
Supplemental Material of “Identification and
Estimation of Joint Probabilities of Potential

Outcomes in Observational Studies with
Covariate Information”

Ryusei Shingaki Manabu Kuroki
Graduate School of Engineering Science, Yokohama National University

shingaki-ryusei-kw@ynu.jp kuroki-manabu-zm@ynu.ac.jp

A Proofs of theorems

A.1 Proof of Theorem 1

From Conditions 1 and 2 in Theorem 1, by the consistency property, we have

p(x1, y1, z) =
∑
i=1,2

p(x1|ui)p(z|ui)p(ui), p(x0, y1, z) =
∑
i=1,3

p(x0|ui)p(z|ui)p(ui), (A.1)

p(x1, y0, z) =
∑
i=3,4

p(x1|ui)p(z|ui)p(ui), p(x0, y0, z) =
∑
i=2,4

p(x0|ui)p(z|ui)p(ui), (A.2)

p(x1, y1) =
∑
i=1,2

p(x1|ui)p(ui), p(x0, y1) =
∑
i=1,3

p(x0|ui)p(ui), (A.3)

p(x1, y0) =
∑
i=3,4

p(x1|ui)p(ui), p(x0, y0) =
∑
i=2,4

p(x0|ui)p(ui), (A.4)

p(yx1 , z) = p(yx1 |z)p(z) =
∑
i=1,2

p(z|ui)p(ui), p(yx0 , z) = p(yx0 |z)p(z) =
∑
i=1,3

p(z|ui)p(ui),

(A.5)

p(z) =
4∑
i=1

p(z|ui)p(ui), p(yx1) =
∑
z

p(yx1 , z), p(yx0) =
∑
z

p(yx0 , z) (A.6)

for z ∈ {z1, . . . , z4}. Thus, letting

P =

 1 p(z1) p(z2) p(z3)
p(x1, y1) p(x1, y1, z1) p(x1, y1, z2) p(x1, y1, z3)
p(x1, y0) p(x1, y0, z1) p(x1, y0, z2) p(x1, y0, z3)
p(x0, y1) p(x0, y1, z1) p(x0, y1, z2) p(x0, y1, z3)

 , (A.7)

Q =
( 1 p(z1) p(z2) p(z3)
p(yx1) p(yx1 , z1) p(yx1 , z2) p(yx1 , z3)
p(yx0) p(yx0 , z1) p(yx0 , z2) p(yx0 , z3)

)
, (A.8)

R =

 1 p(x1|u1) 0 p(x0|u1)
1 p(x1|u2) 0 0
1 0 p(x1|u3) p(x0|u3)
1 0 p(x1|u4) 0

 , S =

 1 p(z1|u1) p(z2|u1) p(z3|u1)
1 p(z1|u2) p(z2|u2) p(z3|u2)
1 p(z1|u3) p(z2|u3) p(z3|u3)
1 p(z1|u4) p(z2|u4) p(z3|u4)

 ,

(A.9)
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M =
( 1 1 1 1

1 1 0 0
1 0 1 0

)
, ∆ =

 p(u1) 0 0 0
0 p(u2) 0 0
0 0 p(u3) 0
0 0 0 p(u4)

 , (A.10)

we derive
P = R>∆S, Q = M∆S, (A.11)

where the notation “>” stands for a transposed vector/matrix. Since P is invertible from
Condition 3 in Theorem 1, from equation (A.11), R is given as the solution of the simultaneous
linear equation

QP−1R> = M. (A.12)
Letting ai and mi be the i-th column vector of the 3× 4 matrices QP−1 and M , respectively
(i = 1, . . . , 4), that is, QP−1 = (a1; a2; a3; a4) and M = (m1;m2;m3;m4). From equation
(A.12), since we have

QP−1R> = (a1; a2; a3; a4)R> = M = (m1;m2;m3;m4),
or, equivalently,

a1 + p(x1|u1)a2 + {1− p(x1|u1)} a4 = m1, a1 + p(x1|u2)a2 = m2,

a1 + p(x1|u3)a3 + {1− p(x1|u3)} a4 = m3, a1 + p(x1|u4)a3 = m4,

we derive
p(x1|u1)(a2 − a4) = m1 − a1 − a4, p(x1|u2)a2 = m2 − a1,

p(x1|u3)(a3 − a4) = m3 − a1 − a4, p(x1|u4)a3 = m4 − a1.

It shows that p(x1|uj) and p(x0|uj) = 1 − p(x1|uj) are identifiable since aj and mj are
identifiable (j = 1, . . . , 4) under Condition 3 in Theorem 1. In addition, note that we
have (R>)−1

P = ∆S from equation (A.11), and the first column of ∆S is given as
(p(u1), . . . , p(u4)). Thus, a comparison between the first column of (R>)−1P and ∆S
shows that p(u1), . . . , p(u4) are identifiable since both P and R are identifiable. Thus, PN,
PS, and PNS are identifiable since

p(x1, ui) = p(x1|ui)p(ui), p(x0, ui) = p(x0|ui)p(ui)
are identifiable from R, ∆ and P for i = 1, . . . , 4. �

