
A Implementation and Algorithm details

A.1 Batched modularity

Activation weights w(l)
m can be calculated separately for each data point. However, in batched regimes

sometimes it can be assumed that module selection for samples in the same batch is likely to be
similar.1 This can be incorporated into LMC by redefining w(l)

m as:

w(l)
m =

1

Z(w)
softmax(γ(l), τ)m · µ(l)

w,m, (9)

µ(l)
w,m = Exi∈b

(
softmax(γ(l), τ ′)m

)
, (10)

where Z(w) is the normalization term, b denotes a batch of samples, τ and τ ′ are the temperature
hyperparameters. Lower τ ′ would results in a stronger bias towards the expected selection µ(l)

w .

A.2 Training with projection phase

The intuition behind the modular training with projection phase is the following: every time a new
module addition is triggered (using the mechanism proposed in § 3.1), we start by only adding
modules on the deepest layer — i.e. the one closest to the input. Then, in the projection phase,
we train this module for some time using the signal coming from the structural components of the
modules above (possibly combined with the training signal of the downstream task). Projection phase
makes sure that the learner first tries to efficiently reuse the existing modules (the once above the
newly added one) by trying to project it’s output into the representation space expected by those
modules. After some time the learner is allowed to add new modules again. If the previously added
module was not enough to incorporate the distribution shift that caused the previous module addition,
new module addition will be triggered in the layers above. We detail this procedure in the Algorithm 1
and 2. Additionally, for modules that recognize current input as outlier in the forward pass, we set
their contribution for the current batch to zero (ll.14 in Algorithm 2). This ensures that the newly
added modules get enough training signal to learn.

1E.g in case of locally stationary data distribution, samples seen together are likely to belong to the same task
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Algorithm 1: Modular training with projection
1 Require: k projection phase length, stream S, z-score

threshold z′

2 Initialize Learner Fθ,φ
3 for t = 0...|S| do
4 Dt ← get dataset for task t
5 for e = 0 ... total epochs do
6 foreach mini-batch b ∈ Dt do
7 X, y ← mini-batch of samples
8 ŷ, `str. ← Forward Model(Fθ,φ, X, z′, t)
9 if new module added in last k epochs then

// projection phase

10 ` = `(str.)

11 if use functional loss in projection then
12 `+ = L(fnc.)(ŷ, y)
13 else
14 ` = L(fnc.)(ŷ, y) + `(str.)

15 Update parameters θ, φ using∇θ,φ`
16 end
17 end
18 foreach module m ∈ F do
19 Fix structural parameter φ of module m
20 end
21 end

Algorithm 2: Forward Model
1 Require: Learner Fθ,φ with L layers, batch X , z-score

threshold z′, task index t
2 Output: logits ŷ, structural loss `(st.)

3 x(0) = X

4 `(str.) = 0
5 for l ∈ L do
6 Let M (l) denote a set of modules at layer l
7 Calculate:

8 γ(l) ∈ R|M
(l)|×|X| using Eq. 5,

9 w(l) ∈ R|M
(l)|×|X| using Eq. 9 or 6,

10 z(l) ∈ R|M
(l)|×|X| using Eq. 8, average over |X|

11 x(l) using Eq. 4
12 if t > 0 then
13 foreach m ∈M (l) do
14 if z(l)m > z′ then
15 if

module was added at layer l during task t
then

16 w
(l)
m = ~0 // does not use
outlier modules

17 else if
no module added in last k epochs
then
// not in the

projection phase
18 Fix all modules at layer l
19 Add a new free module to layer l
20 end
21 `(str.) = `(str.) −

∑
m sum{~γ(l)

m � ~w
(l)
m }

22 end
23 ŷ = x(L)

24 return ŷ, `(str.)

A.3 Structural component

In practice, we applied the log-operation to the structural loss for both choices of the structural
component, which resulted in a more stable training procedure.

A.3.1 Invertible architectures

Invertible architectures, such as the one proposed by Dinh et al. [21], can be used to model high-
dimensional density after mapping the data in a space with some desirable factorization properties.
We use this idea here to directly approximation of the activation likelihood of a module m. More
specifically, [37] show that maximizing the likelihood of a module under such invertible transforma-
tion is equivalent to minimizing the L2 norm of the output of structural component s(o;φm), yielding
the local structural objective:

L(str.)
m (x) = ||x||2. (11)

To satisfy the invertibility constraint [21] propose to split the input o into blocks of equal size o1 and
o2 and apply two, not necessarily invertible, transformations s1 and s2 as:

a1 = s1(o2;φ2,m) + o1,

a2 = s2(a1;φ1,m) + o2.
(12)

The output of structural component a is obtain through the concatenation of a1 and a2. Importantly,
the input and output of the structural component have the same dimensionality am, om ∈ Rk. The
inverse can be obtained as:

o2 = a2 − s2(a1;φ2,m),

o1 = a1 − s1(o2;φ1,m).
(13)

Intuitively, the invertibility constraint prevents a1 and a2 from collapsing to the solution of outputting
0-vectors, which would be useless.
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A.3.2 Other possible choices of structural component

The role of structural component in LMC is to detect in-distribution and out-of-distribution samples
for each module. It is natural to consider density estimates produced by deep generative models
(DGM) for this task. In this work we only considered a simple encoder-decoder based architecture
and a simple flow-model. Applying other more complex DGMs such as VAEs [45] or flow-based [10,
48] models might further improve the efficacy of local structural component. Nevertheless, such
models also come with their challenges, which include calibration difficulties as well as low data
efficiency [95].

