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A SUPPLEMENTARY RESULTS

A.1 CRIMINAL RECIDIVISM

The Compas data set is a seminal instance of algorithmic bias, where a sentencing algorithm used in
the Florida judicial system to predict criminal recidivism (likelihood of re-offending) to aid parole
decisions was found to be severely biased against Black defendants (Angwin et al., 2016). In this
section, we take a closer look into the so-called negative conflicts we observed in the RF-Compas
experiment, where optimizing for different fairness metrics found stronger solutions than optimizing
for a fairness metric directly. This result suggests a possible explanation for the strong performance
of the MaO problem formulation in this scenario (Figure 11), where interaction between fairness
metrics enables MaO to discover strong overall solutions.

In Figure 2 we observe negative contrast values between DDSP with respect to DEOD (C =
�0.078), DEOP (C = �0.171), and INVD (C = �0.111), indicating that a fairer solutions in
terms of DEOD/P and INVD wer discovered when optimizing for F1-Score and DDSP. We also
observe MaO experiments in Figure (11) with negative regret (-5% to -10%), indicating that a
higher HDEOD/P and HINV D was achieved by the MaO experiment than by their corresponding
bi-objective experiments. These results are attributed to a single model discovered on P(YDDSP )
which achieves reasonable accuracy (1�F1 = 0.3) and the lowest unfairness in terms of all fairness
metrics (Figure 5).

Figure 5: Negative Conflicts (RF-Compas): Overall-fair model discovered in the RF-Compas ex-
periment, which minimizes all fairness metrics at a reasonable accuracy level. The All-Fair model
increases the parole rate for Black defendants that did in fact re-offend to the same rate as White
applicants, resulting in low group and individual unfairness.

In order to better understand how strong overall fairness was achieved by this model, we compare
its behavior with a slightly more accurate (1 � F1 = 0.27) but less fair model in terms of all
fairness metrics (Figure 5). In comparison, the all-fair model has a lower sentencing rate for Black
defendants that re-offended (P (Sentenced|Black,Guilty) = 0.09) than the overall-unfair model
(P (Sentenced|Black,Guilty) = 0.13). However, because both models have a high parole rate for
White defendants that re-offend (P (Parole|White,Guilty) � 0.20), the decreased sentencing rate
from the overall-fair model has the effect of improving overall fairness. First of all, the between-
group parole rate P (Parole|White) � P (Parole|Black) is improved from DDSP = 0.07 in the
overall-unfair model to DDSP = 0.04 in the overall-fair model. In addition, the between-group parole
rate for non-re-offending defendants P (Parole|White, Innocent)�P (Parole|Black, Innocent)
is improved from DEOP = 0.02 in the overall-unfair model to DEOP = 0.01 in the overall-fair model.
Finally, similarity-based individual fairness INVD is also improved in the overall-fair model, as 4%
more similarly re-offending defendants receive similar parole outcomes. This result suggests that
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optimizing for multiple notions of fairness can have the effect of unlocking regions of the objective
space that are otherwise inaccessible using the MO problem formulation.

Figure 6: Conflict Implications (RF-Lawschool): Overview of the conflict between individually-
fair and group-fair models discovered in the RF-Lawschool experiments. The individually fair model
has a higher rejection rate, resulting in fewer similarly unqualified Black and White students receiv-
ing different outcomes (individual fairness). However, this strategy also increases between-group
acceptance rates (group unfairness).

A.2 CONFLICT EXPLANATION

In this section, we direct our focus to the RF-Adult experiment (Figure 2 middle-right), which
indicates a severe, moderate, and weak conflict between DDSP with respect to DEOP (C = 0.326),
DEOD (C = 0.135), and INVD (C = 0.078). To explain these conflicts, we provide the normalized
hypervolume regret RMO of fairness-accuracy Pareto Fronts (Figure 7), which describes the loss in
Hfi from optimizing for another fairness metric fj . For a formal definition of RMO, we refer to
Appendix B.

