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APPENDIX A - ADDITIONAL DETAILS AND ANALYSIS

HARD- AND SOFTWARE DETAILS

This experiment was conducted on a server equipped with 4 Tesla P100 GPUs and 256GB of mem-
ory. All models in the experiment were implemented using PyTorch. The training process further
relied on CUDA 11.4, Python 3.8.10, and PyTorch 1.12.1 with Torchvision 0.13.1.

IMPLEMENTATION DETAILS

We employ StyleGAN2 (Karras et al. (2020)) with pre-trained weights from the FFHQ256 dataset
for style transfer. We trained three target models, ResNet-18 (He et al. (2016)), ResNet-152 (He et al.
(2016)), and DenseNet-169 Huang et al. (2017), on the CelebA dataset. They achieved accuracies
of 86.38%, 87.35%, and 85.39% respectively on the test set. The selected initial points z follow
a Gaussian distribution with a dimensionality of 512. We evaluate the attack using Inception-v3
(Szegedy et al. (2016) )and FaceNet (Schroff et al. (2015)) as evaluation models. We utilize Adam
optimizer (Kingma & Ba (2014)) with an initial learning rate of 0.001 and β=(0.9, 0.999). The joint
loss function is defined as Mgard = α1L2+α2Cosine+α3L1, where α1=0.5, α2=0.5, and α3=0.5.

Real Lable Label Restoration
Inference results Label Restoration Accuracy

[569] [569] 100.0%
[25,759] [25,759] 100.0%

[405,556,587] [405,556,587] 100.0%
[405,566,587,532] [405,566,587,914] 75.0%
[768,996,199,28] [768,199,224,87] 50.0%

[768,996,199,28,367] [768,199,367,224,87] 60.0%
[768,996,199,28,367,390] [768,199,367,390,224,87] 66.7%

[768,996,199,28,367,390,783] [768,199,367,390,224,87,539] 57.1%
[768,996,199,28,367,390,783,765] [768,199,367,390,765,224,87,539] 62.5%

Table 3: Accuracy in inferring multiple labels from the CelebA dataset.

ATTACK PARAMETERS

In this section, we provide a detailed description of the parameter settings used in FGL experiments.
To present the information more clearly, I have organized it into a table, as shown in Table 4.

Experiment Name Target Id Batch Size Multi-Seed Init-Point Epoch Vgrad Parameter
Ablation experiment [354, 788, 280, 556, 568] 5 5 3000−→4 70 1
Joint loss function random[30] 30 6 5000−→6 70 1
Different network architectures [354, 788, 280, 556, 568] 5 5 3000−→4 70 1
Gradient Regularization [556, 28, 379, 672, 81, 652, 718,848] 8 2 3000−→2 200 10−5,10−4,10−3,10−2,0.1,1
Comparison with the state-of-the-art [556, 28, 379, 672, 81, 652, 718,848] 1 2 3000−→2 70 1
Different Batch Size random[10,20,30,40,50,60] 10,20,30,40,50,60 6 5000−→6 70 1

Table 4: In the experiment, we configured various parameters.

LABEL INFERENCE

In our experiments, we observed a phenomenon different from previous research: label inference
poses unique challenges in the context of GIAs. Firstly, (Zhao et al. (2020)) is the first work to
introduce label inference in GIAs, demonstrating high accuracy in inferring labels for individual
samples. However, this approach is not suitable for large batches of data. To address this issue, (Yin
et al. (2021)) proposed a label inference technique that is effective for large batches and validated
its performance on the ImageNet dataset.

However, our experimental focus was on the CelebA dataset, consisting of 224× 224-pixel images
of faces. We directly applied the batch label inference method proposed by (Yin et al. (2021)), but
found it unsuitable for CelebA. While it performed well with a batch size 3 or smaller, achieving
100% inference accuracy, its performance degraded when the batch size exceeded 3, leading to a
decrease in inference accuracy. We also investigated the inference performance for different labels,
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as shown in Table 3. This had implications for our experiments. Consequently, when evaluating the
effectiveness of our method, we opted to use ground truth labels directly rather than employing the
label inference method.

APPENDIX B - ADDITIONAL EXPERIMENTS

RELATIONSHIP BETWEEN GRADIENT REGULARIZATION AND IMAGE QUALITY.

During the attack on the CelebA dataset, we encountered the issue of generated image gradients be-
ing too small, which made gradient matching challenging. To address this problem, we introduced
the technique of gradient regularization in our research, which enables better optimization by pro-
cessing gradients. However, we also observed that gradient regularization has an impact on image
quality. We conducted a preliminary quantitative analysis of the gradient normalization parameter
Vgrad, and the results are presented in Table 5. Additionally, we showcase the image performance
in Figure 8.

Vgrad
Image Reconstruction Metric

Top-1↑ Top-5↑ Dinc ↓ Dface ↓
10−5 1.00 1.00 1.00 0.71
10−4 1.00 1.00 0.66 0.72
10−3 0.00 1.00 0.86 0.86
0.01 1.00 1.00 0.41 0.86
0.1 1.00 1.00 0.58 0.71
1 1.00 1.00 0.46 0.62

Table 5: The Impact of Different Vgrad Parameters on Image Quality.

Figure 8: The Impact of Different Ngrad Parameters on Visual Image Quality.

In the experiment of gradient regularization technique, we tried different values of the regularization
parameter Vgrad ranging from 10−5 to 1. Surprisingly, setting higher values for the regularization
parameter did not negatively impact the image quality. On the contrary, higher parameter values
were found to be more favorable for the optimization process, leading to improved image quality
and higher similarity with real images. This is because both the gradient 4W and the pseudo-
gradient 4W ′ undergo normalization, which preserved the matching precision without significant
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degradation. Consequently, in our experiments, we selected a regularization parameter Vgrad = 1 for
gradient normalization.

