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ABSTRACT

Noting the importance of factorizing (or disentangling) the latent space, we pro-
pose a novel, non-probabilistic disentangling framework for autoencoders, based
on the principles of symmetry transformations that are independent of one an-
other. To the best of our knowledge, this is the first deterministic model that is
aiming to achieve disentanglement based on autoencoders without pairs of im-
ages or labels, by explicitly introducing inductive biases into a model architecture
through Euler encoding. The proposed model is then compared with a number of
state-of-the-art models, relevant to disentanglement, including symmetry-based
and generative models based on autoencoders. Our evaluation using six different
disentanglement metrics, including the unsupervised disentanglement metric we
propose here in this paper, shows that the proposed model can offer better disen-
tanglement, especially when variances of the features are different, where other
methods may struggle. We believe that this model opens several opportunities for
linear disentangled representation learning based on deterministic autoencoders.

1 INTRODUCTION

Learning generalizable representations of data is one of the fundamental aspects of modern ma-
chine learning Rudin et al. (2022)

::::::::::::::::
(Rudin et al., 2022). In fact, better representations are more

than a luxury now, and is a key to achieving generalization, interpretability, and robustness
of machine learning models Bengio et al. (2013); Brakel & Bengio (2017); Spurek et al. (2020)
::::::::::::::::::::::::::::::::::::::::::::::::::::
(Bengio et al., 2013; Brakel & Bengio, 2017; Spurek et al., 2020). One of the primary and desired
characteristics of the learned representation is factorizability or disentanglement, so that latent
representation can be composed of multiple, independent generative factors of variations. The
disentanglement process renders the latent space features to become independent of one an-
other, providing a basis for a set of novel applications, including scene rendering, interpretabil-
ity, and unsupervised deep learning Eslami et al. (2018); Iten et al. (2020); Higgins et al. (2021)
:::::::::::::::::::::::::::::::::::::::::::::::
(Eslami et al., 2018; Iten et al., 2020; Higgins et al., 2021).

Deep generative models, particularly that build on variational autoencoders
(VAEs) Kingma & Welling (2013); Higgins et al. (2017); Burgess et al. (2018); Chen et al. (2018); Burgess et al. (2018); Kim & Mnih (2018); Zhao et al. (2019); Tolstikhin et al. (2018); Kumar et al. (2017)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Kingma & Welling, 2013; Kumar et al., 2017; Higgins et al., 2017; Tolstikhin et al., 2018; Burgess et al., 2018; Chen et al., 2018; Burgess et al., 2018; Kim & Mnih, 2018; Zhao et al., 2019)
, have shown to be effective in learning factored representations. Although these ap-
proaches have advanced the disentangled representation learning by regularizing the la-
tent spaces, there are a number of issues that limit their full potential: (a) VAE-based
models consist of two loss components, and balancing these loss components is a well
known issue Asperti & Trentin (2020)

:::::::::::::::::::::
(Asperti & Trentin, 2020) (b) it is almost impossible to

honor the idealized notion of having a known prior distribution for VAEs in practical set-
tings Asperti & Trentin (2020); Takahashi et al. (2019); Zhang et al. (2020); Aneja et al. (2021)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Takahashi et al., 2019; Asperti & Trentin, 2020; Zhang et al., 2020; Aneja et al., 2021)
and, (c) factorizing the aggregated posterior in the latent space does not
guarantee corresponding uncorrelated representations Locatello et al. (2019)
::::::::::::::::::
(Locatello et al., 2019). An alternative approach for achieving disentangled rep-
resentations is through seeking irreducible representations of the symmetry
groups Cohen & Welling (2014); Higgins et al. (2018); Painter et al. (2020); Tonnaer et al. (2022)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Cohen & Welling, 2014; Higgins et al., 2018; Painter et al., 2020; Tonnaer et al., 2022),
where the aim is to find latent space transformations that are independent of one an-
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Figure 1: Latent spaces learned by different models. Ideal learned latent space should cover a two-
dimensional grid Higgins et al. (2018)

:::::::::::::::::
(Higgins et al., 2018). The first, second and third rows show

the latent spaces learned from three datasets, namely, XY , 2D Arrow, and 3D Airplane datasets,
respectively. Columns correspond to different models stated at the bottom of every column. It can
be seen that the proposed model, DAE, achieves the best disentanglement.

other, underpinned by well-defined mathematical framework(s) based on group theory.
As this group of methods exploits the notion of transitions between samples, they re-
quire pairs of images Cohen & Welling (2014); Painter et al. (2020) representing the transi-
tions

:::::::::::::::::::::::::::::::::::::::
(Cohen & Welling, 2014; Painter et al., 2020) or equivalent labels Tonnaer et al. (2022)

:::::::::::::::::
(Tonnaer et al., 2022). Regardless of the approach, as shown in Locatello et al. (2019)
::::::::::::::::::
Locatello et al. (2019), it is fundamentally impossible to learn disentangled representations without
having inductive biases on either the model or the dataset, and both VAE- and symmetry-based
approaches exemplify implicitly embedding inductive bias.

Despite the advances, we note a number of issues in the existing approaches about how they address
disentanglement. Firstly, the majority of the VAE-based approaches are probabilistic, and as such,
the quality of the disentanglement is fully reliant

:::::::
depends on ideal or near-ideal priors, and on the

process of learning the correct posteriors for a given data. Secondly, the majority of symmetry-based
disentangling approaches need pairs of images or labels, even in the unsupervised setting, owing to
the requirements around inductive bias. Thirdly, none of these models conform to the formal defi-
nition of a linear disentangled representation proposed by Higgins et al. (2018)

::::::::::::::::
Higgins et al. (2018)

. Finally, and most importantly, none of the existing approaches have the unsupervised approach for
introducing inductive biases (required for disentanglement) both on the models and on the datasets,
essentially demanding labels or image pairs. Motivated by these shortcomings, in this paper, we
propose a novel approach for deriving disentangled representation learning, with the following key
contributions: We,

• propose a totally unsupervised approach for introducing inductive bias into the model and
data, without requiring pairs of images or labels,

• propose a non-probabilistic approach that does not involve any priors or learning posteriors,
• ensure that our approach conforms to the formal definition of a linearly disentangled rep-

resentation as defined in Higgins et al. (2018)
:::::::::::::::::
Higgins et al. (2018),

• propose a new unsupervised metric, namely, Grid Fitting Score (GF-Score), to quantify
the disentanglement, echoing the aspiration of an ideal disentanglement measure outlined
in Higgins et al. (2018)

::::::::::::::::
Higgins et al. (2018), and

• demonstrate the implementation of a formally defined disentanglement using autoencoders.

As such, the proposed approach, which we name Disentangling Auto-Encoder (DAE), offers a
theoretically sound framework for learning independent multi-dimensional vector subspaces, and
hence towards learning disentangled representations. To the best of our knowledge, this is the
first attempt to actually implement a disentanglement approach using deterministic autoencoders,
especially without pairs of images or labels, and hence in a truly unsupervised manner. We pro-
vide a glimpse into the capability of the proposed model for disentanglement using three datasets
compared against ten other models

:
,
:::::
which

::::
are

:::::
either

::::::::::::::::
autoencoder-based

::::::::::
probabilistic

:::::::
models

::
or

:::::::::::::
symmetry-based

:::::::::::
disentangled

:::::::
models,

:::
that

:::
do

:::
not

::::::
require

:::
any

:::::
labels

:::
or

::::
pairs

::
of

:::::
inputs

:
in Figure 1.
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The rest of this paper is organized as follows. In Section 2 we review the related work, focusing
on VAE-based and symmetry-based approaches. This is then followed by a derivation of AE-based
non-probabilistic approach for deriving disentangled representations in Section 3. In Section 4, we
perform a detailed evaluation to decide the overall performance of the proposed model, using ten
baseline models, six datasets, and six disentanglement metrics, and discuss our findings. We then
conclude the paper in Section 5 with directions for further research. Given the space constraints, we
highlight the prominent results in the main part of the paper, while providing the remaining set of
results and relevant material as part of the Appendix.

2 RELATED WORK

2.1 DISENTANGLEMENT

Disentangled representation learning Bengio et al. (2013); Higgins et al. (2018) focuses on
learning a set of independent factors containing useful but minimal information for a given
task, such that their variations are orthogonal to each other while accounting for the en-
tire dataset

:::::::::::::::::::::::::::::::::::
(Bengio et al., 2013; Higgins et al., 2018). This essentially entails a method or a

set of methods for decoupling correlations between latent variables. A large body of work
around disentanglement, and the ideal properties of a disentangled representation can be found
in Ridgeway (2016); Eastwood & Williams (2018); Ridgeway & Mozer (2018); Zaidi et al. (2020)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Ridgeway (2016); Eastwood & Williams (2018); Ridgeway & Mozer (2018); Zaidi et al. (2020)
. Among a number of desirable properties of a disentangled representation, mod-
ularity, compactness and explicitness are three critically important properties. A
number of metrics have been proposed in the literature to quantify these proper-
ties Higgins et al. (2017); Kim & Mnih (2018); Eastwood & Williams (2018); Chen et al. (2018); Do & Tran (2019); Sepliarskaia et al. (2019)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Higgins et al., 2017; Kim & Mnih, 2018; Eastwood & Williams, 2018; Chen et al., 2018; Do & Tran, 2019; Sepliarskaia et al., 2019)
. In our work, we use the notions outlined in Zaidi et al. (2020)

::::::::::::::
Zaidi et al. (2020), where the metrics

are divided into three classes, namely, Intervention-based, Predictor-based, and Information-based
metrics. These metrics are all used in a supervised manner and can be of indicators for the
robustness of the representation to noise, and for the non-linearity of the relationships between
learnt representations and ground truth factors, in addition to the three properties outlined above.