For example, with respect to DDSP (Figure 7 top-left), we observe that P(YDEOP ) converges to
the worst HDDSP (regret RMO = 0.35), while P(YDEOD) achieves a better, yet still suboptimal
HDDSP (regret RMO = 0.2). Through visualizing the (F1, DDSP ) objective space locations of
these Pareto Fronts (Figure 7, bottom left), we observe that optimizing for F1-Score and DEOD/P
only discovers solutions near the extreme points of P(YDEOP ). In that figure, we also observe that
P(YINV D) achieves a nearly optimal HDDSP (regret RMO = 0.05), i.e., optimizing for F1-Score
and INVD closely approximates P(YDDSP ) (Figure 7 top-left).

A.3 COMPARISON TO BIAS-MITIGATION

In this section, we compare our Pareto Fronts obtained from ManyFairHPO to the state-of-the-art
bias mitigation technique Exponential Gradient Reduction (EGR), which proposes a reduction of
the FairML task to a series of cost-sensitive classification problems Agarwal et al. (2018). In order
to provide an apples-to-apples comparison with our MaO Pareto Fronts, we post-process the most
accurate, least fair hyperparameter configurations with EGR for 10 independent trials. We perform
this experiment across all search spaces and models with respect to group fairness metrics DDSP
and DEOD. We don’t include results on the Adult dataset as single evaluations of EGR exceeded
our 24-hour time budget.

In Figure 8, we observe the relative fairness-accuracy objective space locations of MaO Pareto Fronts
(black circles) compared to hyperparameter configurations post-processed with EGR (pink crosses)
to minimize DDSP. Overall, we observe ManyFairHPO to be quite competitive with EGR, and in
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Figure 7: Conflict Explanation (RF-Adult): Hypervolume regret (top) and visualization of fairness
metric conflicts (bottom) observed on the RF-Adult experiments. Optimizing for a particular fairness
metric does not necessarily optimize for other potentially relevant notions.

Figure 8: Comparison to Bias Mitigation (DDSP): Relative fairness-accuracy objective space lo-
cations of hyperparameter configurations found by ManyFairHPO and those post-processed with
Exponentiated Gradient Reduction (EGR) to minimize DDSP. ManyFairHPO Pareto Fronts domi-
nate EGR models in the majority of cases (9/12), suggesting that HPO alone is a competitive ap-
proach to bias-mitigation.

many cases (9/12), EGR is dominated by our Pareto Fronts. We observe similar results in Figure
9, where ManyFairHPO dominates EGR (DEOD) in 7/12 cases. Although we highlight that the
purpose of this study is not to specifically compare the performance of bias mitigation strategies
(but rather to evaluate the socio-technical benefits of the MaO problem formulation for fairness),
this outcome increases the trustworthiness of our experimental results 6.

A.4 ASYMMETRY OF FAIRNESS METRIC CONFLICTS

In this section, we outline a scenario where a substantial difference in base rates leads to an asym-
metric fairness metric conflict. An asymmetric fairness metric conflict occurs when the impact of
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Figure 9: Comparison to Bias Mitigation (DEOD): Relative fairness-accuracy objective space lo-
cations of hyperparameter configurations found by ManyFairHPO and those post-processed with
Exponentiated Gradient Reduction (EGR) to minimize DEOD. ManyFairHPO Pareto Fronts dom-
inate EGR models in the majority of cases (7/12), suggesting that HPO alone is a competitive ap-
proach to bias-mitigation.

satisfying fairness metric fi on violating fairness metric fj is different (larger or smaller) from the
impact of satisfying fj on violating fi.

In Figure 2, we observe an interesting phenomenon on the RF-Lawschool experiment, where the
conflict between INVD with respect to group fairness metrics DDSP and DEOP/D (C u 0.2) is
significantly larger than the conflict between group fairness metrics DDSP and DEOP/D with respect
to INVD (C ⇡ 0.1). In plainer terms, if INVD is satisfied it leads to a strong violation of DDSP,
while the satisfaction of group fairness metrics leads to a relatively weaker violation of INVD.