A.4 Architecture details

Unless otherwise stated, we initialize the learner with a single module per layer, each learned consist
of 4 layers. The used architecture of each module is detailed in Table 2. For the CTrL experiments
we used invertible structural component for the task-specific output heads (classifiers) in task ID
agnostic LMC(A), while for feature extracting trunk we used an encoder-decoder architecture (i.e.
structural component tasked to reconstruct the module’s input).

Unless stated otherwise, architectures used for all baselines closely resemble the architecture used by
LMC. Thus, by default all baselines contain 4 layers with each layer’s architecture and parameter
count being equivalent to the architecture and the parameter count of the functional component of
an LMC module. In modular baselines (MNTDP, SG-F) each module corresponds to the functional
component of the LMC’s module. Some of the fixed capacity baselines in Table 1 (e.g. HAT, EWC,
Finetune L) where initialized with the layer width scaled up to match the parameter count of the
largest possible modular network (e.g. in case of linear growth with one new module per layer per
task the largest possible modular network in our framework would have 24 modules in a 6 tasks
sequence).

Functional component

Type layer F layer m #params. #out ch. stride padding kernel

Conv. 0 0 1792 64 1 2 3
Conv. 1-3 0 36928 64 1 2 3
Batch norm all 1 128 - - -
ReLu all 2 - - - -
Max. Pool all 3 - - - 2 2

Structural component (decoder)

Type layer F layer m #params. #out ch. stride padding kernel

ConvTranspose2d all 0 16448 64 2 2 2
Batch norm all 1 128 - - -
ReLu all 2 - - - -
Conv. all 3 65600 3 1 1 3
Sigmoid all 4 - - - -

Structural component (invertible)

Type layer F layer m #params. #input #output

Input L2 Norm. output head 0 - -
Linear output head 1 83232 288 288
Linear output head 1 83232 288 288

Table 2: Used architectures per module: column ’layer F’ refers to the index of the layer in the
modular learner F (i.e. 0 is the closes layer to the input), while ’layer m’ gives the layer index within
the module. Note, both linear layers in (c) are used in parallel as proposed in [21] (i.e. s1 and s2 from
Eq. 13).

A.5 Dealing with batch-norms and data normalisation

While batch normalization [38] is a useful device for accelerating the training of neural networks, it
comes with challenges when it comes to settings with shifting data distribution such as meta- [7] and
continual learning. Specifically, in continual learning when testing on the previously seen tasks after
new tasks have been learned, the batch norm will change its statistics resulting in forgetting even if
the parameters of the network have not been changed [31]. We highlight several ways to deal with it.
One way is to warm-up batch norm before testing on previous tasks by performing several forward
passes through the model with unlabeled test data to let batch norms “relearn” the task statistics.
This assumes that the test data is available in high quantity at test time (i.e. we cannot warm-up
batch-norm with a single test sample). Another way is to fix batch norms completely after a task has
been learned. In monolithic architectures, such fixing might limit the plasticity of the network and
prevent the learning of new tasks. In modular architectures, however, batch norms of frozen modules
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can be kept frozen while new module’s batch norms can keep learning resulting in a balance between
stability and plasticity. In monolithic architecture which are task-ID aware at test time, a separate
batch-norm layer can be used per task.

In modular methods we fixed the batch norms whenever the modules are fixed (e.g. after learning
a task in LMC and MNTDP). In HAT we used a separate batch-norm per task, as using a single
batch-norm resulted in high forgetting rates. For other non-modular methods (e.g. EWC, ER) we
used a single batch-norm layer for all tasks. Additionally, we observed that monolithic methods that
share batch-norms across tasks result in high forgetting rate if no data normalisation is performed
(and no batch-norm warm-up before testing). In the CTrL experiments we normalised tasks’ data
for all methods but LMC using statistics calculated on each task separately. In these experiments
LMC performed better on not normalised data. In the OOD generalization experiment on cMNIST
we normalised data also for LMC. Additionally, we performed batch-norm warm before testing in the
OOD experiments. In meta-CL (§ F) the batch norms do not keep the estimates of running statistics
(track_running_stats is set to False) and momentum is set to 1.

B Continual Transfer Learning (CTrL)

B.1 Streams used

As in [92], all input samples were reshaped to a 32 x 32 pixels resolution. We normalized for all
methods but LMC unless otherwise stated. We did not use any data augmentation techniques. The
datasets used for the first 5 streams are described in the Table 3, datasets used for the streams Slong30

and Slong are described in the Table 4 and Table 5.

STREAM T1 T2 T3 T4 T5 T6

S+
DATASETS CIFAR-10[49] MNIST[51] DTD[17] F-MNIST[98] SVHN[69] CIFAR-10
#TRAIN SAMPLES 4000 400 400 400 400 400
#VAL. SAMPLES 2000 200 200 200 200 200

S−
DATASETS CIFAR-10 MNIST DTD F-MNIST SVHN CIFAR-10
#TRAIN SAMPLES 400 400 400 400 400 4000
#VAL. SAMPLES 200 200 200 200 200 2000

Sin
DATASETS R-MNIST CIFAR-10 DTD F-MNIST SVHN R-MNIST
#TRAIN SAMPLES 4000 400 400 400 400 50
#VAL. SAMPLES 2000 200 200 200 200 30

Sout
DATASETS CIFAR-10 MNIST DTD F-MNIST SVHN CIFAR-10
#TRAIN SAMPLES 4000 400 400 400 400 400
#VAL. SAMPLES 2000 200 200 200 200 200

Spl
DATASETS MNIST DTD F-MNIST SVHN CIFAR-10
#TRAIN SAMPLES 400 400 400 400 4000
#VAL. SAMPLES 200 200 200 200 2000

Table 3: Details on the datasets and training/validation data amounts for the used streams [92].