A.2 Proof of Theorem 2

From Conditions 4 and 5 of Theorem 2, by the consistency property, we have

p(y1, z, w|x1) =
∑
i=1,2

p(w|x1, ui)p(z|ui)p(ui|x1), (A.13)

p(y1, z, w|x0) =
∑
i=1,3

p(w|x0, ui)p(z|ui)p(ui|x0), (A.14)

p(y0, z, w|x1) =
∑
i=3,4

p(w|x1, ui)p(z|ui)p(ui|x1), (A.15)

p(y0, z, w|x0) =
∑
i=2,4

p(w|x0, ui)p(z|ui)p(ui|x0), (A.16)

p(z, w|x1) =
4∑
i=1

p(w|x1, ui)p(z|ui)p(ui|x1), p(z, w|x0) =
4∑
i=1

p(w|x0, ui)p(z|ui)p(ui|x0),

(A.17)

p(y1|x1) =
∑
i=1,2

p(ui|x1), p(y1|x0) =
∑
i=1,3

p(ui|x0) (A.18)

for z ∈ {z1, . . . , z4} and w ∈ {w1, . . . , w4}. Then, for x ∈ {x1, x0}, letting

Px =

 1 p(z1|x) p(z2|x) p(z3|x)
p(w1|x) p(z1, w1|x) p(z2, w1|x) p(z3, w1|x)
p(w2|x) p(z1, w2|x) p(z2, w2|x) p(z3, w2|x)
p(w3|x) p(z1, w3|x) p(z2, w3|x) p(z3, w3|x)

 , (A.19)
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Qx =

 p(y1|x) p(y1, z1|x) p(y1, z2|x) p(y1, z3|x)
p(y1, w1|x) p(y1, z1, w1|x) p(y1, z2, w1|x) p(y1, z3, w1|x)
p(y1, w2|x) p(y1, z1, w2|x) p(y1, z2, w2|x) p(y1, z3, w2|x)
p(y1, w3|x) p(y1, z1, w3|x) p(y1, z2, w3|x) p(y1, z3, w3|x)

 , (A.20)

Rx =

 1 p(w1|x, u1) p(w2|x, u1) p(w3|x, u1)
1 p(w1|x, u2) p(w2|x, u2) p(w3|x, u2)
1 p(w1|x, u3) p(w2|x, u3) p(w3|x, u3)
1 p(w1|x, u4) p(w2|x, u4) p(w3|x, u4)

 , (A.21)

∆x =

 p(u1|x) 0 0 0
0 p(u2|x) 0 0
0 0 p(u3|x) 0
0 0 0 p(u4|x)

 , (A.22)

Mx1 =

 1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , Mx0 =

 1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 , (A.23)

S =

 1 p(z1|u1) p(z2|u1) p(z3|u1)
1 p(z1|u2) p(z2|u2) p(z3|u2)
1 p(z1|u3) p(z2|u3) p(z3|u3)
1 p(z1|u4) p(z2|u4) p(z3|u4)

 , (A.24)

we derive
Px = R>x ∆xS, Qx = R>x ∆xMxS for x ∈ {x1, x0}. (A.25)

Here, since both Px1 and Px0 are invertible from Condition 6 in Theorem 2, we obtain
P−1
x Qx = S−1MxS for x ∈ {x1, x0}, (A.26)

whose eigenvalues are 0 and 1. Then, letting Ex1 and Ex0 be 4× 4 matrices

Ex1 =

 e11 e12 0 0
e21 e22 0 0
0 0 e33 e34
0 0 e43 e44

 , Ex0 =

 e′11 0 e′13 0
0 e′22 0 e′24
e′31 0 e′33 0
0 e′42 0 e′44

 ,

the matrices of eigenvectors of P−1
x1
Qx1 and P−1

x0
Qx0 can be written by Ax1 = S−1Ex1 and

Ax0 = S−1Ex0 , respectively. Thus, we have
Ax1E

−1
x1

= S−1 = Ax0E
−1
x0
.

Letting A−1
x1

= (aij) and A−1
x1
Ax0 = (bij), from Ex1A

−1
x1
Ax0 = Ex0 and the first column of

Ex1A
−1
x1

= S, we have(
e11 e12
e21 e22

)(
a11 b11 b12

a21 b21 b22

)
=
(

1 e′11 0
1 0 e′22

)
,(

e33 e34
e43 e44

)(
a31 b31 b32

a41 b41 b42

)
=
(

1 e′31 0
1 0 e′42

) (A.27)

From equation (A.27), e21, e22, e43, and e44 are identifiable by noting the second row of each
of the following matrices:(

e11 e12
e21 e22

)
=
(

1 e′11
1 0

)(
a11 b11

a21 b21

)−1
,(

e33 e34
e43 e44

)
=
(

1 e′31
1 0

)(
a31 b31

a41 b41

)−1
.

(A.28)

Similarly, e11, e12, e33, and e34 are identifiable by noting the first row of each of the following
matrices: (

e11 e12
e21 e22

)
=
(

1 0
1 e′22

)(
a11 b12

a21 b22

)−1
,(

e33 e34
e43 e44

)
=
(

1 0
1 e′42

)(
a31 b32

a41 b42

)−1
.

(A.29)
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Thus, Ex1 is identifiable and thus Ex0 and S are identifiable from Ex1A
−1
x1
Ax0 = Ex0 and

Ex1A
−1
x1

= S, respectively.

