
FLea (I =9) 44.05£1.11 44.87+£1.56 40.19+£1.27

Table 9: Supplemental results of CCVR (o = 10%, |K| = 100), where global features come from
the later layer in different blocks of MobileNet_V2.
Block18 Block17 Block13 Block9 Block5 Blockl Raw || Our FLea

I
Quantity(3) 49.11+0.67  50.96+0.75 51.244+0.68 52.184+0.89 51.77+£0.73 51.50£0.78 51.53£0.81 || 58.274+0.95
Dirichlet(0.5) || 51.21+0.98 51.984+1.03 52.78%+1.15 53.04%+1.12 53.2540.99 53.14£1.07 52.85£0.99 || 59.63+1.28

C.5 ABLATION STUDY FOR FLEA

As introduced in Sec.[d] our FLea leverages feature augmentation by combing local and global fea-
tures according to the weights following a Beta distribution. Now we give the results to demonstrate
the advantage of introducing randomness to improve the model generalization: we use fixed A in-
stead of sampling it from Beta(2,2) (refer to FLea (I = 5, A = 0.5) group in Table . We also
give the results when removing L4, from the training loss (refer to FLea (I = 5, A\; = 0) group in
Table[§). It is evident that our complete version of FLea always performs the best.

We also discuss the impact of layer [, from which layer the features are extracted. It is a trade-
off between between privacy protection and the utilization of features. A smaller [ indicates the
features are closer to the raw data while the privacy vulnerability increases. In Sec.[5.3] we have
demonstrated that [ = 5 with the de-correlation loss can well defend against privacy attacks in our
simulations. In Table[8] we also show that sharing features from [ = 1 can enhance FLea while from
I = 9 can lead to a slight performance decline. For real-world applications (beyond CIFAR10), we
choose [ according to the specific performance and privacy requirements. It is also worth mentioning
that, as FlLea is designed to leverage the latest feature buffer, [ won’t necessarily to be fixed. On
the contrary, [ can be dynamically altered during training based on the performance and privacy
requirements.

C.6 REFLECTIONS FOR BASELINES

More results for CCVR. We evaluated the baseline CCVR by using features from different layers to
calibrate the global model, and the performance is reported in Table[9] Those results clearly suggest
that leveraging features from shallower layers does not lead to further performance improvements.
This suggests that post-hoc calibration has limited capability in mitigating the local drift, which is
the fundamental cause of degradation in FL on non-IID data. Our Flea shows an evidently stronger
performance.

More reflection for FedNTD. From both Figure [T] and Table [6] we can see FedNTD is a strong
baseline for both data scarcity and label skew. FedNTD was devised to address the non-IID setting,
but we find it is also able to alleviate issues with data scarcity in the IID setting. This suggests
global knowledge distilling can mitigate local over-fitting. However, as the data becomes scarce,
the distillation ability declines, herein the performance gain drops. Instead of using local data for
knowledge distilling, in FLea, we leverage the augmented features to distil the knowledge from the
global model into the local model.
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Table 10: Architecture of decoder of MobileNet_V2.

Layer Index || #Input Operator #Output Channel #Kernel #Stride #Output
1 16 x 32 x 32 (Feature) conv2d 32 1 1 32 x 32 x 32
2 32 x 32 x 32 ConvTranspose2d 32 3 2 32 x 64 x 64
3 32 x 64 x 64 conv2d 32 3 2 32 x 32 x 32
4 32 %32 x 32 conv2d 3 1 1 3 x 32 x 32 (Data)
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Figure 13: The effectiveness privacy protection. ¢ is short for the correlation in Figure[T2] We show
the reconstruction and context detection performance for ¢ = 0.65 (the 1°¢ round) and ¢ = 0.40 (the
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Data reconstruction. We first implemented a data reconstruction attacker, following the approach
described in |Dosovitskiy & Brox| (2016)), the attacker constructed a decoder for the purpose of
reconstruction. Specifically, the attacker targeted the converged global model trained using the
Quantity(3) distribution, ensuring a fair comparison. The decoder architecture, designed to match
the MobileNet_V2 architecture, comprised four conv2d layers (refer to Table [I0) to reconstruct the
original data from the provided features. For visualization purposes, the CIFAR10 images were
cropped to a size of 32 x 32 pixels without any normalization. The decoder took the features ex-
tracted from the global model as input and generated a reconstructed image, which served as the
basis for calculating the mean squared error (MSE).

To train the decoder, we utilized the entire CIFAR10 training set, conducting training for 20 epochs
and employing a learning rate of 0.001. This approach allowed us to evaluate the fidelity of the
reconstructed data and compare it with the original input, providing insights into the effectiveness
of our proposed feature interpolation method. We use the testing set and the target global model
(c = 0.65 and ¢ = 0.40 ) to extract features for reconstruction. Figure ﬂzka) shows the training
MSE while the exampled images are from the testing set. For ¢ = 0.65, i.e., after the first round,
in Figure [T2] the sensitive attributes are removed (e.g., the color of the dog). After 10 rounds
when ¢ < 0.4, information is further compressed and the privacy protection is enhanced. Overall,
with Lg.., the correlation between data and features is reduced, preventing the image from being
reconstructed.
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Identifying context information. In this attack, we assume that the attacker explicitly knows the
context information and thus can generate large amounts of negative (clear data) and positive (clear
data with context marker) pairs to train a context classifier (which is very challenging and unreal-
istic but this is for the sake of testing). Real-world attack will be far more challenging than our
simulations.

The context identification attacker is interested in finding out if a given feature f, is from the source
data with a specific context or not. We simulate the context information by adding a color square to
the image (to mimic camera broken), as illustrated in Figure[5.3] We use a binary classifier consisting
of four linear layers to classify the flattened features or images. To train the classifier, we add the
context marker to half of the training set. To report the identification performance, we add the same
marker to half of the testing set. In Figure [I3|b), the identification accuracy for FedMix and our
FLea are given. We measure the attacking difficulty by how many training sample the model need
to achieve a certain accuracy. The results in Figure [I3[b) suggest that FLea needs times of training
sample than FedMix for different correlations. This demonstrates that FLea can better protect the
context privacy.

All the above results lead to the conclusion that by reducing feature exposure and mitigating the
correlation between the features and source data, FLea safely protect the privacy associated with
feature sharing while achieving favorable performance gain in addressing the label skew and data
scarcity simultaneously.
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