B.2 Baselines and training details

We adopted the original soft-gating with fixed modules (SG-F) proposed by Mendez and Eaton
[63] in two ways: (1) instead or relying on a pool of initially pretrained modules shared across all
layers, we initialize a separate set of modules per layer. This is necessary in order to comply with the
experimental setup of CTrL which does not allow pretraining. (2) We used the expansion strategy
proposed in MNTDP [92] for SG-F, i.e. for each task different layouts with no or one new module
per-layer starting at the top layer are trained, the layout with the best validation accuracy is accepted.
The original expansion strategy of [63] is similar in spirit, yet relies on a module pool shared between
layers and an initial pretraining of modules, which allows training of only two parallel models: with
and without adding a single new module to the shared pool.

In SG-F(A) we share a single controller network among all tasks in the sequence. Thereby, the main
network still uses task IDs to select the task-specific output head. In the controller a single head
architecture is used to gate the modules. As modules are added to the learner, each head of the
controller used to gate each layer of the main learner is also expanded. This baseline showcases
forgetting in the controller if it is shared across tasks.

For HAT we used a separate batch-norm layer for each task. Using shared batch-norm resulted in
high forgetting rate for this method.
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TASK DATASET CLASSES # TRAIN # VAL # TEST

0 CIFAR10 DEER, TRUCK, DOG, CAT, BIRD 25 15 5000
1 MNIST MNIST 6 - SIX,0 - ZERO,7 - SEVEN,8 - EIGHT,4 - FOUR 5000 2500 4894
2 FASHION-MNIST COAT, BAG, TROUSER, DRESS, T-SHIRT/TOP 5000 2500 5000
3 SVHN SVHN 9 - NINE,8 - EIGHT,4 - FOUR,0 - ZERO,6 - SIX 25 15 5000
4 CIFAR100 WORM, POSSUM, AQUARIUM FISH, ORCHID, LIZARD 25 15 500
5 CIFAR10 FROG, AUTOMOBILE, CAT, TRUCK, DOG 5000 2500 5000
6 SVHN SVHN 3 - THREE,1 - ONE,5 - FIVE,4 - FOUR,7 - SEVEN 25 15 5000
7 MNIST MNIST 4 - FOUR,5 - FIVE,3 - THREE,2 - TWO,7 - SEVEN 5000 2500 4874
8 FASHION-MNIST SNEAKER, SANDAL, ANKLE BOOT, COAT, T-SHIRT/TOP 25 15 5000
9 FASHION-MNIST DRESS, COAT, ANKLE BOOT, BAG, TROUSER 5000 2500 5000
10 SVHN SVHN 3 - THREE,7 - SEVEN,0 - ZERO,1 - ONE,8 - EIGHT 25 15 5000
11 CIFAR100 OTTER, LEOPARD, BEETLE, RAY, BUTTERFLY 2250 1250 500
12 SVHN SVHN 6 - SIX,1 - ONE,9 - NINE,2 - TWO,0 - ZERO 25 15 5000
13 FASHION-MNIST SNEAKER, ANKLE BOOT, T-SHIRT/TOP, SANDAL, DRESS 5000 2500 5000
14 MNIST MNIST 5 - FIVE,1 - ONE,9 - NINE,7 - SEVEN,8 - EIGHT 5000 2500 4866
15 MNIST MNIST 5 - FIVE,6 - SIX,7 - SEVEN,9 - NINE,2 - TWO 25 15 4850
16 SVHN SVHN 4 - FOUR,0 - ZERO,1 - ONE,2 - TWO,7 - SEVEN 25 15 5000
17 FASHION-MNIST T-SHIRT/TOP, SNEAKER, SHIRT, TROUSER, SANDAL 25 15 5000
18 CIFAR10 CAT, FROG, BIRD, SHIP, DEER 5000 2500 5000
19 SVHN SVHN 9 - NINE,2 - TWO,8 - EIGHT,4 - FOUR,7 - SEVEN 25 15 5000
20 CIFAR10 SHIP, HORSE, DOG, TRUCK, CAT 25 15 5000
21 FASHION-MNIST SNEAKER, T-SHIRT/TOP, SHIRT, DRESS, PULLOVER 5000 2500 5000
22 CIFAR10 AIRPLANE, TRUCK, DEER, FROG, BIRD 5000 2500 5000
23 SVHN SVHN 2 - TWO,6 - SIX,4 - FOUR,1 - ONE,5 - FIVE 5000 2500 5000
24 MNIST MNIST 8 - EIGHT,3 - THREE,9 - NINE,4 - FOUR,7 - SEVEN 25 15 4956
25 SVHN SVHN 4 - FOUR,8 - EIGHT,2 - TWO,6 - SIX,7 - SEVEN 25 15 5000
26 SVHN SVHN 1 - ONE,4 - FOUR,7 - SEVEN,9 - NINE,2 - TWO 25 15 5000
27 CIFAR100 SWEET PEPPER, COCKROACH, MOTORCYCLE, TANK, ELEPHANT 25 15 500
28 SVHN SVHN 3 - THREE,2 - TWO,4 - FOUR,7 - SEVEN,1 - ONE 5000 2500 5000
29 CIFAR100 CHIMPANZEE, STREETCAR, WOLF, BEAVER, ROSE 25 15 500
30 CIFAR10 HORSE, AIRPLANE, DEER, AUTOMOBILE, TRUCK 25 15 5000
31 SVHN SVHN 5 - FIVE,8 - EIGHT,7 - SEVEN,4 - FOUR,3 - THREE 5000 2500 5000
32 FASHION-MNIST COAT, DRESS, SANDAL, PULLOVER, T-SHIRT/TOP 5000 2500 5000
33 CIFAR10 HORSE, SHIP, TRUCK, FROG, CAT 25 15 5000
34 CIFAR10 SHIP, DOG, BIRD, AIRPLANE, CAT 25 15 5000
35 CIFAR10 DEER, AIRPLANE, SHIP, TRUCK, AUTOMOBILE 5000 2500 5000
36 CIFAR100 BOY, BEAVER, WILLOW TREE, SHARK, TANK 25 15 500
37 SVHN SVHN 3 - THREE,4 - FOUR,9 - NINE,1 - ONE,8 - EIGHT 25 15 5000
38 SVHN SVHN 9 - NINE,4 - FOUR,5 - FIVE,3 - THREE,1 - ONE 25 15 5000
39 CIFAR10 FROG, AIRPLANE, CAT, DOG, TRUCK 25 15 5000
40 CIFAR10 SHIP, DEER, TRUCK, HORSE, BIRD 25 15 5000
41 FASHION-MNIST DRESS, SHIRT, TROUSER, COAT, SNEAKER 25 15 5000
42 CIFAR100 STREETCAR, BEAVER, TIGER, BUS, RACCOON 25 15 500
43 FASHION-MNIST COAT, BAG, DRESS, SNEAKER, SANDAL 25 15 5000
44 MNIST MNIST 5 - FIVE,9 - NINE,7 - SEVEN,6 - SIX,2 - TWO 5000 2500 4850
45 CIFAR100 HAMSTER, PINE TREE, COCKROACH, BOY, COUCH 25 15 500
46 MNIST MNIST 0 - ZERO,3 - THREE,2 - TWO,7 - SEVEN,9 - NINE 5000 2500 4980
47 FASHION-MNIST SANDAL, DRESS, COAT, TROUSER, BAG 25 15 5000
48 SVHN SVHN 0 - ZERO,8 - EIGHT,5 - FIVE,2 - TWO,1 - ONE 5000 2500 5000
49 CIFAR10 HORSE, FROG, AIRPLANE, DOG, SHIP 5000 2500 5000