Then, a comparison between the first row of Px1S
−1 and R>x1

∆x1 shows that
p(u1|x1), . . . , p(u4|x1) are identifiable since both Px1 and S are identifiable and the first
row of R>x1

∆x1 are given as (p(u1|x1), . . . , p(u4|x1)). Similarly, p(u1|x0), . . . , p(u4|x0) are
identifiable as ascertained through a comparison between the first row of Px0S

−1 and R>x0
∆x0 .

Since
p(ui) = p(ui|x1)p(x1) + p(ui|x0)p(x0),

the PN, PS, and PNS are identifiable for i = 1, . . . , 4. �

B Estimation

B.1 Estimation in Case 1

Let {(Xi, Yi, Zi)}ni=1 be a sample from the data generating process in Figure 1. In addition,
we observe W where {Z,W} satisfies the back-door criterion to relative to (X,Y ) and let
denote the sample as {Wi}ni=1. Let denote the maximum likelihood estimators of p(z|x),
p(y|x), p(w|z), p(y, z|x), and p(y|x, z, w) as p̂(z|x), p̂(y|x), p̂(w|z), p̂(y, z|x), and p̂(y|x, z, w)
for x ∈ {x1, x0}, y ∈ {y1, y0}, and z ∈ {z1, . . . , z4}, respectively. Then, since p(Yx = y|z) is
identifiable and is given by

p̂(Yx = y|z) =
∑
w

p̂(y|x, z, w)p̂(w|z), (B.1)

p(yx), p(yx, z1), p(yx, z2), and p(yx, z3) are also identifiable. We denote the estimators as
p̂(yx), p̂(yx, z1), p̂(yx, z2), and p̂(yx, z3). Let the plug-in estimators of P and Q denote as

P̂ =

 1 p̂(z1) p̂(z2) p̂(z3)
p̂(x1, y1) p̂(x1, y1, z1) p̂(x1, y1, z2) p̂(x1, y1, z3)
p̂(x1, y0) p̂(x1, y0, z1) p̂(x1, y0, z2) p̂(x1, y0, z3)
p̂(x0, y1) p̂(x0, y1, z1) p̂(x0, y1, z2) p̂(x0, y1, z3)

 , (B.2)

Q̂ =
( 1 p̂(z1) p̂(z2) p̂(z3)
p̂(yx1) p̂(yx1 , z1) p̂(yx1 , z2) p̂(yx1 , z3)
p̂(yx0) p̂(yx0 , z1) p̂(yx0 , z2) p̂(yx0 , z3)

)
. (B.3)

From the proof of Theorem 1 in the Supplementary Material A.1, given P and Q, the
identifiable matrix R satisfies

QP−1R> = M.

It means that R is a solution of the following minimization problem

minimize
Θ∈T

1
2‖QP

−1Θ> −M‖2F (B.4)

subject to 0 ≤ (Θ>)−1Pe1 ≤ 1, 1>(Θ>)−1Pe1 = 1, θ12 + θ14 = θ33 + θ34 = 1, (B.5)

where e1 = (1, 0, 0, 0)>, e2 = (0, 1, 0, 0)>, e3 = (0, 0, 1, 0)>, e4 = (0, 0, 0, 1)>, 1 = (1, 1, 1, 1)>
and
T := {Θ = (θij) ∈ GL4(R) : θi1 = 1, θ32 = θ42 = θ13 = θ23 = θ24 = θ44 = 0, and 0 ≤ Θ ≤ 1} .
Here, GL4(R) is the group of invertible 4× 4 matrices with entries in R and inequalities are
understood component-wise. The equation (B.5) is the condition in which the first column
of (Θ>)−1P is consistent with (p(u1), . . . , p(u4)).
We propose to estimate R as a solution of the following minimization problem by replacing
P and Q to P̂ and Q̂, respectively,

minimize
Θ∈T

1
2‖Q̂P̂

−1Θ> −M‖2F (B.6)

subject to 0 ≤ (Θ>)−1P̂e1 ≤ 1, 1>(Θ>)−1P̂e1 = 1, θ12 + θ14 = θ33 + θ34 = 1, (B.7)
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Following Bertsekas [2], let denote the augmented Lagrangians as

L(Θ; P̂ , Q̂, µ, µ1, µ2,λ)

= 1
2‖Q̂P̂

−1Θ> −M‖2F + µ
(

1>(Θ>)−1P̂e1 − 1
)

+ ρ

2

(
1>(Θ>)−1P̂e1 − 1

)2

+ µ1 (θ12 + θ14 − 1) + ρ

2 (θ12 + θ14 − 1)2 + µ2 (θ33 + θ34 − 1) + ρ

2 (θ33 + θ34 − 1)2

+
4∑
j=1

fj(Θ,λ, ρ), (B.8)

where µ, µ1, µ2, and λ = (λ1, . . . , λ4)> are the Lagrange multipliers and

fj(Θ,λ, ρ) = min
0≤e>

j
(Θ>)−1P̂e1−vj≤1

(
λjvj + ρ

2v
2
j

)