2.2 AUTOENCODER-BASED PROBABILISTIC MODELS

AE-based probabilistic generative models are realized by replacing the conventional encoder Eϕ and
decoder Dθ with probabilistic counterparts. The probabilistic encoder, denoted by qϕ(z|x), is used
to approximate the intractable true posterior, and the probabilistic decoder, denoted by pθ(x|z), is
used to reconstruct the x from z Kingma & Welling (2013)

:::::::::::::::::::::
(Kingma & Welling, 2013). The major-

ity of the previous work on disentangled representation learning are based on probabilistic models,
particularly building on VAE. They enforce regularization in the latent space that either regularizes
the approximate posterior qϕ(z|x) or the aggregate posterior q(z) = 1

N

∑N
i=1 qϕ(z|x(i)), as sum-

marized in Tschannen et al. (2018)
:::::::::::::::::::
Tschannen et al. (2018). The overall objective of the majority of

the VAE-based methods can be expressed as:

Lrecon(ϕ,θ) + Lreg(ϕ) (1)

where Lreg(ϕ) is a regularizer of the concerned generative model. A carefully designed regular-
izer should enable the model to achieve better disentanglement, either by controlling the capacity
of the latent space, or by measuring the total correlation between latent variables. However, it
is worth noting that factorizing aggregated posterior using regularizers does not guarantee linear
disentangled representations Locatello et al. (2019)

::::::::::::::::::
(Locatello et al., 2019). We summarize the reg-

ularization terms of seven state-of-the-art generative models in Appendix A (See Columns 2 and 3
of Table 3).

2.3 SYMMETRY-BASED DISENTANGLING MODEL

While Higgins et al. (2018)
:::::::::::::::::
Higgins et al. (2018) proposed a formal definition of linear disentan-

gled representations, it was generic, so that no specific architecture, model or technique were de-
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fined. As such, it does not provide an actual mechanism for learning such disentangled representa-
tions, albeit providing a formal definition, which is essential for this purpose. From the definitions
in Higgins et al. (2018)

::::::::::::::::
Higgins et al. (2018), a symmetry group can be decomposed as a product of

multiple subgroups, if suitable subgroups can be identified. This can provide an intuitive method
for disentangling the latent space, if subgroups that independently act on subspaces of a latent space
can be found. If actions applied on of each of the subgroups affect only the corresponding subspace,
these actions are called disentangled group actions. In other words, disentangled group actions only
change a specific property of the state of an object, and leaves the other properties invariant. If
there is a transformation in a vector space of representations, corresponding to a disentangled group
action, the representation is called a disentangled representation.

The concept and implementation of symmetry-based disentangled representations were pro-
posed using pairs of images in Cohen & Welling (2014)

::::::::::::::::::::
Cohen & Welling (2014). How-

ever, owing to the limitation around commutative Lie groups, upon which this model
is built upon, the real world applicability of the technique from Cohen & Welling (2014)
::::::::::::::::::::
Cohen & Welling (2014), especially across a range of diverse datasets, are limited. Fol-
lowing a formal definition for linear disentangled representations in Higgins et al. (2018)
:::::::::::::::::
Higgins et al. (2018), there has been a considerable amount of effort to learn the tran-
sitions between images Caselles-Dupré et al. (2019); Quessard et al. (2020); Painter et al. (2020)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Caselles-Dupré et al., 2019; Quessard et al., 2020; Painter et al., 2020). The transitions between
images are learned by treating each transition as a sequence of transitions until the base transi-
tion relies on pairs of images and by using additional networks. An alternative approach is to rely on
labels, for example, as in Tonnaer et al. (2022)

:::::::::::::::::
Tonnaer et al. (2022), where they propose two Dif-

fusion VAE-based methods Rey et al. (2019)
::::::::::::::
(Rey et al., 2019), namely semi-supervised and unsu-

pervised, along with a new metric called LSBD (Linear Symmetry-Based Disentanglement metric).
The former model relies on labels, while the latter does not. As such, the latter model is directly
relevant to our work, and, we use this as one of the baselines for our evaluation (See Section 4).

3 FRAMEWORK FOR DAE

The deterministic, and hence, non-probabilistic, approach we propose here, builds on the autoen-
coder architecture (rather than variational autoencoders). We provide the relevant background on the
disentangled representations from Higgins et al. (2018)

:::::::::::::::::
Higgins et al. (2018) in the Appendix A.2.

In this section, we define necessary mathematical framework and a corresponding neural network
architecture implementing the proposed disentangling autoencoder.

3.1 ASSOCIATION BETWEEN THE DISENTANGLED REPRESENTATION AND AUTOENCODER

If
:::
The

:::::::::
definition

::
of

:::::::::::
disentangled

:::::
group

:::::::
actions

::::
from

:::::::::::::::::::
Higgins et al. (2018)

:::::::
assumes

:::
that

::
a
:::::
group

G is a group
:::
can

:::
be

::::::::::
decomposes

::
a

:::::
direct

::::::
product

::::::::::::::::::
G = G1 × · · · ×Gn.

:::
To

:::::
relax

:::
the

:::::::::
condition,

::
we

:::::::
consider

:
a
::::::

group
::
G,

::::::
which

::
is

:::::::::
generated

::
by

:::::::::::::::::
S = {s1, s2, ..., sn}::::::

subject
:::
to

:
a
:::
set

::
of

:::
R

::
of

:::::::
relations

:::::
among

::::::::
elements

:::
in

:::
S.

::::
Let

:::
W

:::
be

::
a
:::
set

:::
of

::::::::::
world-states

::::
and

:::::::
suppose

::::
we

::::
have

::
a
::::::

group
:::::
action

::::::::::::::
· : G×W → W .

::::::
Then,

::::
we

:::
say

::::
that

:::
the

::::::
action

::
is
:::::::::::

disentangled
:::

by
:::
the

:::::::
relation

:::
R

::
if

:::::
there

::
is

:
a

::::::::::::
decomposition

::::::::::::::::::
W = W1 × · · · ×Wn::::

and
::::::
actions

:::::::::::::::::::
·i :< si > ×Wi → Wi, with

:::::::::::
i ∈ {1, ..., n}

::::
such

::::
that:

::
1.

::::::::::::::::::::::::::::::::::::::::::
(sϵ11 , ..., sϵnn ) · (w1, ..., wn) = (sϵ11 · w1, ..., s

ϵn
n · wn)::::

and,

::
2.

:
if
::::
any

:::::::
elements

::::::
g ∈ G

:::
can

::
be

:::::::
written

:::::::
uniquely

::
in

:::
the

:::::
form

::::::::::::
g = sϵ11 · · · sϵnn :::

for
:::::
some

:::::
ϵi ∈ Z

::
by

:::
the

:::::::
relation

::
R.

:

::::
With

:
the definition of an equivariant map in place ( A.2), disentangling a latent space relies on

finding a corresponding group action · : G × Z → Z so that the symmetry structure of a set of
world-states, W , is reflected in an agent’s representations, Z. This can be achieved if the following
condition is satisfied:

g · f(w) = f(g ·w) ∀g ∈ G,w ∈ W. (2)
where f : W → Z is a mapping from world-states to an agent’s representations. However, in
general, one cannot control the nature of the generative process b : W → O leading from world-
states to observations, O. In addition, without loss of generality, we can easily assume that the
generative process b is an equivariant map.
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Theorem 3.1. Suppose a generative process b is an equivariant map satisfying , g · b(w) = b(g ·
w) ∀g ∈ G,w ∈ W . Then, there exists a function f that satisfies (2) if an inference process
h : O → Z is an equivariant map satisfying,

g · h(o) = h(g · o) ∀g ∈ G,o ∈ O. (3)

Proof. Proof in the Appendix A.3.

Following the Theorem 3.1, this assumption leads to the fact that the goal of disentangling is the
same as finding an inference process h : O → Z satisfying,

g · h(o) = h(g · o) ∀g ∈ G,o ∈ O. (4)

Although there is no guarantee that one can find a compatible action · : G× Z → Z satisfying (4),
if h is bijective then (4) can be expressed as follows,

g · z = h(g · h−1(z)) (5)

However, if h is a bijective function, simple neural network-based models cannot learn the overall
equivariant map. Yet, the equivariant map, such as one outlined in equation 5 can be learned by
autoencoders with inductive biases both on the model and the datasets, which is the central contri-
bution of this paper. To show this mapping, let h and h−1 be an encoder, Eϕ, and a decoder, Dθ, of
an autoencoder. Then, the group action · : G× Z → Z can be defined as follows:

G× Z G×O O Z
idG ×Dθ ·o Eϕ

This shows that the equivariant map can, indeed, be learned by an autoencoder. However, this is not
without a number of challenges, which we discuss in Section 3.2 below.

3.2 INTRODUCING DISENTANGLED REPRESENTATIONS INTO AUTOENCODERS

In deriving a disentangled representation, it is worth noting that, a vector addition, a basic and
natural transformation, in the latent space enables natural transition between latent variables . Now,
consider G = Rn acting on Rn by translation. A linear disentangled representation is achieved if
changes of components are independent of one another

:::
and

:::
nth

::::
root

::
of

::::
unity

::
is
::

a
:::::
cyclic

:::::
group. We

achieve this
:
a
::::::::::
disentangled

:::::
group

::::::
action

::
by

:::
the

:::::::
relations

::
R
::
in
:::
the

:::::
latent

:::::
space

:::
by

:
a
::::
map

::::::::::
(sϵ11 , ..., sϵnn )

::
to

:::::::::::::::
(eiα1ϵ1 , ..., eiαnϵn)

:::
and

:::
Wi::

to
:::
Zi ::

for
:::::
some

::::::::::
αi ∈ (0, 1).

::::::::
However

:::::::
complex

:::::::
numbers

:::
are

:::::::::
undesirable

::
in

:::::::
machine

:::::::
learning

:::
and

::
so

::::
this

::
is

:::::::
achieved

:
by introducing an Euler encoding, E on Rn, into the AE

architecture. We defined E as follows:

E(z) = (cos(2πz1), sin(2πz1), cos(2πz2), sin(2πz2), ..., cos(2πzn), sin(2πzn)) (6)

where n is the the number of dimensions of the latent space.
Theorem 3.2. Let E be a Euler encoding and A : R2n → Rm be an injective linear transformation
where m > 2n. For α ∈ (0, 1) and i ∈ {1, ..., n}, let Tα

i : Rn → Rn by Tα
i (x) = (x1, ..., xi +

α, ..., xn). Then A · E(Tα
i (z)) = A · E(T β

j (z)) if and only if i = j and α = β.