Table 4: Details on the datasets and training/validation data amounts used for Slong (Part 1) [92].

For all task ID aware methods, the task ID was used either to select the task specific output head (as
in HAT, EWC or ER) or the task specific structure as in MNTDP (which includes the output head).
Thereby, we treat first and last tasks in S+, S−, Sin and Sout streams as tasks with different IDs.
This corresponds to the definition provided in [92], where the task ID is defined to correspond to the
sequential order of the task in the sequence.

We used Adam optimizer for all baseline methods but HAT [86]. Using Adam for HAT resulted in
more forgetting, which we believe is because HAT masks out only the gradients of some parameters
and does not effect Adam’s momentum.

Hyper-parameter and model selection was performed using average mean validation accuracy over
all tasks in the stream (stream level) with splits detailed in Table 3. When varying the seeds in the
provided experiments, we did not very the seed that effects data generation (CTrL Streams) but only
the seed that affected the algorithm, model initialization as well as data-loader’s batch sampling.

B.3 Metrics

Here we formally define metrics used in the experiments. These metrics are similar to the ones used
by Veniat et al. [92]. ∆ denotes the prediction accuracy of the predictor F . We use subscripts to
indicate the version of the parameters: e.g. θ1...t indicates the functional parameters of the learner
after it was continually trained on t tasks, while θT indicates the version of functional parameters
after learning only task T in isolation.
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TASK DATASET CLASSES # TRAIN # VAL # TEST