=


λj(e>j (Θ>)−1P̂e1 − 1) + ρ

2

∣∣∣e>j (Θ>)−1P̂e1 − 1
∣∣∣2 if λj + ρ(e>j (Θ>)−1P̂e1 − 1) > 1,

λje
>
j (Θ>)−1P̂e1 + ρ

2

∣∣∣e>j (Θ>)−1P̂e1

∣∣∣2 if λj + ρe>j (Θ>)−1P̂e1 < 1,

−λ
2
j

2ρ otherwise.
(B.9)

The multiplier iterations are given by

µ(t+1) = µ(t) + ρ(1>(Θ>)−1P̂e1 − 1), (B.10)

µ
(t+1)
1 = µ

(t)
1 + ρ(θ12 + θ14 − 1), (B.11)

µ
(t+1)
2 = µ

(t)
2 + ρ(θ33 + θ34 − 1), (B.12)

λ
(t+1)
j =


λ

(t)
j + ρ(e>j (Θ>)−1P̂e1 − 1) if λ(t)

j + ρ(e>j (Θ>)−1P̂e1 − 1) > 1,
λ

(t)
j + ρe>j (Θ>)−1P̂e1 if λ(t)

j + ρe>j (Θ>)−1P̂e1 < 1,
0 otherwise.

(B.13)

Then, the estimator of R is given by the solution Θ̂ of the following estimating equation
∂

∂ΘL(Θ; P̂ , Q̂, µ, µ1, µ2,λ) = 0. (B.14)

Algorithm 1 is an algorithm that provides the solutions of the optimization problem based
on the augmented Lagrangian method and the update rules via gradient descent. Here, α is
the fixed step size at the t-th iteration, T is the number of iterations, and Θ(0) is the initial
point. Once we obtain the estimator R̂ as the solution of the optimization problem (B.6),
the estimator of u = (p(u1), . . . , p(u4))> is given by

û = (R̂>)−1P̂e1.

For example, since PNS is the second component of u, we can estimate PNS as the second
component of û. Similarly, we can estimate causal risk difference as the difference between
the second and third components of û.

B.2 Estimation in Case 2

Let {(Xi, Yi, Zi,Wi)}ni=1 be a sample from the data generating process in Figure 2. Let denote
the maximum likelihood estimators of p(z|x), p(w|x), p(z, w|x), p(y|x), p(y, z|x), p(y, w|x),
and p(y, z, w|x) as p̂(z|x), p̂(w|x), p̂(z, w|x), p̂(y|x), p̂(y, z|x), p̂(y, w|x), and p̂(y, z, w|x) for
x ∈ {x1, x0}, y ∈ {y1, y0}, z ∈ {z1, . . . , z4}, and w ∈ {w1, . . . , w4}, respectively. Then, let
the plug-in estimators of Px and Qx denote as

P̂x =

 1 p̂(z1|x) p̂(z2|x) p̂(z3|x)
p̂(w1|x) p̂(z1, w1|x) p̂(z2, w1|x) p̂(z3, w1|x)
p̂(w2|x) p̂(z1, w2|x) p̂(z2, w2|x) p̂(z3, w2|x)
p̂(w3|x) p̂(z1, w3|x) p̂(z2, w3|x) p̂(z3, w3|x)

 , (B.15)
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Algorithm 1 Estimation of u = (p(u1), . . . , p(u4))> in Case 1.
Input: {(Xi, Yi, Zi,Wi)}ni=1, α, T , ρ
Output: û
1: Initialize Θ(0), µ(0) ← 0, µ(0)

1 ← 0, µ(0)
2 ← 0, and λ(0) ← 0

2: Calculate p̂(yx), p̂(yx, z1), p̂(yx, z2), and p̂(yx, z3) using equation (B.1)
3: Calculate P̂ and Q̂ using observational data {(Xi, Yi, Zi)}ni=1
4: for t = 0, 1, . . . , T − 1 do
5: θ

(t)
12 ← max{min{θ(t)

12 , 1}, 0}, θ
(t)
22 ← max{min{θ(t)

22 , 1}, 0}, θ
(t)
33 ← max{min{θ(t)

33 , 1}, 0},
θ

(t)
43 ← max{min{θ(t)

43 , 1}, 0}, θ
(t)
14 ← max{min{θ(t)

14 , 1}, 0}, θ
(t)
34 ← max{min{θ(t)

34 , 1}, 0}

6: Θ(t+1) ← Θ(t) − α ∂
∂ΘL(Θ; P̂ , Q̂, µ(t),λ(t))

∣∣
Θ=Θ(t)

7: µ(t+1) ← µ(t) + ρ(1>(Θ>)−1P̂e1 − 1)
8: µ

(t+1)
1 ← µ

(t)
1 + ρ(θ̂12 + θ̂14 − 1)

9: µ
(t+1)
2 ← µ

(t)
2 + ρ(θ̂33 + θ̂34 − 1)

10: for j = 1, . . . , 4 do
11: if λ(t)

j + ρ(e>j (Θ(t+1)>)−1P̂e1 − 1) > 1 then
12: λ

(t+1)
j ← λ

(t)
j + ρ(e>j (Θ(t+1)>)−1P̂e1 − 1)