Mgrad JOINT LOSS FUNCTION.

In the gradient matching task, Although we have demonstrated the effectiveness of the joint gradient
function through ablation experiments, we are eager to gain a deeper understanding of its underlying
mechanisms. We plan to further investigate how each individual regularization term in the joint
gradient function contributes to the attack, whether a specific regularization term plays a crucial
role independently, or if multiple regularization terms collaboratively generate the attack effect.
Additionally, we intend to explore which part of the regularization terms significantly influences
the attack results. we investigated the individual contributions of the components in the joint loss
function Mgrad = α1L2 + α2Cosine + α3L1 , as well as their combined effects. The results are
shown in Table 6 and Figure 9.

Mgrad
Image Reconstruction Metric

Top-1↑ Top-5↑ Dinc ↓ Dface ↓
L2 0.23 0.43 1.00 1.06
Cosine 0.40 0.70 0.92 0.98
L1 0.30 0.56 0.84 0.94
L2+Cosine 0.40 0.80 0.94 0.99
L2+L1 0.43 0.56 0.91 1.03
Cosine+L1 0.53 0.63 0.95 0.99
L2+Cosine+L1 0.53 0.80 0.89 0.91

Table 6: Comparing the Impact of Joint Gradient Matching Loss on Image Quality.

Figure 9: We conducted a study on the impact of different gradient matching loss functions on the
overall attack effectiveness. In the ablation experiments, we used bar charts to illustrate the influence
of different components, while for the complete joint function, we employed line charts to present
the results.

In the experiments with the joint gradient loss function, we observed that each individual regulariza-
tion term did not yield satisfactory results, with the cosine term slightly outperforming the others.
However, when combining two regularization terms, the combination of cosine and L1 produced
the best results. Surprisingly, the highest quality attack performance was achieved when all three
regularization terms were combined simultaneously. Therefore, we believe that in the joint gradient
loss function, the combined effect of multiple regularization terms plays a crucial role in achieving
the optimal attack performance, rather than relying solely on individual effects or simple stacking
of the terms.

FGL ON DIFFERENT DATA DISTRIBUTIONS

To validate the effectiveness of FGL in attacks under diverse data distributions, we not only con-
ducted attacks on the Celeba dataset using the FFHQ dataset, but also performed attacks under ex-
treme conditions using the significantly different MetFaces and AfhqDog datasets. The experimen-
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Figure 10: We conducted experiments using datasets (MetFaces and AfhqDog) with entirely differ-
ent data distributions from CelebA.

tal results, as shown in Figure 10, demonstrate a noticeable resemblance between images generated
from both the MetFaces and AfhqDog datasets and the real images. This affirms that FGL is capable
of learning feature distributions similar to real data from datasets with distinct data distributions.

Figure 11: Experiments were conducted on deeper models, ResNet-152 and DenseNet-169.

4



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

FGL ON DIFFERENT NETWORK ARCHITECTURES

We not only verified the effectiveness of FGL on ResNet-18, but also conducted performance tests
on deeper models, ResNet-152 and DenseNet-169, to assess its practical applicability. As shown
in Figure 11, the experimental results are evident: both ResNet-152 and DenseNet-169 demonstrate
remarkable performance in generating images highly similar to real ones.

FGL ON DOG DATASET

In addition to performing well on the facial dataset, FGL was also validated on an animal dataset.
We trained ResNet-18 as the target model using the Stanford Dogs dataset and utilized Animal
Faces-HQ Dogs (AFHQ Dogs) as the image prior to train the GAN. The experimental results are
shown in Figure 14.

In our study, we observed an interesting phenomenon: humans are less sensitive to subtle differences
in objects or animals, but more sensitive to variations in facial images. This heightened sensitivity
towards facial images can be attributed to the frequent exposure to diverse facial representations in
daily life, making us more attuned to facial changes. In contrast, for small animals like dogs, minor
differences may not capture as much attention. This phenomenon is evident in the experimental
examples we provide.

FGL ON FEDAVG

Differing from FedSGD, FedAVG (McMahan et al. (2016)) performs multiple local updates before
sending the model weights w to the server. In our experiments, we conducted multiple trials of
attacks on FedAVG using FGL. In the configuration of FedAVG, we defined some hyperparameters
for local updates. Here, E (epoch) represents the local epoch, It (iteration) denotes the number of
local updates, and bs (batch size) indicates the batch size for each local update. We conducted
experiments with different parameters, and the results are shown in Figure 12 and Table 7 .

E/It/bs Distance to Original Images
TOP-1 TOP-5 Dinc ↓ Dface ↓

E=1 It=8 bs=1 0.500 0.5 427 0.94
E=1 It=4 bs=2 0.375 0.625 398 1.00
E=2 It=8 bs=1 0.25 0.375 439 0.97
E=2 It=4 bs=2 0.5 0.5 449 1.14
E=3 It=8 bs=1 0.375 0.75 452 0.98
E=3 It=4 bs=2 0.25 0.25 502 1.10

Table 7: We conducted a series of FGL attack experiments with various parameters on FedAVG.
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Figure 12: Here are the qualitative experimental results of FGL on FedAVG with different parameter
settings.
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Figure 13: Provide more examples of large-batch attacks, with real images on the left and synthe-
sized images on the right.
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Figure 14: FGL conducted attacks on the Stanford Dogs dataset, with real images on the left and
synthesized images on the right.
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