50 SVHN SVHN 9 - NINE,4 - FOUR,6 - SIX,5 - FIVE,2 - TWO 25 15 5000
51 SVHN SVHN 3 - THREE,6 - SIX,8 - EIGHT,9 - NINE,1 - ONE 25 15 5000
52 CIFAR100 CROCODILE, LION, BUTTERFLY, OTTER, HAMSTER 2250 1250 500
53 MNIST MNIST 9 - NINE,8 - EIGHT,6 - SIX,7 - SEVEN,3 - THREE 25 15 4932
54 MNIST MNIST 7 - SEVEN,3 - THREE,8 - EIGHT,4 - FOUR,2 - TWO 25 15 4956
55 SVHN SVHN 4 - FOUR,2 - TWO,6 - SIX,0 - ZERO,5 - FIVE 25 15 5000
56 CIFAR100 SEA, CHAIR, SNAKE, SPIDER, SNAIL 25 15 500
57 CIFAR100 BEETLE, TELEVISION, TABLE, PORCUPINE, CUP 25 15 500
58 CIFAR10 CAT, HORSE, FROG, TRUCK, AUTOMOBILE 25 15 5000
59 SVHN SVHN 8 - EIGHT,6 - SIX,1 - ONE,5 - FIVE,3 - THREE 25 15 5000
60 CIFAR10 BIRD, FROG, HORSE, SHIP, DEER 25 15 5000
61 MNIST MNIST 1 - ONE,9 - NINE,8 - EIGHT,7 - SEVEN,2 - TWO 25 15 4974
62 FASHION-MNIST DRESS, T-SHIRT/TOP, SANDAL, TROUSER, SNEAKER 25 15 5000
63 MNIST MNIST 6 - SIX,4 - FOUR,0 - ZERO,7 - SEVEN,8 - EIGHT 25 15 4894
64 SVHN SVHN 4 - FOUR,2 - TWO,7 - SEVEN,6 - SIX,3 - THREE 5000 2500 5000
65 CIFAR100 PEAR, SKYSCRAPER, SHARK, PLAIN, DOLPHIN 2250 1250 500
66 CIFAR10 FROG, BIRD, AIRPLANE, SHIP, HORSE 25 15 5000
67 CIFAR10 FROG, DEER, SHIP, HORSE, TRUCK 25 15 5000
68 CIFAR10 HORSE, DEER, TRUCK, AIRPLANE, DOG 25 15 5000
69 CIFAR100 SKUNK, ORCHID, CATTLE, SPIDER, LOBSTER 25 15 500
70 MNIST MNIST 3 - THREE,5 - FIVE,4 - FOUR,9 - NINE,1 - ONE 25 15 4874
71 SVHN SVHN 4 - FOUR,3 - THREE,1 - ONE,7 - SEVEN,5 - FIVE 25 15 5000
72 FASHION-MNIST COAT, DRESS, BAG, SANDAL, TROUSER 25 15 5000
73 FASHION-MNIST SANDAL, DRESS, ANKLE BOOT, PULLOVER, SHIRT 25 15 5000
74 MNIST MNIST 3 - THREE,2 - TWO,8 - EIGHT,6 - SIX,4 - FOUR 25 15 4914
75 CIFAR10 AIRPLANE, DOG, HORSE, BIRD, SHIP 25 15 5000
76 CIFAR10 AUTOMOBILE, HORSE, AIRPLANE, CAT, TRUCK 25 15 5000
77 FASHION-MNIST SANDAL, COAT, SHIRT, DRESS, ANKLE BOOT 25 15 5000
78 FASHION-MNIST TROUSER, T-SHIRT/TOP, SANDAL, SNEAKER, DRESS 25 15 5000
79 CIFAR100 LION, TURTLE, CUP, SHREW, ROSE 25 15 500
80 MNIST MNIST 2 - TWO,4 - FOUR,5 - FIVE,6 - SIX,1 - ONE 25 15 4832
81 CIFAR100 TURTLE, MOUNTAIN, KANGAROO, LOBSTER, CRAB 25 15 500
82 FASHION-MNIST SANDAL, SNEAKER, T-SHIRT/TOP, COAT, PULLOVER 25 15 5000
83 CIFAR100 PLAIN, SKYSCRAPER, BUTTERFLY, TRAIN, SEA 25 15 500
84 MNIST MNIST 9 - NINE,5 - FIVE,4 - FOUR,8 - EIGHT,2 - TWO 25 15 4848
85 SVHN SVHN 1 - ONE,7 - SEVEN,0 - ZERO,5 - FIVE,6 - SIX 25 15 5000
86 MNIST MNIST 2 - TWO,4 - FOUR,7 - SEVEN,3 - THREE,8 - EIGHT 25 15 4956
87 CIFAR10 SHIP, AUTOMOBILE, FROG, DOG, HORSE 25 15 5000
88 CIFAR100 CLOUD, SPIDER, TIGER, MOUSE, SNAKE 25 15 500
89 FASHION-MNIST DRESS, PULLOVER, T-SHIRT/TOP, BAG, SHIRT 25 15 5000
90 CIFAR10 AUTOMOBILE, TRUCK, CAT, DOG, HORSE 25 15 5000
91 MNIST MNIST 0 - ZERO,8 - EIGHT,9 - NINE,7 - SEVEN,5 - FIVE 25 15 4846
92 MNIST MNIST 3 - THREE,9 - NINE,7 - SEVEN,5 - FIVE,8 - EIGHT 25 15 4866
93 FASHION-MNIST BAG, COAT, T-SHIRT/TOP, ANKLE BOOT, TROUSER 25 15 5000
94 CIFAR100 CAMEL, TRACTOR, ORCHID, PEAR, AQUARIUM FISH 25 15 500
95 MNIST MNIST 2 - TWO,8 - EIGHT,9 - NINE,4 - FOUR,3 - THREE 25 15 4956
96 MNIST MNIST 9 - NINE,8 - EIGHT,4 - FOUR,0 - ZERO,7 - SEVEN 25 15 4936
97 FASHION-MNIST BAG, DRESS, SHIRT, SANDAL, PULLOVER 25 15 5000
98 CIFAR100 MOUSE, SNAIL, BED, TROUT, GIRL 25 15 500
99 FASHION-MNIST TROUSER, PULLOVER, SANDAL, T-SHIRT/TOP, ANKLE BOOT 25 15 5000

Table 5: Details on the datasets and training/validation data amounts used for Slong (Part 2).

Average accuracy on all tasks seen so far.

A =
1

T

T∑
t=1

E(x,y)∼Dt
[∆
(
F(x; θ1...T , φ1...T ), y)

)
] (14)

Forgetting — the average loss of accuracy on a task at the end of training as compared to the first
time the task was seen. Positive values indicate positive backward transfer.

F =
1

T − 1

T∑
t=1

E(x,y)∼Dt
[∆
(
F(x; θ1...T , φ1...T ), y

)
−∆

(
F(x; θ1...t, φ1...t), y

)
] (15)

Transfer — the difference in performance on the last (T ’th) task between the modular learner
trained on the entire sequence and an expert F ′ trained on the last task in isolation.

T = E(x,y)∼DT
∆
(
F(x; θ1...T , φ1...T ), y

)
−∆

(
F ′(x; θT ), y

)
(16)
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B.4 Transfer results CTrL

S− S+ Sin Sout

MODEL ACC t1 ACC t−1 T ACC t1 ACC t+1 T ACC t1 ACC t′1 T ACC t1 ACC t′′1 T

EXPERTS 65.5±0.7 41.8±1.0 0 41.3±2.9 65.6±0.5 0 98.5±0.2 76.9±4.9 0 65.9±0.6 43.5±1.6 0
MNTDP 63.0±3.6 56.9±5.1 15.1 43.2±0.7 65.9±0.8 0.3 98.9±0.1 93.3±1.6 16.4 65.0±1.2 57.7±1.7 14.2
LMC(¬A) 65.2±0.4 60.0±1.1 18.2 42.9±0.9 60.6±1.9 -4.7 98.7±0.1 92.5±7.6 15.6 65.2±0.2 59.8±1.1 16.3
LMC(A) 65.2±0.4 63.0±1.7 21.2 43.1±0.6 62.2±0.7 -3.4 98.7±0.1 88.3±1.6 11.4 65.5±0.6 42.0±21.9 -1.5
S.G+FX 64.9±0.4 49.1±7.3 7.3 43.1±0.4 61.7±1.7 -3.9 98.8±0.1 80.4±6.8 3.5 65.0±0.4 51.5±6.5 8.0

Table 6: Transfer results on the CTrL benchmark. We provide the accuracy of the first and the last
task on each of the streams. Additionally, we measure transfer T as the difference between the last
task’s accuracy of the model trained on the corresponding stream and an expert model trained on the
last task in isolation.