13: else if λ(t)
j + ρe>j (Θ(t+1)>)−1P̂e1 < 1 then

14: λ
(t+1)
x1,j

← λ
(t)
j + ρe>j (Θ(t+1)>)−1P̂e1

15: else
16: λ

(t+1)
j ← 0; λ(t+1)

j ← 0
17: end if
18: end for
19: end for
20: R̂← Θ(T )

21: û← (R̂>)−1P̂e1

Q̂x =

 p̂(y|x) p̂(y, z1|x) p̂(y, z2|x) p̂(y, z3|x)
p̂(y, w1|x) p̂(y, z1, w1|x) p̂(y, z2, w1|x) p̂(y, z3, w1|x)
p̂(y, w2|x) p̂(y, z1, w2|x) p̂(y, z2, w2|x) p̂(y, z3, w2|x)
p̂(y, w3|x) p̂(y, z1, w3|x) p̂(y, z2, w3|x) p̂(y, z3, w3|x)

 (B.16)

for x ∈ {x1, x0}. From the proof of Theorem 2 in the Supplemental Material A.2, given Px
and Qx for x ∈ {x1, x0}, the identifiable matrix S satisfies

Px = R>x ∆xS, Qx = R>x ∆xMxS, (B.17)
thus, we have

SP−1
x Qx = MxS.

Because it means that S is a solution of the following minimization problem

minimize
Θ∈T

1
2‖ΘP

−1
x1
Qx1 −Mx1Θ‖2F + 1

2‖ΘP
−1
x0
Qx0 −Mx0Θ‖2F (B.18)

subject to 0 ≤ (Px1Θ−1)>e1 ≤ 1, 1>(Px1Θ−1)>e1 = 1, (B.19)
0 ≤ (Px0Θ−1)>e1 ≤ 1, 1>(Px0Θ−1)>e1 = 1, (B.20)

where

T :=

Θ = (θij) ∈ GL4(R) : θi1 = 1,
4∑
j=2

θij ≤ 1 for i = 1, . . . , 4 and 0 ≤ Θ ≤ 1

 ,

we propose to estimate S as a solution of the following minimization problem by replacing
Px and Qx to P̂x and Q̂x, respectively,

minimize
Θ∈T

1
2‖ΘP̂

−1
x1
Q̂x1 −Mx1Θ‖2F + 1

2‖ΘP̂
−1
x0
Q̂x0 −Mx0Θ‖2F (B.21)

6



subject to 0 ≤ (P̂x1Θ−1)>e1 ≤ 1, 1>(P̂x1Θ−1)>e1 = 1, (B.22)
0 ≤ (P̂x0Θ−1)>e1 ≤ 1, 1>(P̂x0Θ−1)>e1 = 1. (B.23)

Here, GL4(R) is the group of invertible 4× 4 matrices with entries in R and inequalities are
understood component-wise. The equations (B.19) and (B.20) are the conditions in which
the first row of PxΘ−1 is consistent with (p(u1|x), . . . , p(u4|x)) for x ∈ {x0, x1}.
Following Bertsekas [2], let denote the augmented Lagrangians as

L(Θ; P̂x1 , P̂x0 , Q̂x1 , Q̂x0 , µ,λx1 ,λx0)

=
∑

x∈{x1,x0}

1
2‖ΘP̂

−1
x Q̂x −MxΘ‖2F +

∑
x∈{x1,x0}

µ
(

1>(P̂xΘ−1)>e1 − 1
)

+
∑

x∈{x1,x0}

ρ

2

(
1>(P̂xΘ−1)>e1 − 1

)2
+

∑
x∈{x1,x0}

4∑
j=1

fx,j(Θ,λx, ρ), (B.24)

where µ and λx = (λx,1, . . . , λx,4)> are the Lagrange multipliers and

fx,j(Θ,λx, ρ) = min
0≤e>

j
(P̂xΘ−1)>e1−vj≤1

(
λx,jvj + ρ

2v
2
j

)

=


λx,j(e>j (P̂xΘ−1)>e1 − 1) + ρ

2

∣∣∣e>j (P̂xΘ−1)>e1 − 1
∣∣∣2 if λx,j + ρ(e>j (P̂xΘ−1)>e1 − 1) > 1,

λx,j(e>j (P̂xΘ−1)>e1) + ρ
2

∣∣∣e>j (P̂xΘ−1)>e1

∣∣∣2 if λx,j + ρ(e>j (P̂xΘ−1)>e1) < 1,

−λ
2
x,j

2ρ otherwise
(B.25)

for x ∈ {x1, x0}. The multiplier iterations are given by

µ(t+1) = µ(t) + ρ
(

1>(P̂xΘ−1)>e1 − 1
)
, (B.26)

λ
(t+1)
x,j =


λ

(t)
x,j + ρ(e>j (P̂xΘ−1)>e1 − 1) if λ(t)

x,j + ρ(e>j (P̂xΘ−1)>e1 − 1) > 1,
λ

(t)
x,j + ρe>j (P̂xΘ−1)>e1 if λ(t)

x,j + ρe>j (P̂xΘ−1)>e1 < 1,
0 otherwise.