In the following argument, we explain why asymmetry occurs on the Lawschool dataset by drawing
a connection to the significant imbalance (92% White and 8% Black) in privileged and unprivileged
applicants (Appendix Table 4). Consider a perfect classifier that satisfies INVD by accepting all
qualified applicants and rejecting all unqualified ones. Referring to the distribution in Appendix
Figure 6 (top-right), the classifier thus accepts all 1% of applicants who are qualified and Black as
well as all 50% who are qualified and White. Similarly, the classifier rejects all 7% of applicants
who are unqualified and Black as well as all 42% who are unqualified and White. Although INVD
is satisfied (all individuals receive the outcome they deserve, regardless of demographic group),
such an admissions strategy strongly violates DDSP (precisely resulting in P (Accept|White) �
P (Accept|Black) = 42

92 �
1
8 = 0.34 or a difference in between-class acceptance rate of 34%).

Now consider modifying this classifier (e.g. with a postprocessing technique) such that DDSP is
satisfied by increasing the acceptance likelihood for unqualified Black students by 3% and decreas-
ing the acceptance likelihood for qualified White students by 4% (positive discrimination), resulting
in P (Accept|White) � P (Accept|Black) = 46

92 �
4
8 = 0. Such a modified classifier results in

only a 24% violation of INVD, as 3% and 4% of similarly qualified (or unqualified) applicants from
different demographic groups receive different admissions/rejection outcomes.

Note that the impact of DDSP on INVD depends on the base rate of privileged/unprivileged appli-
cants, and asymmetry would increase in this scenario if the overall proportion of Black applicants
increased while the ratio of qualified and unqualified Black applicants stayed the same. For exam-
ple, if 2% of applicants were qualified and Black, while 14% of applicants were unqualified and
Black, satisfying DDSP, would require a 6% (as opposed to the previous 3%) increase in acceptance
likelihood for unqualified Black applicants, leading to a larger increase in INVD than in the previous
example. We thus exemplify how fairness metric conflicts can be asymmetric, while also identifying
the impact that dataset characteristics (e.g. difference in base rates) can have on their occurrence,
significance, and symmetry. This identification suggests that fairness metric conflicts can potentially
be anticipated during domain-knowledge-driven deliberations, adding a technical and concrete angle
to these discussions.
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B EXPERIMENTAL DETAILS

B.1 MULTI-CRITERIA OBJECTIVE FUNCTION

Our objective function takes as input a hyperparameter configuration � 2 ⇤, a FairML data set
D = (X,Y,A), and a subset of the fairness metrics {f0, f1, f2, ..., fd}. The objective function
applies Nested Stratified k-Fold Cross-Validation to iteratively partition the data set into training,
testing, and validation folds Dtrain,Dval and, Dtest. Each fold is stratified by both the target Y and
protected attribute A in order to maintain a realistic distribution of these variables.

Given a candidate hyperparameter configuration � 2 ⇤, a model M is defined and fit to the training
fold Dtrain, generating predictions Ŷ on the validation set Dval. The predictive performance of the
hyperparameter configuration f0(Y, Ŷ ) is calculated using the F1-Score, an appealing performance
metric in the face of significant class imbalance. Because a higher F1-Score is better with respect
to predictive performance and defined in the range (0, 1), we minimize f0(Y, Ŷ ) := 1 � F1 during
optimization. The unfairness of the hyperparameter configuration f1:d(Y, Ŷ , A) is calculated using
the measures of fairness defined in Table 2. The objective values of each evaluated hyperparameter
configuration are added to an archive of all observations Y .

B.2 BI-OBJECTIVE OPTIMIZATION

Motivated by the well-known theoretical conflicts between different notions of fairness, we leverage
our bi-objective experiments in order to quantify the contrast between fairness objectives, or the
degree to which optimizing for a particular fairness metric optimizes for another.