B.5 Module selection: CTrL

In Figure 6 we plot the average module selection of LMC for different streams of the CTrL [92]
benchmark after continual training on the corresponding stream. The plots correspond to the runs
with the best validation accuracy on the corresponding stream. We observe that for the S− stream
LMC reuses modules trained on the task 1 for the sixth task. On S+, when tested on task 1 and task
6 same modules are used, yet the two modules at the last layer correspond to the ones added when
learning task 6 (this task contains more training data than task 1). On Sin the last task reuses only the
last layer’s module from task 1 and several other modules on the previous layers from previous tasks.
Finally, for Spl stream, even though the tasks are unrelated, several modules are reused across the
tasks. Importantly, since LMC implements soft module selections strategy several modules can be
used together for the same batch of samples (see Eq. 6).

B.6 Ablation of threshold z′

To see how the z threshold influences the final number of modules (M) and the average (test) accuracy
over seen tasks (A) we report the A and M for LMC(¬A) on 4 streams with fixed hyperparameters
while only varying the threshold z′. In Figure 7a we plot the values of the threshold z′ on the
x-axis against average accuracy A on the y-axis: higher z′ leads to fewer modules being instantiated
resulting in lower average accuracy A. Additionally, in Figure 7b we plot the same runs but now
with number of modules on the x-axis and the average accuracy A on the y-axis. We identify the
number of modules and accuracy of the MNTDP baseline with dotted lines with the corresponding
stream colors in both plots. In Figure 7b we observe that LMC instantiates a comparable number of
modules as MNTDP in order to reach similar accuracy, with an exception of the Spl. stream, where
LMC tends to add mode modules to reach a similar accuracy.

C Long sequences hyperparameter search visualization

We plot number of modules against the average test accuracy over all seen tasks (A) in Figure 8 for
all executed hyperparameter search runs on both Slong30 and Slong sequences.

D Combining independent models

The aim of this experiment is to show the ability of independently trained LMC models to be
combined without fine-tuning, without loss in performance and also enabling positive transfer. In this
experiment the test set’s distributions of the cMNIST tasks are different from the training/validation
sets’ distributions (see § 4.3). We used oracle model selection choosing hyperparameters on the test
set. Note, that model selection is an unsolved challenge in the OOD generalization literature, where
selecting model using oracle strategies is sometimes excepted if the baselines methods are also tuned
using oracle strategies [30, 77].
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Figure 6: Average module selection for different streams at test time. Horizontal axis corresponds to
the layer number, vertical axis corresponds to the module index at a layer; darker color corresponds
to higher average activation strength (averaged over batches in the corresponding task).

E Compositional OOD generalization

Some examples of the raw samples used for this experiment are presented in Figure 10. Model
selection was performed assuming access to the test sets of the OOD tasks. As mentioned in § D,
this is sometimes an excepted strategy is settings in which test distribution is different from the train-
ing/validation distribution. Additionally, the input samples were normalized using statistics computed
on training set of each tasks, including the OOD tasks (for which no training was performed).

In the main paper we presented a version of LMC with omitted projection phase. More precisely
this means that the structural loss of the modules above was not propagated into the free modules on
the lower layers (closer to the input) and that module addition was allowed during the whole training
process.
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Figure 7: (a) Mean test accuracy A and number of modules M for different values of the threshold
hyperparameter z′ for LMC(¬A). Dotted lines mark the accuracy of MNTDP[92]. (b) Number of
modules (x-axis) against average accuracy A for runs with different threshold z′. Dotted lines mark
A and M for MNTDP[92] (best seen in color).
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Figure 8: Results on Slong and Slong30 sequences for different hyperparameter values for all executed
hyperparameter search runs (this is an expanded version of Figure 5).
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Figure 9: Average module selection per task on LMC3, which was constructed from plugging together
independently trained LMC1 (first 3 tasks) and LMC2 (last 3 tasks).
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Figure 10: Examples of samples from the used colored-MNIST dataset.

E.1 Module selection

In Figure 11 we plot average module selection per task for the compositional OOD generalization
setting.
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Figure 11: Average module selection per task for compositional OOD generalization setting presented
in § 4.2. Each column represents a task (e.g. 0vs.1 classification), each row corresponds to a digit-
background color combination. Each square represents a modular learner, x-axis is the layer, y-axis
is the modules at each layer. The color intensities correspond to the average activation strength of the
module when tested on the corresponding task (the darker the higher). B - stands for Background
and D - stands for digit (e.g. “B-Blue D-Black” stands for blue background and black digit). The
diagonal tasks (with red boarder) are seen during the continual training phase, after which the model
is evaluated on all 5 combinations of seen digit-background colors for each task. The last row
corresponds to the module selection for tasks with digit-background color combination which was
not seen during the continual learning phase (black background+blue digit).