Proof. For z ∈ Rn, let A · E(Tα
i (z))−A · E(T β

j (z)) = 0 and define

Sα
i =

 I2(i−1)

cos(2πα) −sin(2πα)
sin(2πα) cos(2πα)

I2(n−i)


Since E(Tα

i (z)) = Sα
i · E(z), A · (Sα

i − Sβ
j ) · E(z) = 0.

(a) If i ̸= j, then A is a zero transformation, which is a contradiction.
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(b) If i = j, then α = β ± k, where k ∈ Z, hence, α = β.

Although
:::::
Since

:::::::::
E(Tα

i (z)) :
=
:::::::::
Sα
i · E(z)

::::
and

:::
Sα
i ::

is
::
an

::::::::::
orthogonal

::::::::::::
transformation,

:
the Euler encod-

ing forces the latent space to achieve a linear disentangled representation
::::
after

:::::::::
translation

::
on

::
Z

:::
can

::
be

:::::::::
considered

::
as

:::
an

:::::::::
orthogonal

::::::::::::
transformation

:::
of

:::::
E(z),

::::::
which

::::::
enables

:::
the

:::::::
changes

::
of

::::::
output

::::
from

::::::
changes

:::
of

:::::::
different

:::::
latent

::::::::::
dimensions

::
to

:::
be

::::::::::
orthogonal.

:::::::::::
Nevertheless, there are still a number of

practical challenges to overcome. These are: (a) Number of Elements in a Subgroup: The number
of possible elements in the subgroups Nj (j = 1, . . . , n), or at least the relative ratio of the number
of elements between the subgroups are not known a priori. This has a crucial role in introducing
inductive biases on datasets, (b) Robustness to Small Perturbations: Because the proposed ap-
proach for disentanglement is deterministic, the model is not resilient to small perturbations (e.g.,
noise) Camuto et al. (2021)

:::::::::::::::::
(Camuto et al., 2021), which is essential for the model to behave in a ro-

bust manner when presented with unseen examples, and (c) Spatial Distribution of Features: An
ideal factorized latent space must have the features spatially distributed in an equally likely manner.
However, the equivariant map we discussed above alone may not be sufficient to address this issue.
Although it is possible to address some of these concerns from a theoretical stand point, nearly all
of these are addressable by carefully designing an architecture that exploits both the AE and the
equivariant map principle discussed above, achieving the best possible disentanglement. We discuss
these details in Section 3.3 below.

3.3 ARCHITECTURE OF THE DAE

In mapping our theory to an architecture, we build on the AE model, which constitutes an encoder,
that maps the observation space O to a factorized latent space Z ′, followed by the disentangling
process that factorizes/disentangles the latent space Z to Z ′, and finally the decoding layer, that
maps the factorized latent Z ′ to the regenerated observation space O. Each of the concerns that
were discussed in Section 3.2 (a) through (c) are handled by a network of layers in our architecture.
We show this model in Figure 2 and describe how this model addresses the relevant concerns next.

(a) Number of Elements in a Subgroup: Although the number of elements in a subgroup is
not known a priori, the number or the relative ratio of the possible number of elements across
subgroups can be estimated using techniques that can extract the variance information from com-
pressed information, such as principal component analysis (PCA) Jolliffe (2002)

::::::::::::
(Jolliffe, 2002),

independent component analysis (ICA) Hyvärinen & Oja (2000)
::::::::::::::::::::
(Hyvärinen & Oja, 2000), or even

through neural networks Kingma & Welling (2013); Burgess et al. (2018); Mondal et al. (2021)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Kingma & Welling, 2013; Burgess et al., 2018; Mondal et al., 2021). In this paper, for the reasons
of simplification, we will be using the PCA technique. Since the singular values from PCA are
proportional to the variances of the principal components of compressed data, these values are
used to obtain a relative ratio of the number of possible element in the subgroups Wall et al. (2003)
::::::::::::::
(Wall et al., 2003). Then, all singular values are divided by the maximum valuesand

:
,
:::
and

:::::::
rounded

::
to

:::
one

:::::::
decimal

::::::
places,

::::
and

::::
then

:
values smaller than unity

:
1
:
are replaced with hyperparameter α.

The relevant algorithm is shown in Algorithm 1 in the Appendix. Let Λ be the relative ratio of the
possible number of elements across subgroups obtained from Algorithm 1.

(b) Uniform Spatial Distribution of Features: To ensure that each feature is equally/likely dis-
tributed across the latent space and falls within the (0, 1) (which lets A ·E(Tα

i (z)) = A ·E(T β
j (z))

if and only if i = j and α = β in Theorem 3.2), we introduce a normalization layer, where we ap-
ply batch min-max normalization to the outputs of the encoder. As minimum and maximum values
vary from batch (mini-batch) to batch (mini-batch), we update the moving minimum and maximum
values during the training process, and use them during the test phase, akin to a batch normalization
layer Ioffe & Szegedy (2015)

::::::::::::::::::::
(Ioffe & Szegedy, 2015). The minimum and maximum values are also

initialized close to the middle point of [0, 1) to facilitate learning. This is then followed by scaling
by Λ to account for different number of possible elements for different features.

(c) Robustness to Small Perturbations: Robustness is achieved by introducing an Interpolation
layer that performs Gaussian interpolation on the output of the normalized latent space, follow-
ing Vincent et al. (2010); Berthelot et al. (2018)

:::::::::::::::::::::::::::::::::::
Vincent et al. (2010); Berthelot et al. (2018). Gaus-

sian interpolation is used to map unseen examples to known examples, and to make the latent space
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Figure 2: Illustration of the DAE architecture. The model includes the Euler encoding, and the
outputs from the interpolation layer are mapped to cosine and sine values.

locally smooth. However, since the proposed model is deterministic, it is important to map a num-
ber of unseen examples to the learned representations. This is achieved by adding a weight-sensitive
Gaussian noise to the outputs of the previous layer during training, which is obtained based on the
closest proximal distance of each dimension of the representations. The relevant algorithm is shown
in Algorithm 2 in the Appendix. It is worth noting that this layer will not be used during the inference
phase.

3.4 A NOVEL METRIC FOR QUANTIFYING DISENTANGLEMENT: GF-SCORE

Nearly all of the existing set of metrics outlined in the literature for quantifying linear symmetry-
based disentanglement require ground truth labels. Here, we propose a new metric, namely, Grid
Fitting Score (GF-Score), to achieve the same purpose without the need for labels. Our hypothesis
is that performing independent disentangled actions on a symmetry group causes the corresponding
subspace to form a grid-shape latent space. This can be exploited by generating a square grid to
include latent variables, and by measuring the mean of the minimum distances from the square grid
to latent variables to signify the quality of disentanglement. If the latent variables fit perfectly into
the square grid, it would imply that the model achieves perfect linear disentanglement, and we can
mark this as zero score. Therefore, the lower the GF-Score is, the better the disentanglement is. The
relevant algorithm is shown in Appendix A 3.

4 EVALUATION AND RESULTS

4.1 EVALUATION METHOD

Our evaluation involves comparing the performance of the proposed approach against ten baseline
models across six datasets using six disentanglement metrics. The code will be publicly available
when the paper is published. We outline these details below.

Datasets: One of the critical challenges around evaluating disentanglement is identifying suit-
able datasets. It is difficult to identify a common dataset that can be used

:::::::
common

:::::::
datasets

:
to

study this problem. In the literature, different datasets have been used for different purposes.
For example, dSprite Matthey et al. (2017)

::::::::::::::::::
(Matthey et al., 2017), 3D Chair Burgess & Kim (2018)

:::::::::::::::::::
(Burgess & Kim, 2018) and CelebA Liu et al. (2015)

::::::::::::::
(Liu et al., 2015) datasets have been used

in β-VAE, β-TCVAE, and FVAE. Although these datasets are useful to understand
the traversal order of the latent space, they lack a clear underlying group structure.
Therefore, in this paper

::
As

:::::
such,

:::::
here, we utilize the datasets that have been first uti-

lized in Higgins et al. (2018)
:::::::::::::::::
Higgins et al. (2018), with relevant enhancements, which we de-

scribe in the Appendix (See A.10). In addition to this datasetfrom Higgins et al. (2018)
, we use five more benchmark datasets with a

:::::::
datasets

::::::::::
containing

:
clear underlying

group structure, namely, 2D Arrow Tonnaer et al. (2022), 3D Airplane Tonnaer et al. (2022)
:::::::::::::::::
(Tonnaer et al., 2022), 3D Teapots Eastwood & Williams (2018)

::::::::::::::::::::::::
(Eastwood & Williams, 2018),

3D Shape Burgess & Kim (2018)
::::::::::::::::::::
(Burgess & Kim, 2018) and 3D Face Model Paysan et al. (2009)

datasets
:::::::::::::::::
(Paysan et al., 2009)

:::::::
datasets.

:::::::
Finally,

::
to

::::::::::
demonstrate

:::
the

::::::::::
performance

:::
on

:::::::
complex

:::::::
datasets,

::
we

::::
use

:::
the

:::::
Blood

::::
Cell

::::::::::::::::::
Acevedo et al. (2020)

:::
and

:::
the

::::::
Sprites

::::::::::::::::
Reed et al. (2015)

::::::
datasets

::::
(see

:::::
results

::
in

:::
the

::::::::::
Appendix).
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Figure 3: Reconstructions of latent traversals across each latent dimension obtained by the DAE for
the (a) 2D Arrow (color and shape), (b) 3D Airplane (color and shape), (c) XY CS (x position, y
position, color and shape), (d) 3D Shape (floor hue, wall hue, object hue, scale, shape and orienta-
tion), (e) 3D Teapots (azimuth, elevation, red, green, blue and extra) and (f) 3D Face Model datasets
(face id, azimuth, elevation and lighting).