For each fairness metric fi, 1  i  d, the archive Yi is obtained by the associated bi-objective
optimization run. Next, we compute the Pareto Front P(Yi) with respect to the F1-Score and the
fairness metric fi.4 To assess the performance of the Pareto Front with respect to a different fairness
metric fj , we compute the normalized hypervolume Hfj

�
P(Yi)

�
with respect to the F1-Score and

the other fairness metric fj . This allows us to introduce the following notion of fairness metric
contrast.
Definition B.1 (Contrast). The contrast of fairness metric fi with respect to fairness metric fj is
defined as the difference in normalized hypervolume when optimizing for fj and fi, respectively:

C(fi, fj) := Hfj

�
P(Yj)

�
�Hfj

�
P(Yi)

�
(4)

Note that the contrast metric is not symmetric, and we provide an example of a scenario where
this is the case in Appendix Section ??. A large (positive) value of C(fi, fj) indicates a severe
conflict between notions of fairness, where optimizing for fairness metric fi fails to optimize for
fairness metric fj . A contrast value close to zero indicates a weak conflict and a negative contrast
value indicates a negative conflict, where optimizing for another notion of fairness is better than
optimizing for one directly.

B.3 EVOLUTIONARY ALGORITHMS

Many design spaces are large and non-differentiable, rendering an exhaustive search or gradient-
based methods computationally intractable. A popular approach to MOO problems is the Evolu-
tionary Algorithm (EA), a population-based optimization technique that draws inspiration from the
process of biological evolution to solve black-box, non-differentiable optimization problems (Eiben
and Smith, 2015). By implementing bio-evolutionary concepts such as selection, mutation, and
crossover, EAs effectively balance exploration and exploitation, generating state-of-the-art results
in a variety of domains.

Nondomoninated-Sorting Genetic Algorithm (NSGA-II) is a state-of-the-art MO-EA (Deb et al.,
2002), which applies the notion of dominance in order to recursively divide the population into

4Note that the Pareto Front P(Yi) remains a function in all d fairness metrics together with F1 and thus it
is the Pareto Front with respect to objectives F1 and fi and not necessarily with respect to F1 and fj .
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ranked fronts. Parent and survivor selection is performed using the heuristics of front rank and
crowding distance, which measures the distance of solutions to their nearest neighbor on their re-
spective front. Entire fronts are greedily selected until including the next front exceeds a prede-
fined quota. At this stage, individuals are selected from the final front based on crowding distance,
which serves as a heuristic for uniqueness, and encourages exploration through population diversity.
NSGA-III (Deb and Jain, 2013) incorporates the concept of reference directions in order to select in-
dividuals for crossover and survival from equally spaced regions of the many-dimensional objective
space.

For our MO and MaO experiments, we opt for the pymoo implementations of NSGA-II and NSGA-
III. For NSGA-II, we set the population size to 20 and for NSGA-III we set the number of reference
directions to its default of 10, and apply Das and Dennis’ approach (Das and Dennis, 1998) to define
well-spaced reference points, resulting in a population size of 42 individuals. In order to provide a
fair comparison, we run NSGA-II and NSGA-III for the same number of function evaluations (1000)
and set all other optimizer hyperparameters to their default values. A summary of our experimental
details is provided in Appendix Table 3.

B.4 HYPERVOLUME REGRET

Regret is a concept often used in ML research to quantify the performance of an algorithm when the
optimal performance is unknown. Regret is then calculated by comparing the best that we can do
with how we did, and offers an estimate of algorithmic performance.

In this study, we define two forms of regret, both of which assume that the best we can do is opti-
mizing for F1-Score and a fairness metric fj directly. MO regret (RMO) corresponds closely to the
notion of fairness metric contrast (Equation 4) at different stages t of optimization, and measures
the difference in Hfj between optimizing for fairness metric fj directly and optimizing for another
fairness metric fi.

RMO := Hfj

�
P(Yj)

�
�Hfj

�
P(Yt

i
)
�

(5)

Similarly, MaO regret (RMaO) measures the loss in Hfj incurred from optimizing for all fair-
ness metrics f1:d simultaneously by selecting solutions at different time steps t from the many-
dimensional Pareto Front P(Y1:d).