F Continual meta-learning

In the continual meta-learning setting, a learner is exposed to tasks sampled from a sequence of
environments. The goal of this setting is to construct a learner that quickly (i.e. within a few steps
of gradient descent) learns tasks from new environments and relearns (or remembers) tasks from
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previously learned environments [41, 14, 34]. Methods applicable in this setting usually rely on
gradient-based meta-learning strategies based on MAML [24]. The goal of MAML is to learn a good
parameter initialization θ0 such that the learner can achieve low loss Lτ on a randomly sampled task
τ after a few steps of gradient descent. The objective of MAML can be formulated as [71]:

θ0 = argmin
θ

Eτ (Lτ (Ukτ (θ))), (17)

where where U is the operator that performs k inner-loop SGD updates starting with θ using data
samples from task τ . MAML has been extensively used in the few-shot learning scenario [94], where
similar tasks are sampled from a stationary distribution. However, as pointed out by Jerfel et al. [41],
it is unrealistic to assume the existence of a single set of meta-parameters that is close to all tasks in
heterogeneous settings with outliers and non-stationary task distributions. In such setting, dissimilar
tasks worsen generalization and non-stationarity causes catastrophic forgetting [46]. Instead of
learning a single set of meta-parameters for all the tasks, Jerfel et al. [41] propose to learn a set of
monolithic expert models, each representing a separate parameter initialization. The meta-learner
then leverages the connection between gradient-based meta-learning and hierarchical Bayes [29] for
selecting the most likely expert for the given task at hand. The probability of an expert to be selected
is calculated based on the inner-loss of each expert as well as a non-parameteric Dirichlet process
prior estimated in an online fashion.

Here, we construct two environment sequences. In the first one, the learner is meta-trained on a
sequence of Omniglot [50], MNIST [51] and fashion-MNIST [98] datasets — the OMF sequence. We
evaluate models in two settings. In the first setting, we report the average meta-test test accuracy over
the environments seen so far. In the second setting, models are evaluated on environment mixtures,
i.e. each test task is composed of samples from the environments learned so far. A possible mixture
task could contain classes 1 and 2 sampled from Omniglot, 2 and 3 from MNIST and class 5 sampled
from the fashion-MNIST environment. The second sequence of environments is constructed from
classes of the miniImagenet [79].

We compare to the following baselines. MAML: non-modular MAML [24]. MAML + ER: MAML
with experience replay — we maintain a memory buffer of tasks sampled from previously seen
environments, using a reservoir sampling procedure we retrieve a set of previously seen tasks which
we then add to the task batches used for meta-training on new environments; Meta-gating tries to
learn the relevance scores γ(l), used for gating, directly in the inner-loop. This is similar to soft-layer
ordering used in [63]; Experts: an upper bound where separate monolithic model is trained for each
environment and selected using the environment ID. We test LMCs with different levels of modular
granularity: LMCe refers to a model that trains separate experts, but expert selection is performed
using an expert-level structural component; LMCm is the modular LMC with module selection
performed at each layer (as described in § 3). In our experiments we meta-learn the structural
components: in the inner-loop we update functional parameters θm of all modules (also the fixed
ones) whereas the structural parameters φm are kept constant, in the outer-loop both functional and
structural parameters of the free modules are updated. Importantly, we do not apply the projection
phase in the meta-learning experiments. All experiments are performed in a 5-way 5-shot setting.

For LMCm we used encoder-decoder architectures in the miniImagenet experiments (§ F.3), while
for the OMF sequence the invertible structural component was used for the entire network. Note, that
task inference is done automatically using the provided meta-test train (query) data, hence, there is no
need to use multiple classification heads. For the OMF task sequence each module consists of a single
convolutional layer with 64 3x3 filters (padding 1), batch-normalization, ReLU activation function
and a max-pooling layer with the kernel-size of 2. This resembles the architecture introduced by Finn
et al. [24]. One epoch of meta-training consists of 100 meta-updates, each performed on a batch of
25 tasks (5-way, 5-shot). For the miniImageNet experiment, a single convolutional layer contains 32
filters. One epoch of meta-training performs 100 meta-updates, each on a batch of 4 tasks (5-way
5-shot regime). All learners contain 4 layers, non-modular (MAML, MAML+ER) learners do not
expand. In the “Experts” baseline, each expert network corresponds to a 4-layered net with a single
module per layer.

Model selection was performed using average meta-test validation accuracy over all environments.
We randomly selected 10% of the train datasets for validation purposes for MNIST and fMNIST
datasets. For these datasets we did not evaluate the meta-generalization ability of the model, since
the classes in meta-train and meta-test splits are the same. For the Omniglot dataset we selected 100
classes for validation purposes. We also flipped the background color of the Omniglot dataset to be

27



black, which corresponds to the background colors of the MNIST and fMNIST datasets. For the
miniImageNet dataset we split the 100 classes in 64-train/16-validation/20-test as in [79].

F.1 Module addition continual meta-learning.

In this section we explain some details about the adaptation of LMC’s expansion strategy (§3.1) for
continual meta-learning.

The decision about module addition can be made per sample, per task, or per batch of tasks. In the
per sample case, a new module is added whenever a sample is regarded as an outlier by all modules at
a layer. In the per task case, a new module is added whenever the average z-score for a task is larger
than a threshold. In the per batch of tasks case, the average z-score is calculated over a batch of tasks.
In our experiments we found that adding new modules on a per batch of tasks base yields the best
efficacy in the continual meta-learning setting.

We do not freeze the modules at the environment switch, but create a checkpoint of each non-frozen
(free) module. Thus, modules are allowed to learn in the outer loop until the module addition is
triggered. Whenever the module addition is triggered at a layer, the existing free module is dropped
back to its state from the most recent checkpoint (i.e. its state at last environment switch).

