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A Further Details on the Experimental Setup

A.1 Task Descriptions

We consider a total of 9 continuous control tasks from 3 benchmarks: ManiSkill2 (Gu et al., 2023), ManiSkill3
(Tao et al., 2024), and Adroit (Rajeswaran et al., 2017). This section provides detailed task descriptions on
overall information, task difficulty, object sets, state space, and action space. Some task details are listed in
Table 8.

Table 8: We consider 9 continuous tasks from 3 benchmarks. We list important task details below.

Task State Obs Dim Cstate Act Dim Ca Max Episode Step
ManiSkill3: PushT 31 7 100
ManiSkill3: RollBall 44 4 80
ManiSkill2: StackCube 55 4 200
ManiSkill2: TurnFaucet 43 7 200
ManiSkill2: PushChair 131 20 200
Adroit: Door 39 28 300
Adroit: Pen 46 24 200
Adroit: Hammer 46 26 400
Adroit: Relocate 39 30 400

A.1.1 ManiSkill2 Tasks

StackCube

• Overall Description: Pick up a red cube and place it onto a green one. See Figure 6 for episode
visualization.

• Task Difficulty: This task requires precise control. The gripper needs to firmly grasp the red cube
and accurately place it onto the green one.

• Object Variations: No object variations

• Action Space: Delta position of the end-effector and joint positions of the gripper.

• State Observation Space: Proprioceptive robot state information, such as joint angles and velocities
of the robot arm, and task-specific goal information

• Visual Observation Space: one 64x64 RGBD image from a base camera and one 64x64 RGBD image
from a hand camera.

Figure 6: StackCube Episode Visualization.

TurnFaucet

• Overall Description: Turn on a faucet by rotating its handle.

• Task Difficulty: This task needs to handle object variations. See Figure 7 for episode visualization.
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• Object Variations: We have a source environment containing 10 faucets, and the dataset is collected
in the source environment. w/o g means the agent directly interacts with the source environment
online; w/ g means the agent interacts with the target environment online, which contains 4 novel
faucets.

• Action Space: Delta pose of the end-effector and joint positions of the gripper.

• State Observation Space: Proprioceptive robot state information, such as joint angles and velocities
of the robot arm, the mobile base, and task-specific goal information.

Figure 7: TurnFaucet Episode Visualization.

PushChair

• Overall Description: A dual-arm mobile robot needs to push a swivel chair to a target location
on the ground (indicated by a red hemisphere) and prevent it from falling over. The friction and
damping parameters for the chair joints are randomized. See Figure 8 for episode visualization.

• Task Difficulty: This task needs to handle object variations.

• Object Variations: We have a source environment containing 5 chairs, and the dataset is collected
in the source environment. w/o g means the agent directly interacts with the source environment
online; w/ g means the agent interacts with the target environment online, which contains 3 novel
faucets.

• State Observation Space: Proprioceptive robot state information, such as joint angles and velocities
of the robot arm, task-specific goal information.

• Visual Observation Space: three 50x125 RGBD images from three cameras 120◦ apart from each
other mounted on the robot.

Figure 8: PushChair Episode Visualization.

A.1.2 ManiSkill3 Tasks

PushT

• Overall Description: It is a simulated version of the real-world push-T task from Diffusion Policy:
https://diffusion-policy.cs.columbia.edu/. In this task, the robot needs to precisely push the T-
shaped block into the target region, and move the end-effector to the end-zone which terminates the
episodes. The success condition is that the T block covers 90% of the 2D goal T’s area. See Figure 9
for episode visualization.

• Task Difficulty: The task involves manipulating a dynamic T-shaped object, which introduces non-
linear dynamics, friction, and contact forces.

• Object Variations: No object variations.
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• Action Space: Delta pose of the end-effector and joint positions of the gripper.

• State Observation Space: Proprioceptive robot state information, such as joint angles and velocities
of the robot arm, and task-specific goal information.

• Visual Observation Space: one 64x64 RGBD image from a base camera.

Figure 9: PushT Episode Visualization. The T-Block is pushed from sampled initial configuration to the
goal area.

RollBall

• Overall Description: A task where the objective is to push and roll a ball to a goal region at the other
end of the table. The success condition is that The ball’s xy position is within goal radius (default
0.1) of the target’s xy position by euclidean distance. See Figure 10 for episode visualization.

• Task Difficulty: The task involves manipulating a dynamic ball, which introduces non-linear dynam-
ics, friction, and contact forces.

• Object Variations: No object variations.

• Action Space: Delta position of the end-effector and joint positions of the gripper.

• State Observation Space: Proprioceptive robot state information, such as joint angles and velocities
of the robot arm, and task-specific goal information.

• Visual Observation Space: one 64x64 RGBD image from a base camera.

Figure 10: Rollball Episode Visualization. The blue ball is pushed and rolled from sampled initial configu-
ration to the target red circle.