RMaO := Hfj

�
P(Yj)

�
�Hfj

�
P(Yt

1:d)
�

(6)

Figure 10: Conflict Explanation (RF-Lawschool): Visualization of fairness metric conflicts ob-
served on the RF-Lawschool experiment. Optimizing for F1-Score and INVD does not optimize for
F1-Score and measures of group fairness, especially towards low unfairness regions of the objective
space.
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Random Forest (NN)
Name Range Scale

max depth (1, 50) Log
min samples fold (2, 128) Log
min samples leaf (1, 20) Uniform
max features (0, 1) Uniform
n estimators (1, 200) Log

XGBoost (XGB)
Name Range Scale

eta (2�10, 1.0) Log
max depth (1, 50) Log
colsample bytree (0.1, 1.0) Uniform
reg lambda (2�10, 210) Log
n estimators (1, 200) Log

Multi-Layer Perceptron (NN)
Name Range Scale

depth (1, 3) Uniform
width (16, 1024) Log
batch size (4, 256) Log
alpha (10�8, 1) Log
learning rate init (10�5, 1) Log
n iter no change (1, 20) Log

Table 1: HPO Search Spaces: Summary of hyperparameter search spaces drawn from HPOBench.

Name Definition

Demographic Statistical Parity (DDSP) |P (Ŷ = 1|A = 0)� P (Ŷ = 1|A = 1)|
Equalized Opportunity (DEOP) |P (Ŷ = 1|A, Y = 0, 1)� P (Ŷ = 1|A, Y = 1, 1)|
Equalized (Average) Odds (DEOD) 1

2

P
y2{0,1} ·|P (Ŷ = 1|A, Y = 0, y)� P (Ŷ = 1|A, Y = 1, y)|

Inverse Distance (INVD) 1
m2 ·

P
m

i,j=1 |yi � yj | · |ŷi � ŷj |

Table 2: Fairness metrics: Summary of unfairness measures drawn from the aif360 library.
Inverse Distance (INVD) is a simplified version of similarity-based individual fairness that does not
require the definition of problem-specific inverse-distance functions.

Formulation Name Optimizer Objectives Pop. Size Func. Evals. Seeds

MO F1-DDSP NSGA-II 2 20 1000 10
F1-DEOD NSGA-II 2 20 1000 10
F1-DEOP NSGA-II 2 20 1000 10
F1-INVD NSGA-II 2 20 1000 10

MaO F1-MULTI NSGA-III 5 42 1000 10

Table 3: ManyFairHPO Experiments: Summary of ManyFairHPO experiments, spaning across
two problem formulations, four fairness metrics, three HPO search spaces, and five data sets. We
run each experiment for 10 seeds with a maximum wall-clock time of 1 CPU day.
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Name Prot. Attr. Samples Features Pos./Neg. Priv./Unpriv.

German Credit sex 1,000 59 70/30 69/31
Criminal Recidvism race 5278 7 53/47 40/60
Bank Marketing age 764 31 23/77 64/36
Census Income sex 15,315 44 25/75 85/14
Lawschool Admissions race 22,342 3 25/75 92/8

Table 4: FairML Datasets: Summary of data sets drawn from the aif360 library.

Figure 11: Hypervolume Regret (MaO): Difference in normalized hypervolume between optimiz-
ing for fairness metrics together and optimizing for them seperately. ManyFairHPO is capable of
efficiently exploring multiple fairness-accuracy trade-offs and typically converges to zero regret.

Figure 12: Fairness Metric Conflicts (MaO): Overview of fairness metric conflicts calculated from
MaO experiments. Fairness metric conflicts are similar between MO and MaO problem formulations
but MaO does not create negative conflicts.

Figure 13: MaO Pareto Fronts: Visualization of the MaO Pareto Front in the presence of a fairness
metric conflicts observed on the RF-Adult (top) and RF-Lawschool (bottom) experiments. Many-
FairHPO has the consistent effect of filling the gaps left by bi-objective optimization.
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