(B.27)

Then, the candidate of the estimator of S is given by the solution Θ̂ of the following estimating
equation

∂

∂ΘL(Θ; P̂x1 , P̂x0 , Q̂x1 , Q̂x0 , µ,λx1 ,λx0) = 0. (B.28)

Algorithm 2 is an algorithm that provides the solutions of the optimization problem based on
the augmented Lagrangian method and the update rules via gradient descent. Here, α is the
fixed step size at the t-th iteration, T is the number of iterations, and Θ(0) is the initial point.
As we can see immediately, for the zero Θ̂ of the estimating equation (B.28), the any row
permutated matrix ΠΘ̂ is also the solution of the same estimating equation, where Π is the
permutation matrix. Therefore, we find the row permutated matrix ΠΘ, which achieve the
smallest losses and adopt the matrix as the estimator of S. Once we obtain the estimator Θ̂
as the solution of the optimization problem (B.21), the estimator of u = (p(u1), . . . , p(u4))>
is given by

û =
(

1
n

n∑
i=1

1{Xi = x1}

)
(P̂x1Θ̂−1)>e1 +

(
1
n

n∑
i=1

1{Xi = x0}

)
(P̂x0Θ̂−1)>e1.

B.3 Asymptotic normality

Following Yuan and Jennrich [5], we show the asymptotic normality of the estimators from
Algorithm 2.
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Algorithm 2 Estimation of u = (p(u1), . . . , p(u4))> in Case 2.
Input: {(Xi, Yi, Zi,Wi)}ni=1, α, T , ρ
Output: û
1: Initialize Θ(0), µ(0) ← 0, λ(0)

x1 ← 0 and λ(0)
x0 ← 0

2: Calculate P̂x1 , P̂x0 , Q̂x1 , and Q̂x0 using observational data {(Xi, Yi, Zi,Wi)}ni=1
3: for t = 0, 1, . . . , T − 1 do
4: for i = 1, . . . , 4 do
5: for j = 1, . . . , 4 do
6: θ

(t)
ij ← max{min{θ(t)

ij , 1}, 0}
7: if j > 2 then
8: θ

(t)
ij ← max{θ(t)

ij , 1−
∑j−1
j=2 θ

(t)
ij }

9: end if
10: end for
11: end for
12: Θ(t+1) ← Θ(t) − α ∂

∂ΘL(Θ; P̂x1 , P̂x0 , Q̂x1 , Q̂x0 , µ
(t),λ

(t)
x1 ,λ

(t)
x0 )
∣∣
Θ=Θ(t)

13: µ(t+1) = µ(t) + ρ(1>(P̂x(Θ(t+1))−1))>e1 − 1)
14: for j = 1, . . . , 4 do
15: if λ(t)

x1,j
+ ρ(e>j (P̂x1(Θ(t+1))−1))>e1 − 1) > 1 then

16: λ
(t+1)
x1,j

← λ
(t)
x1,j

+ ρ(e>j (P̂x1(Θ(t+1))−1)>e1 − 1)
17: λ

(t+1)
x0,j

← λ
(t)
x0,j

+ ρ(e>j (P̂x0(Θ(t+1))−1)>e1 − 1)
18: else if λ(t)

x,j + ρe>j (P̂x(Θ(t+1))−1))>e1 < 1 then
19: λ

(t+1)
x1,j

← λ
(t)
x1,j

+ ρe>j (P̂x1(Θ(t+1))−1)>e1

20: λ
(t+1)
x0,j

← λ
(t)
x0,j

+ ρe>j (P̂x0(Θ(t+1))−1)>e1
21: else
22: λ

(t+1)
x1,j

← 0; λ(t+1)
x0,j

← 0
23: end if
24: end for
25: end for
26: Π∗ ← arg min

ΠΘ

{
‖(ΠΘ(T ))P̂−1

x1
Q̂x1 −Mx1(ΠΘ(T ))‖2F

+ ‖(ΠΘ(T ))P̂−1
x0
Q̂x0 −Mx0(ΠΘ(T ))‖2F

}
27: Θ̂← Π∗Θ(T )

28: û← ( 1
n

∑n
i=1 1{Xi = x1})(P̂x1Θ̂−1)>e1 + ( 1

n

∑n
i=1 1{Xi = x0})(P̂x0Θ̂−1)>e1

Theorem B.1. Let

F (Θ;Px1 , Px0 , Qx1 , Qx0) = vec
(
∂

∂ΘL(Θ;Px1 , Px0 , Qx1 , Qx0 , µ,λx1 ,λx0)
)

and

J = ∂F (Θ;Px1 , Px0 , Qx1 , Qx0)
∂ vec(Θ)> , K = ∂F (Θ;Px1 , Px0 , Qx1 , Qx0)

∂ vec([Px1 ;Px0 ;Qx1 ;Qx0 ])> ,

where vec(·) is a vec operator that transforms a matrix into a column vector by verti-
cally stacking the columns of the matrix. For the asymptotic covariance matrix Σ of
vec
(

[P̂x1 ; P̂x0 ; Q̂x1 ; Q̂x0 ]
)

and û = p̂(x1)(P̂x1Θ̂−1)>e1 + p̂(x0)(P̂x0Θ̂−1)>e1 which is ob-
tained by Algorithm 2, when both J and J−1KΣK>J−> are invertible, we have

√
n(û− u0) d→ N (0,Σu)

for u0 = p(x1)(Px1Θ−1
0 )>e1 + p(x0)(Px0Θ−1

0 )>e1 around Θ0 that is one of the solutions of
F (Θ;Px1 , Px0 , Qx1 , Qx0) = 0, where

Σu =
[{
e>1 (p(x1)Px1 + p(x0)Px0)

}
⊗ I
] (
J−1KΣK>J−>

)−1
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×
[{
e>1 (p(x1)Px1 + p(x0)Px0)

}
⊗ I
]>

and the notation “−>” stands for a transposed inverse matrix.