Baseline Models: We considered ten different baselines models for our evaluation, namely,
plain AE, vanilla VAE, β-VAE, β-TCVAE, CCI-VAE, FVAE, InfoVAE, DIPVAE, WAE and
LSBDVAE. For DIPVAE, we only test DIPVAE-I, owing to the reasons of that DIPVAE-
II model works better only for cases where the dimension of the latent space is larger
than the ground truth factors, which is not the case for us. Furthermore, as the pro-
posed technique is purely an AE-based method, we have not included any GAN-specific
baselines. To render a fair evaluation mechanism, we used the same encoder and de-
coder architectures, and same latent space dimensions (for each baseline model)

:
,
::::::

which
:::

are
::::
used

:::
in

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Higgins et al. (2017); Kim & Mnih (2018); Quessard et al. (2020); Tonnaer et al. (2022)

throughout the evaluation. Please see the Appendix (See A.8) for additional details.

Performance Metrics: As discussed in Section 2.1, there are a
:
a
:::::

large
:
number of metrics that

can be used to study the performance of disentanglement, depending on the nature of the dataset,
access to ground truth, availability of latent factors, and the number of dimensions in the latent
space. We use two types of metrics: (a) Visualization of the latent space, and (b) Numerical
disentanglement score. The former permits one to visualize the orthogonality between features, and
can be used to demonstrate how the latent traversal is achieved by the model and grid structures in the
latent space. The second approach provides a quantifiable method for assessing the disentanglement.
Collectively, we have used six metrics, including five supervised metrics accounting for each of the
disentanglement metric classes (see Section 2.1), namely, z-diff and z-min from the intervention-
based, dci-rf from the predictor-based, and jemmig and dcimig from the information-based metric
classes

::
in

:::::
order

::
to

::::::::
measure

::::::::::::::
disentanglement,

:::::::::::
completeness

::::
and

:::::::::::::
informativeness, along with GF-

Score (See 3.4). In Locatello et al. (2019)
:::::::::::::::::
Locatello et al. (2019), it was shown that variances of all

metrics are large with random seeds and it disturbs the comparison between different models. Hence,
we run all the models on each data set for 20 different random seeds and select the random seed with
the highest total score over these metrics.

4.2 RESULTS AND DISCUSSIONS

Our evaluation has produced a considerable volume of results, and for the reasons of brevity, we
present two sets of results here, namely, (i) we show the reconstructions of latent traversals for the
2D Arrow, 3D Airplane, XY CS, 3D shape, 3D Teapots and 3D Face Model datasets in Figure 3,
along with the percentage of changes when color and shape features are added to XY dataset in
Table 1, and, (ii) we present the disentanglement scores of top two performing models across all
datasets for all metrics in Tables ??

:
1
:
and 2. We provide the remaining set of results (reconstructions

of latent traversals and disentanglement scores of all models), and other relevant details (such as
hyper-parameters, and network architectures A.7 and A.8) as part of the Appendix.
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Table 1: Differences in scores between XY/XY CS datasets. Absolute and percentage of change
from XY to XY CS are shown. Percentage changes closer to the zero are desirable.

Disentanglement scores

Models z-diff ↑ z-var ↑ dci-rf ↑ jemmig ↑ dcimig ↑
DAE 1.00/1.00 (0.0%) 1.00/1.00 (0.0%) 0.99/0.94 (-5.0%) 0.81/0.67 (-17.2%) 0.80/0.75 (-6.2%)

β-VAE 1.00/0.79 (-21.0%) 1.00/0.46 (-54.0%) 0.91/0.08 (-91.2%) 0.65/0.18 (-72.3%) 0.63/0.13 (-79.3%)

β-TCVAE 1.00/0.72 (-28.0%) 1.00/0.41 (-59.0%) 0.93/0.15 (-83.8%) 0.70/0.24 (-65.7%) 0.69/0.14 (-79.7%)

CCI-VAE 1.00/1.00 (0.0%) 1.00/1.00 (0.0%) 0.98/0.63 (-35.0%) 0.78/0.47 (-39.7%) 0.76/0.46 (-39.4%)

FVAE 1.00/1.00 (0.0%) 1.00/0.91 (-9.0%) 0.96/0.18 (-80.8%) 0.73/0.21 (-69.5%) 0.70/0.13 (-80.5%)

InfoVAE 1.00/0.92 (-8.0%) 1.00/0.54 (-46.0%) 0.90/0.21 (-76.6%) 0.64/0.27 (-57.8%) 0.67/0.13 (-76.6%)

DIPVAE 1.00/1.00 (0.0%) 1.00/0.44 (-56.0%) 0.98/0.32 (-67.3%) 0.78/0.28 (-64.1%) 0.78/0.11 (-85.8%)

LSBDVAE 1.00/1.00 (0.0%) 1.00/0.76 (-24.0%) 0.96/0.38 (-60.4%) 0.72/0.30 (-58.3%) 0.70/0.28 (-60.0%)

4.2.1 LATENT SPACE VISUALIZATION

We show the disentangled (2D) latent space for the XY , 2D Arrow and 3D Airplane datasets, which
have two underlying factors, in Figure 1 (also see Table 14 in Appendix A for details of relevant
hyperparameters). As can be seen in the Figure 1, the proposed model, in general, provides the
ideal grid-shape outlined in Higgins et al. (2018)

:::::::::::::::::
Higgins et al. (2018). The plain AE, vanilla VAE,

Info-VAE and WAE models offer the worst performance. Other models, such as β-VAE, β-TCVAE,
CCI-VAE, and DIPVAE models also come closer to the ideal pattern in the three datasets, and thus
most models are able to disentangle x and y positions in XY datasets, and rotation and color factors
in 2D Arrow and 3D Airplane datasets. However, when color or shape feature is added to the XY
dataset (i.e., for XY C, XY S and XY CS datasets), the disentanglement can become a significant
challenge, other than for the proposed model (See Figure 11 in Appendix). In addition to these,
pairs of latent spaces, and reconstructions of latent traversals (across each latent dimension) of six
datasets for the DAE are shown in Figure 3). (Also the Appendix A.11 for more results.)

Table 2: Disentanglement scores for the 2D Arrow, 3D Airplane, 3D Teapots, 3D Shape and 3D
Face Model datasets

Datasets 2D Arrow 3D Airplane 3D Teapots 3D Shape 3D Face Model

Metrics/Models DAE DIPVAE DAE DIPVAE DAE DIPVAE FVAE DAE DAE β-TCVAE

z-diff ↑ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
z-var ↑ 0.85 0.96 1.00 0.96 1.00 1.00 1.00 0.93 1.00 0.92
dci-rf ↑ 0.88 0.85 0.80 0.54 0.89 0.84 0.99 0.99 0.65 0.59
jemmig ↑ 0.80 0.75 0.79 0.51 0.54 0.52 0.86 0.87 0.48 0.53
dcimig ↑ 0.79 0.72 0.75 0.43 0.53 0.50 0.88 0.90 0.47 0.47

GF (e−100) ↓ 0.30 2.55 0.19 7.66 0.002 0.26 0.20 0.0009 0.02 0.37

4.2.2 DISENTANGLEMENT SCORES

We present the supervised disentanglement scores and their percentage changes when color and
shape features are added to the XY dataset in Table 1, with the changes measured relative to the
XY dataset, and it is worth noting that the added features have smaller variances than x and y
positions. As can be seen, in general, nearly, all models suffer from the performance drop except
a few. The CCI-VAE is the only model that performs as good as the proposed model for the z-diff
and z-min metrics. The proposed model shows the smallest drop across three remaining metrics,
namely, dci-rf, jemmig and dcimig. While the largest drop in the proposed model is 17.2%, the
scores fall by between 35.0% and 91.2% for the other models.

The disentanglement scores for the top two performing models for all datasets (except the XY S
dataset) are shown in Tables ??

:
1
:

and 2, with the best performing model highlighted in boldface.
From these results (including those in the appendix), the following observations can be drawn:
Firstly, the proposed model outperforms all models across all metrics for the 2D Toy (covering XY ,
XY C, XY S, XY CS datasets), 3D Airplane and 3D Teapots datasets (See Table 8 and Table 7).
Secondly, for the remaining five datasets, DAE offered the best score across four of those datasets
(2D Arrow, 3D Airplane, 3D Teapots and 3D Face Model) while offering the second best perfor-
mance for the 3D Shape dataset. Where the DAE offered the second best performance, DAE still
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achieve higher scores jemmig and dcimig and the same scores in z-diff and z-min. Thirdly, for the
2D Toy dataset, the proposed model maintains the reconstruction loss as small as possible whilst of-
fering improved disentanglement scores (See Figures 25-28). On the other hand, the reconstruction
losses for the β-VAE, β-TCVAE and CCI-VAE models increase along with their disentanglement
scores. Finally, GF-Score shows that the proposed model perfectly fits the latent space into a grid
structure across all datasets and baseline models. Based on the GF-Score from Table 4 to 10, a
model without regularizer, such as AE, fails to form a grid structure in the latent space.

5 CONCLUSIONS

In the context of representation learning, being able to factorize or disentangle the latent space di-
mensions is crucial for obtaining latent representations that are composed of multiple, independent
factors of variations. Literature around disentanglement methods are either predominantly super-
vised or semi-supervised, and as such, either labels or pairs of images are required or achieved via
factorizing the aggregated posterior in the latent space.

In this paper, we presented a non-probabilistic, deterministic model, namely, disentangling autoen-
coder or DAE, addressing a number of issues found in the literature. We also demonstrated how
to realize the disentanglement conceptualized in Higgins et al. (2018)

:::::::::::::::::
Higgins et al. (2018) for the

first time, especially without requiring labels or pairs of images. Our approach exploits the Euler
encoding that makes the subspaces of the latent space independent of one another. Along with the
architectural details, we also presented a novel metric for quantifying disentanglement, namely, GF-
Score. Our detailed evaluations, performed against a large number of AE-based models, using con-
siderably a large number of metrics show that our model can easily offer superior disentanglement
performance when compared against a number of existing methods across a number of datasets.