A.1.3 Adroit Tasks

Adroit Door

• Overall Description: The environment is based on the Adroit manipulation platform, a 28 degree of
freedom system which consists of a 24 degrees of freedom ShadowHand and a 4 degree of freedom
arm. The task to be completed consists on undoing the latch and swing the door open. See Figure 11
for episode visualization.

• Task Difficulty: The latch has significant dry friction and a biass torque that forces the door to
stay closed. No information about the latcch is explicitly provided. The position of the door is
randomized.

• Object Variations: No object variations.

• Action Space: Absolute angular positions of the Adoit hand joints.
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Figure 11: Door Episode Visualization.

• State Observation Space: The angular position of the finger joints, the pose of the palm of the hand,
as well as state of the latch and door.

• Visual Observation Space: one 128x128 RGB image from a third-person view camera.

Adroit Pen

• Overall Description: The environment is based on the Adroit manipulation platform, a 28 degree of
freedom system which consists of a 24 degrees of freedom ShadowHand and a 4 degree of freedom
arm. The task to be completed consists on repositioning the blue pen to match the orientation of
the green target. See Figure 12 for episode visualization.

• Task Difficulty: The target is also randomized to cover all configurations.

• Object Variations: No object variations.

• Action Space: Absolute angular positions of the Adroit hand joints.

• State Observation Space: The angular position of the finger joints, the pose of the palm of the hand,
as well as the pose of the real pen and target goal.

• Visual Observation Space: one 128x128 RGB image from a third-person view camera.

Figure 12: Pen Episode Visualization.

Adroit Hammer

• Overall Description: The environment is based on the Adroit manipulation platform, a 28 degree of
freedom ShadowHand and a 4 degree of freedom arm. The task to be completed consists on picking
up a hammer with and drive a nail into a board. See Figure 13 for episode visualization.

• Task Difficulty: The nail position is randomized and has dry friction capable of absorbing up to 15N
force.

• Object Variations: No object variation.

• Action Space: Absolute angular positions of the Adroit hand joints.

• State Observation Space: The angular position of the finger joints, the pose of the palm of the hand,
the pose of the hammer and nail, and external forces on the nail.

• Visual Observation Space: one 128x128 RGB image from a third-person view camera.

Adroit Relocate

17



Under review as submission to TMLR

Figure 13: Hammer Episode Visualization.

• Overall Description: The environment is based on the Adroit manipulation platform, a 30 degree of
freedom system which consists of a 24 degrees of freedom ShadowHand and a 6 degree of freedom
arm. The task to be completed consists on moving the blue ball to the green target. See Figure 14
for episode visualization.

• Task Difficulty: The positions of the ball and target are randomized over the entire workspace.

• Object Variations: No object variations.

• Action Space: Absolute angular positions of the Adroit hand joints.

• State Observation Space: The angular position of the finger joints, the pose of the palm of the hand,
as well as kinematic information about the ball and target.

• Visual Observation Space: one 128x128 RGB image from a third-person view camera.

Figure 14: Relocate Episode Visualization.

A.2 Demonstrations

This subsection provides the details of demonstrations used in our experiments. See Table 9. ManiSkill2 and
ManiSkill3 demonstrations are provided in Gu et al. (2023) and Tao et al. (2024), and Adroit demonstrations
are provided in Rajeswaran et al. (2017).

Table 9: Demonstration sources, numbers and generation methods.

Task Traj Num for Training Generation Method
ManiSkill3: PushT 1000 Reinforcement Learning
ManiSkill3: RollBall 1000 Reinforcement Learning
ManiSkill2: StackCube 1000 Task & Motion Planning
ManiSkill2: TurnFaucet 1000 Model Predictive Control
ManiSkill2: PushChair 1000 Reinforcement Learning
Adroit: Door 25 Human Demonstration
Adroit: Pen 25 Human Demonstration
Adroit: Hammer 25 Human Demonstration
Adroit: Relocate 25 Human Demonstration

B Implementation Details

B.1 Noise-Relaying Diffusion Policy Inference

We summarize the inference pseudo-code of our RNR-DP in Algorithm 1.
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Algorithm 1 Noise-relaying Diffusion Policy Inference
1: Require: denoising model, εθ; observation, Ot; noise-relaying buffer, Q̃t; buffer capacity f ;

2: while task execution do
3: Qt ← εθ(Q̃t; Ot, {1, · · · , f}) ▷ εθ is trained using f noise levels
4: a(0)

t ← Qt.pop(0) ▷ a(0)
t is a clean action (fully denoised)

5: Q̃t ← Qt.push(z) ▷ z is a random noisy action sampled from N (0, I)
6: Ot ← env.step(a(0)

t ) ▷ executes a(0)
t and envrionment updates observation

7: t ← t + 1 ▷ update timestep for the next iteration

B.2 Noise-Relaying Diffusion Policy Training

We summarize the training pseudo-code of our RNR-DP in Algorithm 2.