Proof. For Θ̂ satisfying F (Θ; P̂1, P̂0, Q̂1, Q̂0, µ,λx1 ,λx0) = 0, from the Corollary 1 in Beni-
chou and Gail [1], we have

√
n
(

vec(Θ̂)− vec(Θ0)
)

d→ N
(
0, J−1KΣK>J−>

)
. (B.29)

Then, we have
√
n(û− u0)

=
√
n vec

(
p̂(x1)(P̂x1Θ̂−1)>e1 + p̂(x0)(P̂x0Θ̂−1)>e1

)
−
√
n vec

(
p(x1)(Px1Θ−1

0 )>e1 + p(x0)(Px0Θ−1
0 )>e1

)
= p̂(x1)

{(
e>1 P̂x1

)
⊗ I
}√

n vec(Θ̂−>) + p̂(x0)
{(
e>1 P̂x0

)
⊗ I
}√

n vec(Θ̂−>)

− p(x1)
{(
e>1 Px1

)
⊗ I
}√

n vec(Θ−>0 ) + p(x0)
{(
e>1 Px0

)
⊗ I
}√

n vec(Θ−>0 )

=
[
p̂(x1)

{(
e>1 P̂x1

)
⊗ I
}

+ p̂(x0)
(
e>1 P̂x0 ⊗ I

)]√
n vec(Θ̂−>)

−
[
p(x1)

{(
e>1 Px1

)
⊗ I
}

+ p(x0)
(
e>1 Px0 ⊗ I

)]√
n vec(Θ−>0 )

=
[{
e>1

(
p̂(x1)P̂x1 + p̂(x0)P̂x0

)}
⊗ I
]√

n vec(Θ̂−>)

−
[{
e>1 (p(x1)Px1 + p(x0)Px0)

}
⊗ I
]√

n vec(Θ−>0 )

=
[{
e>1

(
p̂(x1)P̂x1 + p̂(x0)P̂x0

)}
⊗ I
]√

n vec(Θ̂−> −Θ−>0 )

+
[{
e>1

(
p̂(x1)P̂x1 + p̂(x0)P̂x0

)}
⊗ I −

{
e>1 (p(x1)Px1 + p(x0)Px0)

}
⊗ I
]√

n vec(Θ−>0 ),

where ⊗ stands for the Kronecker product. Then, from P̂x
p→ Px, p̂(x) p→ p(x) for x ∈

{x1, x0}, and (B.29), we have
√
n(û− u0) d→ N (0,Σu)

from Slutsky’s lemma, where

Σu =
[{
e>1 (p(x1)Px1 + p(x0)Px0)

}
⊗ I
] (
J−1KΣK>J−>

)−1

×
[{
e>1 (p(x1)Px1 + p(x0)Px0)

}
⊗ I
]>
.

C Numerical Experiments

In this section, we investigate more properties of our proposed estimators through more numer-
ical experiments in addition to Section 5. Letting X, Y , Z,W , and U be discrete variables, we
consider the causal diagrams shown in Fig. 2, where the joint probabilities of (X,Y, Z,W,U)
are given according Table C.1. Note that the distribution of (p(u1), p(u2), p(u3), p(u4))
is unbalanced differently from Section 5. Under the situation where (X,Y, Z,W ) can be
observed but U can not, the properties of the proposed estimators p̂(u2) and p̂(u2)− p̂(u3) of
p(u2) and p(u2)− p(u3), respectively, are verified in the numerical experiments with sample
sizes n = 100, 200, 1000, and 5000.
Table C.2 and Fig. C.1 show the basic statistics and the box plots of p̂(u2) and p̂(u2)− p̂(u3)
for the above situations, respectively. The horizontal lines in Fig. C.1 show the true values of
p(u2) and p(u2)−p(u3). As seen from Table C.2, the sample means of p̂(u2) and p̂(u2)− p̂(u3)
are close to the true values and the sample standard deviations are smaller as the sample
size is larger. Thus, it seems that the proposed estimation method provides the consistent
estimators of p(u2) and p(u2)− p(u3). From Fig. C.1, the interquantile ranges for p̂(u2) and
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Table C.1: Conditional probability tables in another simulation.