Although the results are encouraging, a number of aspects remain to investigated, including, eval-
uation of the proposed model on datasets that lack underlying group structure, understanding the
effect of the choice of the latent dimension on the outcomes, and to evaluate different latent space
smoothing algorithms, to mention a few.
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A APPENDIX

A.1
::
A

:::::::
REVIEW

:::
OF

::::::
GROUP

::::::::
THEORY

::::
More

::::::
details

::
of

:::::::::
definitions

::::
and

:::::::
theorems

::::
can

::
be

:::::
found

::
in

::::::::::::::::::::
Dummit & Foote (2004)

:
.

Definition A.1.
::
A

:::::
group

::
is

::
an

:::::::
ordered

::::
pair

::::::
(G, ⋆)

:::::
where

::
G

::
is

::
a

::
set

::::
and

:
⋆
::
is
::
a
::::::
binary

::::::::
operation

::
on

::
G

::::::::
satisfying

:::
the

::::::::
following

:::::::
axioms:

::
1.

:::::::::::
Associativity:

::::::::::::::::::::
(a ⋆ b) ⋆ c = a ⋆ (b ⋆ c),

:::
for

::
all

::::::::::
a, b, c ∈ G,

::
2.

:::::::
Identity:

:::::
there

:::::
exists

::
an

:::::::
element

::
e
::
in

:::
G,

:::::
called

:::
an

::::::
identity

:::
of

::
G,

:::::
such

:::
that

:::
for

:::
all

::::::
a ∈ G,

:::::::::::
a ⋆ e = e ⋆ a,

::
3.

:::::::
Inverses:

:::
for

:::::
each

::::::
a ∈ G

::::
there

::
is
:::
an

:::::::
element

:::
a−1

:::
of

::
G,

::::::
called

:::
an

::::::
inverse

::
of

::
a,

:::::
such

:::
that

:::::::::::::::::::
a ⋆ a−1 = a−1 ⋆ a = e.

:

::
We

:::::
shall

::::
write

:::
the

:::::::::
operation

::::
a ⋆ b

::
as

:::
ab.

:

Definition A.2.
::
A

:::::
group

:::::
action

::
of
::
a
:::::
group

::
G

:::
on

:
a
:::
set

::
A

::
is

:
a
::::
map

:::::::::::::
· : G×A → A

:::
by

:::::::::::
·(g, a) = g · a

::::::::
satisfying

:::
the

::::::::
following

:::::::::
properties:

:

::
1.

::::::::::::::::::::
g1 · (g2 · a) = (g1g2) · a,

:::
for

:::
all

:::::::::
g1, g2 ∈ G,

::::::
a ∈ A,

::::
and

::
2.

::::::::
e · a = a,

::
for

:::
all

::::::
a ∈ A.

:

Definition A.3.
::
Let

::
G
:::

be
::
a

:::::
group.

::::
The

::::::
subset

:::
H

::
of

::
G

::
is

::
a

::::::::
subgroup

::
of

::
G

::
if
::
H

::
is
:::::::::

nonempty
:::
and

:::::::
x, y ∈ H

:::::::
implies

::::::::
x−1 ∈ H

:::
and

::::::::
xy ∈ H .

Definition A.4.
:
A

:::::
group

:::
H

::
is

::::
cylic

::
if

::
H

::::
can

::
be

:::::::::
generated

::
by

::
a
:::::
single

::::::::
element,

:::
i.e.,

:::::
there

::
is

::::
some

::::::
element

::::::
x ∈ H

::::
such

::::
that

:::::::::::::::
H = {xn|n ∈ Z},

::::
and

:::
will

:::
be

:::::::
denoted

::
by

::::::
< x >.

:

A.2 DISENTANGLED REPRESENTATION

The notion of a disentangled representation is mathematically defined using the concept of symme-
try in Higgins et al. (2018)

::::::::::::::::
Higgins et al. (2018). For example, horizontal and vertical translations

are symmetry transformations in two-dimensional grid, and, hence, such transformations change
the location of an object in this two-dimensional grid. From the definitions of a symmetry group
in Higgins et al. (2018)

::::::::::::::::
Higgins et al. (2018), a symmetry group can be decomposed as a product of

multiple subgroups, if suitable subgroups can be identified. This can render an intuitive method
to disentangle the latent space, if subgroups that independently act on subspaces of a latent space,
can be found. If actions by transformations of each subgroup only affect the corresponding sub-
space, the actions are called disentangled group actions. In other words, disentangled group actions
only change a specific property of the state of an object, and leaves the other properties invariant.
If there is a transformation in a vector space of representations, corresponding to a disentangled
group action, the representation is called a disentangled representation. We reproduce the formal
definitions of disentangled group action and disentangled representation from Higgins et al. (2018)
:::::::::::::::::
Higgins et al. (2018), as Definitions A.5 and A.6, respectively.
Definition A.5. Suppose that we have a group action · : G×X → X , and the group G decomposes
as a direct product G = G1 × · · · × Gn. Let the action of the full group, and the actions of each
subgroups be referred to as · and ·i, respectively. Then, the action is disentangled if there is a
decomposition X = X1 × · · · ×Xn, and actions ·i : Gi ×Xi → Xi, i ∈ {1, · · · , n} such that:

(g1, · · · , gn) · (x1, · · · ,xn) = (g1 · x1, · · · , gn · xn) (7)
for all gi ∈ Gi and xi ∈ Xi.

Now, to derive the definition of a disentangled representation from the definition of disentangled
group action, consider a set of world-states, denoted by W . Furthermore, assume that: (a) there is a
generative process b : W → O leading from world-states to observations, O, (b) and an inference
process h : O → Z leading from observations to an agent’s representations, Z. With these, consider
the composition f : W → Z, f = h ◦ b. In terms of transformation, assume that these transforma-
tions are represented by a group G of symmetries acting on W via an action · : G×W → W .
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The overarching goal of disentangling the latent space now relies on finding a corresponding action
· : G× Z → Z so that the symmetry structure of W is reflected in Z. In other words, an action on
Z corresponding to the action on W is desirable. This can be achieved if the following condition is
satisfied:

g · f(w) = f(g ·w) ∀g ∈ G,w ∈ W. (8)

In other words, the action, ·, should commute with f , which adheres to the definition of the equiv-
ariant map, and thus, f is an equivariant map, as shown below.

G×W W

G× Z Z

·W

idG × f f

·Z

From Higgins et al. (2018)
:::::::::::::::::
Higgins et al. (2018), a disentangled representation can be defined as fol-

lows:

Definition A.6. The representation Z is disentangled with respect to G = G1 × · · · ×Gn if

1. There is an action · : G× Z → Z,

2. The map f : W → Z is equivariant between the actions on W and Z, and

3. There is a decomposition Z = Z1 × · · · × Zn or Z = Z1 ⊕ · · · ⊕ Zn such that each Zi is
fixed by the action of all Gj , j ̸= i and affected only by Gi.

A.3 PROOF

Proof of Theorem 3.1

Proof. Suppose that there b is an equivariant map defined in Theorem 3.1 and h is an equivariant
map. Then

g · f(w) = g · h(b(w)) (9)
= h(g · b(w)) (10)
= h(b(g ·w)) (11)
= f(g ·w)) (12)

(13)

∀g ∈ G,w ∈ W .

A.4 COMPARISON OF DIFFERENT VAE-BASED MODELS

In our evaluation, we compare the proposed model against seven other VAE-based derivatives,
namely, vanilla VAE, β-VAE, β-TCVAE, CCI-VAE, FVAE, InfoVAE and WAE. All these mod-
els vary based on the underlying regularizer Lreg(ϕ). For example, the β-VAE model constraints
on the latent space using β to limit the capacity of the latent space, which encourages the model to
learn the most efficient representation of the data. The regularization term of these different models
(Column 2) are summarized in Table 3 along with relevant notes (Column 3).

15



Under review as a conference paper at ICLR 2023

Table 3: Comparison of different VAE-based models w.r.t the regularizers they employ.

Model Lreg(ϕ) Notes

VAE DKL(qϕ(z|x)∥p(z)) −
β-VAE βDKL(qϕ(z|x)∥p(z)) Usually, β is greater than 1
β-TCVAE I(z,x) + βDKL(q(z)∥

∏
j q(zj)) +

∑
j DKL(q(zj)∥p(zj)) I(·, ·) is a mutual information

CCI-VAE β|DKL(qϕ(z|x)∥p(z)) − C| C is a capacity
FVAE DKL(qϕ(z|x)∥p(z)) + γDKL(q(z)∥

∏
j q(zj))) -

InfoVAE DKL(qϕ(z|x)∥p(z)) + λMMD(qϕ(z|x), p(z)) MMD(·, ·) is Maximum Mean Discrepancy

DIPVAE DKL(qϕ(z|x)∥p(z)) + λod

∑
i̸=j [Covp(x)[µϕ(x)]]2i,j Cov is a covariance and µϕ(x) is the output of an encoder.

