A PROOFS

Proof of Lemmal[3l

Proof. We construct p inductively as follows. For a product node, we have p(t) = po(to)p1 (1), and so
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where the first equality follows from definition, the second from the hypothesis, the third from algebra, and the final from
definition. For a sum node, we have p(t) = Y, w;p;(t), and so
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where the equalities follow, respectively, from definition, assumption, commutativity of addition, and definition.

For leaf nodes, it suffices to consider only univariate leaves that are children of sums; for any leaf a child of a product node,
add a sum node with weight 1 between them. Then, for a univariate child of a sum node with scope the singleton {i}, we
have either p(z;) = ¢, and so
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or p(x;) = x;, in which case

plti) = > plas) [J(1—2t;) =27"(1 - 22;). (12)
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