A Appendix A

Inference Suppose S : X — R is a continuous set function w.r.t Hausdorff distance dg (-, -).
Ve > 0, for any function f and any invertible map P : X — R"™, 3 function h and g, such that for
any X € X:

IS(X) = g( P {f(@) + hi) : 2 € X})| < (10

That is: a Hausdorff continuous function S(X) can be arbitrarily approximated by a function in the
formg( P {f(w) +h(z) : z € X})

Proof. As shown in Theorem 1, Ve > 0, for any invertible map P : X — R", 3 function o, g, such
that for any X € X
[S(X) — g(X]EDX{U(w) xeX})<e. (11)

For any function f(x), take h(x) = o(x) — f(x), one can derive that:

IS(X) — g( P {f(x) +h(x) ;= € X})| <= (12)

This means S(X) can be arbitrarily approximated by a function in the form g(XPX{ f(x) + h(z) :
€

xeX}).

This completes the proof. O

Theorem 2. The Instances in the bag are represented by random variables ©1,0a,...,0,,
the information entropy of the bag under the correlation assumption can be expressed as
H (01,09,...,0,), and the information entropy of the bag under the i.i.d. (independent and
identical distribution) assumption can be expressed as 2::1 H (©y), then we have:

H(01,0,,...,0,) =Y H(O;]01,...,0, 1)+ H(0:) <> H(O). (13)
t=2 t=1
Proof. The Instance in the data source is represented by random variables ©1, ..., ©,, and the joint
distribution function is p (61,...,0,). The information entropy of data source under correlation
assumption can be expressed as H (O1,...,0,,), then we have:
H(@l,...7@n):— Z p(91770n)10gp(91779n)
01,.e.\0n €O
== Y PO 00)10g (O, 00 1) P (O | 61,00 1)]
01,...,0n €O
== Y p(br,....00)log { [Hp (0] 61, ,et_l)] p(91>}
01,0, €07 t=2 (14)

==Y | > p(br,....0)10gpO,]61,...,001)| — > p(61)logp(6:)
t=2 |0,...,0,€0" 0,€9

n

—S H(©,]61,...,0,1) + H (O1) siH(Gt)

n
Here > H (©) is the information entropy of the data source under the i.i.d. assumption. Therefore,
t=1
it is proved that the information source under the correlation assumption has smaller information
entropy. In other words, correlation assumption reduces the uncertainty and brings more useful
information.

This completes the proof. O
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B Appendix B

Transformer based MIL. Given a set of bags {X;,Xo,...,X,}, and each bag X, contains
multiple instances {@; 1, ®;2,...,%; } and a corresponding label Y;. The goal is to learn the
mappings: X — T — Y, where X is the bag space, T is the Transformer space and ) is the label
space. The mapping of X — T can be defined as:

X7 = (@i ctass; [(®i1); F(®i2); 5 [(@in)] + Epos, XY, Epps € RFDXE (15)
Q' =X""W,, K'=X"'Wg, VI=XT'wy, (=1...L  (16)
head = SA(Q*, K*, V%) = softmax (Qé\(/lg)T> AAR (=1...L (17)

q
MSA(Qf, K*, V*) = Concat(head;, heads, ..., head,)W?, (t=1...L  (18)
X4 = MSA(LN(X!1) + X071 (=1...L (19

where Wg € R¥¥, Wy € R4 Wy € Ri*¥d W, € RMv*d head € ROFUXdw GA
denotes Self-attention layer, L is the number of MSA block[35], h is the number of head in each
MSA block and Layer Normalization (LN) is applied before every MSA block.

The mapping of T — ) can be defined as:
¥ = MLP(LN((X5)™)), (20)

where (XiL)(O) represents class token. The mapping of T — ) can be finished by using class token
or global averaging pooling. Obviously, the key to Transformer based MIL is how to design the
mapping of X — T. However, there are many difficulties to directly apply Transformer in WSI
classification, including the large number of instances in each bag and the large variation in the
number of instances in different bags (e.g., ranging from hundreds to thousands). In this paper we
focus on how to devise an efficient Transformer to better model the instance sequence.
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