+λd

∑
i([Covp(x)[µϕ(x)]]i,i − 1)2 We set λd = 10λod as suggested in Kumar et al. (2017)

::::::::::::
Kumar et al. (2017)

WAE λMMD(qϕ(z|x), p(z)) λ is a regularization coefficient
LSBDVAE ∆DKL(qϕ(z|x)∥p(z)) + λDLSBD ∆DKL is a KL divergence used in Diffusion VAE

A.5 ALGORITHMS

Algorithm 1: Obtaining Λ using PCA
Input: X: the entire dataset and α: hyperparameter less than 1
Output: Λ = [w1, w2, · · · , wn]
If n > 2:

S = [s1, s2, · · · , sn]: singular values from PCA(X)
S̄ = [s̄1, s̄2, · · · , s̄n] = S/max(S)
Λ = [w1, w2, · · · , wn]: round to one decimal place of S̄ (S̄ of each dataset is shown in

Table 12.)
If there exists i such that wi < 1, then wi = α

Otherwise:
Λ = [1, α]

Algorithm 2: Interpolation layer
Input: A mini-batch: B = {x1, ...,xm}.
Output: {y1, ...,ym}
:::
Let

::::::::::::::::
xi = (xk

i )k=1,··· ,n.
::
for

::
k
::
in

::::::::::
{1, 2, ..., n}

::
for

::
i
::
in

:::::::::::::::
{1, 2, ..., n} − {k}

::::::
Denote

::::::
weight wk

i = minj∈{1,··· ,m}d(x
k
i , x

k
j )where xi = (xk

i )k=1,··· ,n

yki = xk
i + wk

i ∗ ε where ε ∼ N (0, 1)

Algorithm 3: Grid fitting score method
Input: Z = [Z:,1, ...,Z:,n]: a matrix consisting of all latent variables obtained by a model.

Each row corresponds to one latent variable.
Output: S
for i in (0, n− 1)

:::::::::::::
{1, 2, ..., n− 1}

for j in (i, n)
::::::::::::
{i, i+ 1, ..., n}

Denote Zi,j = [Z:,i,Z:,j ]: a two dimensional subspace of Z
Create Gi,j : a set of variables from a square grid that fits Zi,j

Let di,j = 0
for k in range(len(Gi,j)):
di,j+ = distance(Gi,j

k,:,Z
i,j
k,: )

Si,j = di,j/k
S: the average of Si,j
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A.6 DISENTANGLEMENT SCORES

Table 4: Disentanglement scores for the XY dataset

Models/Metrics z-diff ↑ z-var ↑ dci-rf ↑ jemmig ↑ dcimig ↑ GF (e−100) ↓ MSE ↓
DAE 1.00 1.00 0.99 0.81 0.80 0.21 0.006
AE 1.00 1.00 0.79 0.55 0.50 8.67 0.003
VAE 1.00 1.00 0.84 0.58 0.54 8.52 0.002
β-VAE 1.00 1.00 0.91 0.65 0.63 3.82 0.003
β-TCVAE 1.00 1.00 0.93 0.70 0.69 4.81 0.004
CCI-VAE 1.00 1.00 0.98 0.78 0.76 3.25 0.009
FVAE 1.00 1.00 0.96 0.73 0.70 5.58 0.003
InfoVAE 1.00 1.00 0.90 0.64 0.60 8.06 0.002
DIPVAE 1.00 1.00 0.98 0.78 0.78 2.64 0.003
WAE 1.00 1.00 0.44 0.35 0.27 5.82 0.003
LSBDVAE 1.00 1.00 0.96 0.72 0.70 5.47 0.003

Table 5: Disentanglement scores for the XY CS dataset

Models/Metrics z-diff ↑ z-var ↑ dci-rf ↑ jemmig ↑ dcimig ↑ GF (e−100) ↓ MSE ↓
DAE 1.00 1.00 0.94 0.67 0.75 0.01 0.002
AE 0.95 0.55 0.24 0.22 0.13 18.37 0.001
VAE 0.82 0.30 0.09 0.21 0.08 0.58 0.001
β-VAE 0.79 0.46 0.08 0.18 0.13 0.44 0.001
β-TCVAE 0.72 0.41 0.15 0.24 0.14 0.61 0.002
CCI-VAE 1.00 1.00 0.63 0.47 0.46 0.25 0.002
FVAE 1.00 0.91 0.18 0.21 0.13 0.10 0.004
InfoVAE 0.92 0.54 0.21 0.27 0.14 0.44 0.001
DIPVAE 1.00 0.44 0.32 0.28 0.11 0.26 0.001
WAE 0.93 0.38 0.06 0.15 0.05 0.42 0.003
LSBDVAE 1.00 0.76 0.38 0.30 0.28 0.54 0.001

Table 6: Disentanglement scores for the 2D Arrow dataset

Models/Metrics z-diff ↑ z-var ↑ dci-rf ↑ jemmig ↑ dcimig ↑ GF (e−100) ↓ MSE ↓
DAE 1.00 0.85 0.88 0.80 0.79 0.30 0.014
AE 1.00 0.30 0.00 0.29 0.17 4480.97 0.012
VAE 0.99 0.85 0.01 0.19 0.05 16.36 0.059
β-VAE 1.00 0.88 0.34 0.62 0.55 7.71 0.034
β-TCVAE 1.00 0.87 0.83 0.77 0.73 5.48 0.011
CCI-VAE 1.00 0.84 0.79 0.75 0.70 3.07 0.017
FVAE 1.00 0.90 0.46 0.58 0.52 17.09 0.022
InfoVAE 1.00 0.90 0.05 0.33 0.22 16.75 0.029
DIPVAE 1.00 0.96 0.85 0.75 0.72 2.55 0.010
WAE 1.00 0.62 0.07 0.24 0.10 1510.34 0.006
LSBDVAE 1.00 0.83 0.83 0.80 0.76 4.07 0.008
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Table 7: Disentanglement scores for the 3D Airplane dataset

Models/Metrics z-diff ↑ z-var ↑ dci-rf ↑ jemmig ↑ dcimig ↑ GF (e−100) ↓ MSE ↓
DAE 1.00 1.00 0.80 0.79 0.75 0.28 0.011
AE 1.00 .038 0.00 0.22 0.14 2505.92 0.003
VAE 1.00 1.00 0.01 0.36 0.28 14.96 0.013
β-VAE 1.00 1.00 0.09 0.44 0.35 7.92 0.015
β-TCVAE 1.00 0.96 0.28 0.52 0.44 15.11 0.009
CCI-VAE 1.00 0.95 0.13 0.49 0.41 5.60 0.013
FVAE 1.00 1.00 0.01 0.39 0.29 14.06 0.011
InfoVAE 1.00 0.98 0.17 0.48 0.37 11.86 0.014
DIPVAE 1.00 0.96 0.54 0.51 0.43 7.66 0.004
WAE 1.00 0.82 0.06 0.32 0.17 1392.81 0.002
LSBDVAE 1.00 0.94 0.18 0.49 0.41 11.90 0.002

Table 8: Disentanglement scores for the 3D Teapots dataset

Models/Metrics z-diff ↑ z-var ↑ dci-rf ↑ jemmig ↑ dcimig ↑ GF (e−100) ↓ MSE ↓
DAE 1.00 1.00 0.89 0.54 0.53 0.0031 0.002
AE 0.89 0.45 0.16 0.16 0.05 23.22 0.001
VAE 1.00 0.77 0.43 0.29 0.20 0.24 0.001
β-VAE 0.93 0.80 0.47 0.29 0.20 0.14 0.001
β-TCVAE 1.00 0.83 0.67 0.35 0.30 0.16 0.001
CCI-VAE 0.91 0.65 0.42 0.35 0.16 0.02 0.003
FVAE 1.00 0.79 0.50 0.32 0.25 0.17 0.001
InfoVAE 1.00 0.73 0.47 0.31 0.23 0.15 0.001
DIPVAE 1.00 1.00 0.84 0.52 0.50 0.13 0.001
WAE 0.78 0.52 0.15 0.15 0.04 0.20 0.001
LSBDVAE 1.00 0.68 0.51 0.33 0.25 0.15 0.001

Table 9: Disentanglement scores for the 3D Shape dataset

Models/Metrics z-diff ↑ z-var ↑ dci-rf ↑ jemmig ↑ dcimig ↑ GF (e−100) ↓ MSE ↓
DAE 1.00 0.93 0.99 0.87 0.90 0.0013 0.0008
AE 0.95 0.70 0.26 0.19 0.13 0.33 0.0006
VAE 0.96 0.81 0.31 0.27 0.22 0.14 0.0008
β-VAE 1.00 0.94 0.93 0.80 0.82 0.04 0.0022
β-TCVAE 0.89 0.75 0.79 0.77 0.74 0.02 0.0012
CCI-VAE 0.96 0.94 0.72 0.56 0.59 0.08 0.0008
FVAE 1.00 1.00 0.99 0.86 0.88 0.04 0.0007
InfoVAE 0.90 0.80 0.35 0.22 0.16 0.20 0.0007
DIPVAE 0.93 0.79 0.68 0.49 0.52 0.20 0.0007
WAE 0.74 0.45 0.09 0.17 0.08 0.14 0.0017
LSBDVAE 1.00 0.92 0.51 0.42 0.40 0.15 0.0006

Table 10: Disentanglement scores for the 3D Face Model dataset

Models/Metrics z-diff ↑ z-var ↑ dci-rf ↑ jemmig ↑ dcimig ↑ GF (e−100) ↓ MSE ↓
DAE 1.00 1.00 0.65 0.48 0.47 0.02 0.004
AE 0.69 0.47 0.10 0.19 0.05 100.60 0.003
VAE 1.00 0.69 0.47 0.34 0.20 0.47 0.002
β-VAE 1.00 0.92 0.60 0.52 0.44 0.34 0.005
β-TCVAE 1.00 0.92 0.59 0.53 0.47 0.37 0.005
CCI-VAE 1.00 0.90 0.61 0.53 0.44 0.31 0.002
FVAE 1.00 0.64 0.49 0.35 0.22 0.39 0.003
InfoVAE 1.00 0.90 0.57 0.50 0.38 0.44 0.002
DIPVAE 1.00 0.69 0.54 0.36 0.29 0.37 0.003
WAE 1.00 0.78 0.20 0.20 0.13 0.39 0.006
LSBDVAE 1.00 0.88 0.61 0.54 0.43 0.46 0.002
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Table 11:
:::::::::::
Performance

:::::
effects

:::::
when

::::::::
removing

:::
the

:::::
Euler

:::::
layer

:::
(E)

::
or

:::
the

:::::::::::
normalization

:::::
layer

:::
(N)