(a) p(Z|U) (b) p(W |U) (c) p(Y = 1|X,U)
Z = 1 Z = 2 Z = 3 Z = 4 Z = 1 Z = 2 Z = 3 Z = 4 X = 1 X = 0

U = 1 7/10 1/10 1/10 1/10 7/10 1/10 1/10 1/10 1 1
U = 2 1/10 7/10 1/10 1/10 1/10 7/10 1/10 1/10 1 0
U = 3 1/10 1/10 7/10 1/10 1/10 1/10 7/10 1/10 0 1
U = 4 1/10 1/10 1/10 7/10 1/10 1/10 1/10 7/10 0 0

(d) p(X = 1|W,U) (e) p(U)
W = 1 W = 2 W = 3 W = 4

U = 1 21/46 18/43 18/43 18/43 5/16
U = 2 9/34 21/71 9/34 9/34 5/16
U = 3 9/34 9/34 21/71 9/34 5/16
U = 4 9/34 9/34 9/34 21/71 1/16

Table C.2: Basic statistics in case that u = (5/16, 5/16, 5/16, 1/16)>.
(a) p̂(u2) (b) p̂(u2)− p̂(u3)

n = 100 n = 200 n = 1000 n = 5000 n = 100 n = 200 n = 1000 n = 5000
Minimum 0.009 0.010 0.001 0.001 −0.942 −0.946 −0.961 −0.894

1st Quantile 0.194 0.214 0.257 0.272 −0.120 −0.093 −0.064 −0.060
Median 0.256 0.268 0.285 0.300 −0.014 −0.011 −0.014 −0.007
Mean 0.259 0.270 0.284 0.299 −0.034 −0.030 −0.044 −0.034
3rd 0.314 0.316 0.312 0.320 0.071 0.054 0.026 0.030

Maximum 0.895 0.900 0.853 0.872 0.866 0.888 0.802 0.796
s.e. 0.116 0.104 0.087 0.082 0.217 0.197 0.185 0.171

p̂(u2)− p̂(u3) are narrower and still include the true values even if the sample size is large.
In addition, the outliers would occur when it is difficult to judge that Condition 6 holds
from observed data. Here, note that p̂(u2) may be underestiamted differently from Section 5.
This is because p(u4) is truncated by zero for the finite sample size and p(u2) is greater than
p(u4) in the setting.

D Case study

We illustrate our results through the data set reported by LaLonde [4] and re-analyzed
by Dehejia and Wahba [3]. The aim of this study was to evaluate the effect on trainee
earnings of the National Supported Work (NSW) demonstration, a job training program, in
the field experiment. According to LaLonde [4], in this study, individuals were randomly
assigned to treatment (attendance) and control groups (non-attendance) with the estimates
that would have been produced by an econometrician, however it seem that the random
assignment was not successful. The data set used in this section is available from Dehejia’s
homepage (https://users.nber.org/~rdehejia/nswdata2.html). The sample size given
in the homepage is 445, and the variables of our interest are as follows:

X: an indicator for whether the individual attends the job training program (x1: “attend”;
x0: “not attend”),

Y : an indicator for whether the individual’s earning increment was increasing compared
between 1975 and 1978 (y1: “increasing”; y0: “not increasing”),

Z: a joint indicator for marriage status and high school degree (z1: non-zero earning in 1975
and “marriage”; z2: non-zero earning in 1975 and “no marriage”; z3: zero earning in
1975 and “marriage”; z4: zero earning in 1975 and “no marriage”),

W : an indicator for age in years (w1: age < 20; w2: 20 ≤ age < 27; w3: 27 ≤ age < 35; w4:
age ≥ 35).
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(a) Boxplots for PNS (b) Boxplots for causal risk difference

Figure C.1: Boxplots of estimates based on the proposed method in case that u =
(5/16, 5/16, 5/16, 1/16).

Table D.1: Estimates of PNS and causal risk difference in NSW dataset.
Estimate (95%CI)

PNS 0.297 (0.041, 0.704)
causal risk difference 0.061 (−0.612, 0.615)

Under the situation, we assume that the data generating process of this study is encoded in
Figure 2.
In the data set, the sample estimations of Px1 , Px0 , Qx1 , and Qx0 are given by

P̂x1 =

 1.000 0.141 0.568 0.049
0.205 0.011 0.189 0.000
0.416 0.054 0.195 0.022
0.254 0.038 0.135 0.022

 , P̂x0 =

 1.000 0.115 0.719 0.038
0.262 0.008 0.242 0.000
0.404 0.050 0.288 0.008
0.242 0.054 0.112 0.023

 ,

Q̂x1 =

 0.670 0.103 0.351 0.032
0.146 0.011 0.130 0.000
0.276 0.038 0.119 0.016
0.162 0.032 0.076 0.011

 , Q̂x0 =

 0.581 0.046 0.446 0.023
0.177 0.008 0.169 0.000
0.223 0.019 0.177 0.004
0.135 0.015 0.062 0.015

 ,

respectively. From these equations, it would be reasonable that Conditions 4 and 6 of
Theorem 2 hold. Then, under the assumption that Condition 5 of Theorem 2 holds, together
with Conditions 4 and 6, p(u1), p(u2), p(u3) and p(u4) are estimated as

p̂(u1) = 0.289, p̂(u2) = 0.297, p̂(u3) = 0.236, p̂(u4) = 0.177,
through the proposed estimation method, respectively. From these probabilities, PNS
p(u2) and the causal risk difference p(u2) − p(u3) are evaluated by p̂(u2) = 0.297 and
p̂(u2)− p̂(u3) = 0.061, respectively. Table D.1 shows the estimates of PNS and causal risk
difference with 95% confidential intervals. Here, the 2.5th and 97.5th percentiles of 1000
bootstrap replications of the estimates to derive the 95% confidential intervals1.
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