F.2 OMF results

Results on OMF are shown in Figure 12. These results suggest that LMC can successfully avoid
catastrophic forgetting achieving final average accuracy comparable to the experience replay (MAML
+ ER) baseline. This can be mainly attributed to the fact that learned modules at a layer are frozen
every time a new module is added — modules are not updated on new tasks if these tasks have
triggered module addition and thus were recognized as outliers at a given layer.
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Figure 12: Results on the OMF sequence.
Vertical dashed lines mark the environ-
ment switches.

Results with mixtures of tasks are in Figure 12b. We
find that LMC attains better performance than the other
baselines. The performance improvement is due to LMC
assigning modules on a per-sample basis in each forward
pass, effectively guiding the inner- and outer-loop gradi-
ents of the meta-training procedure to the modules with
higher activation on the current input. This contrasts the
selection mechanism proposed by [41] for mixture-of-
experts, where estimating the probability of each expert
involves computation of the inner-loss which can be per-
formed only on a per-task level.

While replay slightly underperforms LMC on the mixture
task, MAML is unable to reach high accuracy due to catas-
trophic forgetting. Regarding the experts baseline, each
expert only specializes on one of the three environments,
which results in low performance on the mixture-task.

In Figure 13 we show how the meta-test test accuracies
evolve over the course of continual meta-training for each
environment of the OMF sequence. Additionally, in Fig-
ure 14 we plot the average module selection at meta-test
test time on the OMF sequence after the entire sequence
has been learned.

F.3 Additional miniImagenet results.

In this section we present additional results on the evolving miniImagenet sequence where, similarly
to [41], each environment is obtained through application of filters ‘blur’, ‘pencil’ and ‘night’.
Figure 16 plots per environment accuracy of each method that results in the average accuracy over
the environments seen so far depicted in Figure 15 (a).

Additionally, we design a mixture-task baseline as follows: we select randomly 5 classes from the
miniImageNet dataset, sample datapoints for these 5 classes from each of the environments seen so
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Figure 13: Meta-test test accuracy on the OMF task sequence. Each row shows accuracy on a specific
environment, the training time on each environment is highlighted with white background. We also
report the average accuracy over all environments at the end of training in the legend (ACC). For
this experiment the modular learner (LMCm) was trained using inevitable network as structural
component (5-way 5-shot).
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Figure 14: Average module selection of LMCm for a selected run on the OMF task sequence (after
continual meta-CL training has been complete on the entire sequence).
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Figure 15: Meta-test test results on the sequence of miniImagenet environments. Vertical lines mark
environment switches.

far (i.e. all three at the end of the sequence) to build tasks. Hence, a single mixture task for each
class will contain samples from each environment seen so far. The learner is then meta-tested on
these tasks. This is different from the mixture task designed for the OMF sequence, where classes
from different environments were mixed. We present the results on the mixture task in Figure 15(b).
We observe that MAML+ER baselines outperforms other learners in this evaluation setting. We
hypothesize that poor performance of LMC in this setting is due to the batched modularity procedure
(§A.1), where biasing module activation towards majority activation withing the batch of may harm
performance, since each batch contains samples from all environments seen so far.
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Figure 16: Meta-test test accuracy on the evolving miniImageNet task sequence. Each row shows
accuracy on a specific environment, the training time on each environment is highlighted with white
background. For this experiment the modular learners (LMCm and LMCe) were trained using decoder
as structural component tasked to reconstruct modules’ inputs (5-way 5-shot).

G Limitations

We identify three main limitations of LMC. The first one is that its computational footprint is not
constant with respect to the number of tasks. This is caused by the fact that each forward path through
the modular learner requires a forward pass through each module in order to obtain the local relevance
scores. Potentially, this can be overcome by assuming local stationarity and using the same modules
for several consecutive batches of samples. On the other hand, this might not be a big problem at all:
we think of each module as an independent entity that can be executed on it’s own dedicated device,
in which case at each layer each module’s computations can be executed in parallel. The recent trend
towards shifting from monolithic to modular architectures can accelerate the development of such
hardware devices.

Another limitation of LMC is the lack of direct communication between modules at the same layer,
which was shown to be important in some situations such as when different physical processes
interact [27, 28]. While explicitly modeling such communication is an interesting direction for the
future work, the consolidation of modules through weighed sum in Eq. 4 can be though of as a form
of implicit communication, i.e. a form of a shared workspace similar to the one presented in [28].
It is however questionable whether cross-module communication is of any benefit in a standard
supervised-learning settings.

Additionally, as discussed in § 4.4, module selection becomes challenging for LMC in presence of
large number of candidate modules resulting in lower accuracy on long task sequences as compared
to oracle based sleection strategy implemented in MNTDP [92].

Finally, in its working LMC relies on the local OOD detector as well as a generative model as it’s
structural component. Several recent works have shown that deep generative models often mistakenly
assign high likelihood values to outlier points [68, 36, 95]. Hence, LMC’s success depends on
overcoming these issues through innovation in the fields of OOD detection and generative modeling.

H Broader societal impact

This work aimed at leveraging modularity and compositionality for continual learning (CL). The goal
of CL is to design systems capable to retain knowledge and transfer knowledge across tasks. Such
systems can positively impact society in the following ways: (i) models able to retain knowledge
withing neural connections do not require storing raw samples in a replay buffer, yielding systems that
are more compliant with data privacy standards. (ii) Positive transfer of knowledge across tasks can
result in more resource efficient training. (iii) Building modular systems can further improve resource
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efficiency: e.g. as shown in the experiment in § 4.3 several modular systems can be combined in a
third system without any retraining.

We do not identify any potential negative societal impacts of this work in particular beyond the
potential negative societal impacts of artificial learning systems in general, which include the risk of
decision bias, loss of certain jobs due to automation, risk of increased vulnerability to hacker attacks
to name a few.
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