::::::
Datasets

:
XY XY C XY S

::::::::::::
Metrics/Models

::::
DAE

:::
w/o

:
E
: :::

w/o
::
N

::::
DAE

:::
w/o

:
E
: :::

w/o
::
N

::::
DAE

:::
w/o

:
E
: :::

w/o
::
N

::::
z-diff

::
↑

::::
1.00

:::
1.00

:::
1.00

: ::::
1.00

:::
1.00

:::
1.00

: ::::
1.00

:::
1.00

:::
1.00

:

::::
z-var

:
↑
: ::::

1.00
:::
1.00

:::
1.00

: ::::
1.00

:::
0.68

:::
0.58

: ::::
1.00

:::
0.80

:::
0.36

:

::::
dci-rf

::
↑

::::
0.99

:::
0.59

:::
0.95

: ::::
0.99

:::
0.44

:::
0.26

: ::::
0.99

:::
0.54

:::
0.11

:

::::::
jemmig

:
↑
: ::::

0.81
:::
0.38

:::
0.71

: ::::
0.82

:::
0.50

:::
0.27

: ::::
0.77

:::
0.48

:::
0.20

:

:::::
dcimig

::
↑

::::
0.80

:::
0.33

:::
0.70

: ::::
0.83

:::
0.63

:::
0.27

: ::::
0.80

:::
0.61

:::
0.19

:

:::
GF

:::::
(e−100)

::
↓

::::
0.21

:::
1.00

:::
0.86

: ::::
0.03

:::
0.07

:::
0.48

: ::::
0.02

:::
0.21

:::
2.07

:

::::::
Datasets

:
XY CS 2D Arrow 3D Airplnae

::::::::::::
Metrics/Models

::::
DAE

:::
w/o

:
E
: :::

w/o
::
N

::::
DAE

:::
w/o

:
E
: :::

w/o
::
N

::::
DAE

:::
w/o

:
E
: :::

w/o
:
N
:

::::
z-diff

::
↑

::::
1.00

:::
0.99

:::
0.82

: ::::
1.00

:::
1.00

:::
1.00

: ::::
1.00

:::
1.00

:::
1.00

::::
z-var

:
↑
: ::::

1.00
:::
0.82

:::
0.17

: ::::
0.85

:::
0.65

:::
0.57

: ::::
1.00

:::
1.00

:::
0.40

::::
dci-rf

::
↑

::::
0.94

:::
0.57

:::
0.07

: ::::
0.88

:::
0.04

:::
0.00

: ::::
0.80

:::
0.00

:::
0.00

::::::
jemmig

:
↑
: ::::

0.67
:::
0.47

:::
0.15

: ::::
0.80

:::
0.19

:::
0.25

: ::::
0.79

:::
0.35

:::
0.13

:::::
dcimig

::
↑

::::
0.75

:::
0.59

:::
0.06

: ::::
0.79

:::
0.53

:::
0.19

: ::::
0.75

:::
0.27

:::
0.12

:::
GF

:::::
(e−100)

::
↓

::::
0.01

:::
0.21

:::
0.59

: ::::
0.30

:::
6.73

:::::::::
1213204.08

::::
0.28

:::
1.97

::::::::
143594.36

:

::::::
Datasets

:
3D Teapots 3D Shape 3D Face Model

::::::::::::
Metrics/Models

::::
DAE

:::
w/o

:
E
: :::

w/o
::
N

::::
DAE

:::
w/o

:
E
: :::

w/o
::
N

::::
DAE

:::
w/o

:
E
: :::

w/o
::
N

::::
z-diff

::
↑

:::
1.00

: :::
0.99

:::
1.00

: :::
1.00

: :::
0.87

:::
0.90

: ::::
1.00

:::
0.99

:::
0.73

:

::::
z-var

:
↑
: :::

1.00
: :::

0.81
:::
0.92

: :::
0.93

: :::
0.70

:::
0.74

: ::::
1.00

:::
0.57

:::
0.42

:

::::
dci-rf

::
↑

:::
0.89

: :::
0.43

:::
0.62

: :::
0.99

: :::
0.65

:::
0.62

: ::::
0.65

:::
0.28

:::
0.26

::::::
jemmig

:
↑
: :::

0.54
: :::

0.22
:::
0.40

: :::
0.87

: :::
0.53

:::
0.50

: ::::
0.48

:::
0.31

:::
0.22

:

:::::
dcimig

::
↑

:::
0.53

: :::
0.16

:::
0.31

: :::
0.90

: :::
0.61

:::
0.47

: ::::
0.47

:::
0.19

:::
0.12

:

:::
GF

:::::
(e−100)

::
↓

:::::
0.0031

: :::
0.16

:::
0.32

: :::::
0.0013

: :::
0.47

:::
0.44

: ::::
0.02

:::
0.32

:::
0.71
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A.7 HYPERPARAMETERS

Table 12: S̄ values for different datasets

Dataset S̄

XY [1.0, 1.0]
XY C [1.0, 1.0, 0.8]
XY S [1.0, 1.0, 0.8]
XY CS [1.0, 1.0, 0.8, 0.8]
2D Arrow [1.0, 1.0]
3D Airplane [1.0, 1.0]
3D Teapots [1.0, 0.8, 0.8, 0.4, 0.3, 0.3]
3D Shape [1.0, 1.0, 1.0, 1.0, 0.5, 0.5]
3D Face Model [1.0, 0.4, 0.4, 0.3]

Table 13: All hyperparameters for models.

Model Values for XY CS dataset Extra values for the other datasets

DAE (α) [1.0, 0.5, 0.1, 0.05, 0.01] −
β-VAE (β) [2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 128.0] −
β-TCVAE (β) [2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 128.0] −
CCI-VAE (C) [100.0, 500., 1000.0] [50.0]
FVAE (γ) [1.0, 5.0, 10.0, 20.0, 30.0, 40.0, 50.0] −
InfoVAE (λ) [[100.0, 500., 1000.0] [50.0, 2000.0]
DIPVAE (λ) [1.0, 2.0, 5.0, 10.0, 20.0, 50.0, 100.0] −
WAE (λ) [1.0, 5.0, 10.0, 20.0, 30.0, 40.0, 50.0] −
LSBD (λ) [1.0, 10.0, 100.0] −

Table 14: Best hyperparameters for models for the 2D datasets.

Model / Dataset XY XY C XY S XY CS 2D Arrow

DAE (α) 1.0 0.001 0.001 0.01 0.5
β-VAE (β) 16 32 64 16 16
β-TCVAE (β) 32 128 128 32 8
CCI-VAE (C) 500 100 100 100 50
FVAE (γ) 1 40 1 500 40
InfoVAE (λ) 100 20 1 500 50
DIPVAE (λ) 50 100 2 100 20
WAE (λ) 1 20 40 50 10
LSBD (λ) 100 1 1 1 10

Table 15: Best hyperparameters for models for the 3D datasets.

Model / Dataset 3D Airplane 3D Teapots 3D Shape 3D Face Model

DAE (α) 0.05 0.01 0.01 0.05
β-VAE (β) 16 6 64 16
β-TCVAE (β) 16 6 32 32
CCI-VAE (C) 500 50 100 100
FVAE (γ) 20 1 5 1
InfoVAE (λ) 50 50 100 2000
DIPVAE (λ) 100 20 1 2
WAE (λ) 5 10 50 50
LSBD (λ) 10 100 10 10
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A.8 ENCODER AND DECODER ARCHITECTURES

Table 16: Architecture for the 2D Toy Dataset

Encoder Decoder

Input 84×84×1 image 3×3 1 Conv ↓, Sigmoid
10×10 8 Conv ↓, BN, LReLU 10×10 1 Conv ↑, BN, LReLU
10×10 16 Conv ↓, BN, LReLU 10×10 8 Conv ↑, BN, LReLU
FC 64 FC 256, LReLU
FC The number of features FC 64, LReLU

Table 17: Architecture for the 2D Arrow and 3D Airplane Datasets

Encoder Decoder

Input 64×64×3 image 3×3 1 Conv ↓
4×4 32 Conv ↓, BN, LReLU 4×4 1 Conv ↑, BN, LReLU
4×4 32 Conv ↓, BN, LReLU 4×4 32 Conv ↑, BN, LReLU
4×4 64 Conv ↓, BN, LReLU 4×4 32 Conv ↑, BN, LReLU
4×4 64 Conv ↓, BN, LReLU 4×4 64 Conv ↑, BN, LReLU
FC 256 FC 1024, LReLU
FC 2 FC 256, LReLU

Table 18: Architecture for the 3D Teapots Dataset

Encoder Decoder

Input 64×64×3 image 3×3 1 Conv ↓
4×4 32 Conv ↓, BN, ReLU 4×4 3 Conv ↑, BN, ReLU
4×4 32 Conv ↓, BN, ReLU 4×4 32 Conv ↑, BN, ReLU
4×4 64 Conv ↓, BN, ReLU 4×4 32 Conv ↑, BN, ReLU
4×4 64 Conv ↓, BN, ReLU 4×4 64 Conv ↑, BN, ReLU
FC 128 FC 1024, LReLU
FC 6 FC 128, LReLU

Table 19: Architecture for the 3D Shape Dataset

Encoder Decoder

Input 64×64×3 image 3×3 1 Conv ↓, Sigmoid
4×4 32 Conv ↓, BN, LReLU 4×4 3 Conv ↑, BN, LReLU
4×4 32 Conv ↓, BN, LReLU 4×4 32 Conv ↑, BN, LReLU
4×4 64 Conv ↓, BN, LReLU 4×4 32 Conv ↑, BN, LReLU
4×4 64 Conv ↓, BN, LReLU 4×4 64 Conv ↑, BN, LReLU
FC 256 FC 1024, LReLU
FC 6 FC 256, LReLU

Table 20: Architecture for the 3D Face Model Dataset

Encoder Decoder

Input 64×64×1 image 3×3 1 Conv ↓, Sigmoid
4×4 32 Conv ↓, BN, LReLU 4×4 1 Conv ↑, BN, LReLU
4×4 32 Conv ↓, BN, LReLU 4×4 32 Conv ↑, BN, LReLU
4×4 64 Conv ↓, BN, LReLU 4×4 32 Conv ↑, BN, LReLU
4×4 64 Conv ↓, BN, LReLU 4×4 64 Conv ↑, BN, LReLU
FC 128 FC 1024, LReLU
FC 4 FC 128, LReLU
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A.9 SYSTEM AND MODEL CONFIGURATIONS

All of our experiments were run on a single hardware consisting two DGX2 nodes, collectively
consisting of 32-V100 GPUs, 1.5GB GPU RAM, and 3TB System RAM. Encoder and decoder
architecture are the same in all experiments. Encoder has two convolutional layers followed by
Batch Normalization layer and LeakyReLU activation. After convolutional layers, there is one fully-
connected layer with 64 nodes and another layer which maps to the latent space. The decode part is
symmetric to the encoder part. C for CCI-VAE is set as 25 for 2D Toy dataset and as 50 for all other
datasets.

A.10 DATASET

x position

y position

color

shape

Figure 4: Four factors in datasets. x and y positions have 53 elements, color has 5 elements and
shape has 3 elements.

1. 2D Toy Dataset: This dataset has objects with three shapes (S) (a circles, a rectangles
and a diamonds), and variations to their x and y positions and color information (more
specifically, the brightness). This is a rather small, but very effective, dataset. There are
53 unique x positions (X), 53 unique y positions (Y ) and 5 colors (C). We create XY ,
XY C, XY S and XY CS sub-datasets to show the differences of the latent space when the
combination of categorical and continuous factors are presented.

2. 2D Arrow Dataset Tonnaer et al. (2022)
::::::::::::::::::
(Tonnaer et al., 2022): This dataset has 4096,

three-channel RGB, 64 × 64 × 3 images of a 2D object (arrow) with ground truth fac-
tors of 64 colors and 64 fixed in-plane rotations.

3. 3D Airplane Dataset Tonnaer et al. (2022)
:::::::::::::::::
(Tonnaer et al., 2022): This dataset also has

4096, three-channel RGB, 64 × 64 × 3 images of a 3D object (airplane
:::::
within

:::
the

::::::::::
ModelNet40

::::::
dataset

:::::::::::::::
(Wu et al., 2015)) with ground truth factors of 64 colors and 64 ro-

tations with respect to a vertical axis.

4. 3D Teapots Dataset Eastwood & Williams (2018)
::::::::::::::::::::::::
(Eastwood & Williams, 2018): This

dataset has two million
:::::::
200, 000, three-channel RGB, 64 × 64 × 3 images of a 3D object

(teapot) with ground truth factors of independently sampled from its respective distribu-
tion: azimuth ∼ U [0, 2π], elevation ∼ U [0, π/2], and three colors, namely, red (R), green
(G) and blue (B), sampled with R ∼ U [0, 1], G ∼ U [0, 1], and B ∼ U [0, 1]. This dataset
is very effective to evaluate model when all factors are independently from the uniform
distributions.

5. 3D Shape Dataset Burgess & Kim (2018)
:::::::::::::::::::
(Burgess & Kim, 2018): This dataset has

480, 000, three-channel RGB, 64 × 64 × 3 images of 3D objects with ground truth fac-
tors of four shapes, eight scales, 15 orientations, 10 floor color, 10 wall colors, and 10
object colors.

6. 3D Face Model Dataset Paysan et al. (2009)
::::::::::::::::
(Paysan et al., 2009): This dataset has

127, 050, gray-scale, 64 × 64 images of 3D faces with ground truth factors of 50 differ-
ent face ids, 21 azimuth, 11 elevation and 11 lighting conditions.

7.
:::::
Blood

::::
Cell

::::::
Dataset

::::::::::::::::::
(Acevedo et al., 2020)

:
:
::::
This

::::::
dataset

:::
has

:::::::
17, 092,

::::::::::::
360× 364× 3

::::::
images

::
of

::::
eight

:::::
types

::
of

:::::::
normal

::::::::
peripheral

::::::
blood

::::
cells.

::::
We

::::
used

:::
the

:::::::::::
28× 28× 3

::::::
resized

::::::
dataset

:::::::
followed

:::
by

::::::::::::::
Yang et al. (2021)

:
.
:
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8.
::::::
Sprites

::::::
Dataset

::::::::::::::::
(Reed et al., 2015)

:
:
::::
This

:::::::
dataset

:::
has

:::::::
93, 312,

:::::::::::
64× 64× 3

:::::::
images

::::
from

::::
1296

::::::
unique

:::::::::
characters

::::
with

::::::
ground

:::::
truth

::::::
factors

::
of

:::
the

:::::
color

::
of

::::
hair,

:::::
tops,

:::::
body,

::::::
bottom

:::
and

:::::::
actions.
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A.11 LATENT SPACES AND RECONSTRUCTIONS OF LATENT TRAVERSALS ACROSS EACH
LATENT DIMENSION
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Figure 5: Ideal relationships between X-Y, X-C, X-S and C-S features.
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Figure 6: Relationships between X-Y, X-C, X-S and C-S features in DAE.
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Figure 9: Relationships between X-Y, X-C, X-S and C-S features in β-VAE.

x position

y 
po

sit
io

n

(a) X-Y relationship in

β-TCVAE

x position

co
lo

r

(b) X-C relationship in

β-TCVAE

x position

sh
ap

e

(c) X-S relationship in

β-TCVAE

color

sh
ap

e

(d) C-S relationship in

β-TCVAE

Figure 10: Relationships between X-Y, X-C, X-S and C-S features in β-TCVAE.

x position

y 
po

sit
io

n

(a) X-Y relationship in

CCIVAE

x position

co
lo

r

(b) X-C relationship in

CCI-VAE

x position

sh
ap

e

(c) X-S relationship in

CCI-VAE

color

sh
ap

e

(d) C-S relationship in

CCI-VAE

Figure 11: Relationships between X-Y, X-C, X-S and C-S features in CCI-VAE.
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Figure 12: Relationships between X-Y, X-C, X-S and C-S features in FVAE.
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Figure 13: Relationships between X-Y, X-C, X-S and C-S features in InfoVAE.
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Figure 14: Relationships between X-Y, X-C, X-S and C-S features in VAE
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DIPVAE.
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Figure 15: Relationships between X-Y, X-C, X-S and C-S features in WAE.
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Figure 17: Reconstructions of latent traversals across each latent dimension in the XY CS dataset.
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Figure 18: Reconstructions of latent traversals across each latent dimension in the 2D Arrow dataset.
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Figure 19: Reconstructions of latent traversals across each latent dimension in the 3D Airplane
dataset.
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Figure 20: Reconstructions of latent traversals across each latent dimension in the 3D Teapots
dataset. Due to the space limit, we omit the result from AE, CCI-VAE and WAE, which have
low scores in 3D Teapots dataset.
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Figure 21: Reconstructions of latent traversals across each latent dimension in the 3D Shape
dataset.Due to the space limit, we omit the result from AE, InfoVAE and WAE, which have low
scores in 3D Shape dataset.
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Figure 22: Reconstructions of latent traversals across each latent dimension in the 3D Face Model
dataset.We do not visualize results of InfoVAE and WAE since both models fail to disentangle the
data.
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Figure 23:
:::::::::::::
Reconstructions

::
of

:::::
latent

:::::::::
traversals

:::::
across

::::
each

::::::
latent

::::::::
dimension

:::
in

:::
the

::::::
Sprites

::::::
dataset.

:::
Due

::
to

:::
the

:::::
space

:::::
limit,

:::
we

::::
omit

:::
the

:::::
result

::::
from

::::
AE,

:::::::
InfoVAE

::::
and

:::::
WAE.

:::
The

::::::
ground

:::::
truth

::::::
factors

::
are

::
the

:::::
color

::
of

::::
hair,

:::::
tops,

::::
body,

:::::::
bottom

:::
and

:::::::
actions.
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Figure 24:
:::::::::::::
Reconstructions

::
of

::::::
latent

::::::::
traversals

::::::
across

::::
each

::::::
latent

:::::::::
dimension

::
in

::::
the

:::::
Blood

::::
Cell

::::::
dataset.

::::::
Some

::
of

:::
the

::::::
models

::::::::::::
independently

:::::
learn

::::
size

:::
and

::::::
shape

::
of

:::::
blood

:::::
cells.

::::
For

:::::::
example,

:::
for

:::::
DAE,

:::
the

:::
first

:::::::::
dimension

::
in

:::
the

:::::
latent

:::::
space

::::::::::
corresponds

::
to
:::

the
::::

size
::
of

:::::
cells

:::
and

:::
the

::::::
second

::::
and

::
the

::::
third

:::::::::
dimensions

::::::::::
correspond

::
to

:::::::
changes

::
in

:::::
shape

::
in

:::::::
different

:::::::::
directions.
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Figure 25: Disentanglement scores with the XY dataset with respect to hyperparameters.
::::
For

::::
DAE,

::
w1::::

and
:::
w2 :::::::

obtained
::
by

:::::::::
Algorithm

::
1

:::
are

:::
the

::::
same

::
in

:::
this

:::::::
dataset.

::::::
Hence,

:::
the

::::::::
desirable

:::::
value

::
for

::::
both

::
w1::::

and
::
w2::

is
::
1.

::::
The

:::::
result

:::::
shows

::::
that

::::
when

:::
α,

:::::
lower

::::
than

::::
0.05,

::
is

:::::::
assigned

::
to

:::
the

::::::
second

:::::::::
dimension,

::
the

::::::::::::::
disentanglement

::::::
scores

:::
also

:::::::
become

:::::
lower.
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Figure 26: Disentanglement scores with the XY C dataset with respect to hyperparameters.
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Figure 27: Disentanglement scores with the XY S dataset with respect to hyperparameters.
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Figure 28: Disentanglement scores with the XY CS dataset with respect to hyperparameters.
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