Algorithm 2 Responsive Noise-Relaying Diffusion Policy Training
1: Require: demonstration dataset, D = {(Oi, Ai)}N

i=1; denoising model, εθ; number of diffusion steps, f

2: repeat
3: Sample (O, A) ∼ D
4: Sample p ∼ Unif(0, 1); Sample noise ϵ ∼ N (0, I) and reshape to RCa×f

5: if p ≤ plinear :
6: k = {k1 = 1, · · · , kf = f} ▷ linear schedule
7: else
8: k = {k1 ∼ Unif({1, · · · , f}), · · · , kf ∼ Unif({1, · · · , f})} ▷ random schedule

9: for all aj ∈ A indexed by frame index j do
10: âj =

√
ᾱtj

aj +
√

1− ᾱtj
ϵj ▷ perturbe each aj independently

11: Â = {â0, · · · , âf−1}
12: Take gradient descent step to update θ on
13: ∇θ∥ϵ− εθ(Â; O, k)∥ ▷ noise-aware conditioning
14: until converged

B.3 Policy Architecture

We build our RNR-DP on top of the UNet-based architecture of Diffusion Policy (Chi et al., 2023). The
model includes 2 downsampling modules and 2 upsampling modules with each module containing 2 residual
blocks. The residual block consists of 1D temporal convolutions (Conv1d), group normalizations (GN),
and Mish activation layers. The encoded noise-aware conditioning data (Section 5.2) is fused into each
residual block through the FiLM transformation (Perez et al., 2018). The raw conditioning data is of shape
Rf×(Cemb+Cstate) for state policies and of shape Rf×(Cemb+Cvisual+Cstate) for visual policies. See Figure 15 for
the visualization of a visual policy. We follow the UNet denoiser design for the observation that transformer-
based policies are more sensitive to hyperparameters and often require more tuning (Chi et al., 2023). The
choice of policy architecture is orthogonal to our method and we believe our design would also improve this
policy class.
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Figure 15: The detailed policy architecture for our RNR-DP. We only extract visual features for visual
policies.

B.4 Important Hyperparameters

B.4.1 Key Hyperparameters of RNR-DP

We summarize the key hyperparameters of RNR-DP in Table 10. The observation horizon To and noise-
relaying buffer capacity f for each task is listed in Table 11. The number of trainable parameters for each
task is listed in Table 12.

Table 10: We list the key hyperparameters of RNR-DP used in our experiments.

Hyperparameter Value
RNR-DP Noise Scheduling Scheme Mixture Sampling(plinear) plinear = 0.4
RNR-DP Model Prediction Type Noise
Diffusion Step Embedding Dimension 64
UNet Downsampling Dimensions [64, 128, 256]
Optimizer AdamW
Weight Decay 1e-6
Learning Rate 1e-4
Learning Rate Scheduler Cosine
EMA Model Update 0.9999
Online Evaluation Episodes 1000

B.4.2 Key Hyperparameters of Diffusion Policy

We summarize the key hyperparameters of Diffusion Policy in Table 13. The observation horizon To, action
executation horizon Ta and action prediction horizon Tp for each task are listed in Table 14.

B.5 Training Details

We train our models and baselines with cluster assigned GPUs (NVIDIA 2080Ti & A10). We use AdamW
optimizer with an initial learning rate of 1e-4, applying 500 warmup steps followed by cosine decay. We use
batch size of 1024 for state policies and 256 for visual policies for both ManiSkill and Adroit benchmarks.
We evaluate DP, CP and RNR-DP model checkpoints using EMA weights every 10K training iterations for
ManiSkill tasks and every 5K for Adroit tasks. DDIMs are evaluated using the best checkpoints of DDPMs
in an offline manner. CPs are trained using the best checkpoints of EDMs.
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Table 11: The observation horizon and noise-relaying buffer capacity of our RNR-DP for each task.

Task Obs To Capacity f

ManiSkill3: PushT (Visual) 2 48
ManiSkill3: RollBall (Visual) 2 64
ManiSkill2: StackCube (Visual) 2 84
Adroit: Pen (Visual) 2 4
Adroit: Hammer (Visual) 2 64
Adroit: Door (Visual) 2 56

ManiSkill3: PushT (State) 2 32
ManiSkill3: RollBall (State) 2 4
ManiSkill2: StackCube (State) 2 84
ManiSkill2: TurnFaucet w/g (State) 2 64
ManiSkill2: TurnFaucet w/o g (State) 2 72
ManiSkill2: PushChair w/g (State) 2 56
ManiSkill2: PushChair w/o g (State) 2 48
Adroit: Door (State) 2 74
Adroit: Pen (State) 2 4
Adroit: Hammer (State) 2 32
Adroit: Relocate (State) 2 84

Table 12: The number of our RNR-DP trainable parameters for each task. Noise-relaying buffer size doesn’t
affect the number of trainable parameters for each task.

Task Trainable Params
ManiSkill3: PushT (Visual) 11.42M
ManiSkill3: RollBall (Visual) 11.59M
ManiSkill2: StackCube (Visual) 10.85M
Adroit: Pen (Visual) 14.67M
Adroit: Hammer (Visual) 14.72M
Adroit: Door (Visual) 14.41M

ManiSkill3: PushT (State) 4.53M
ManiSkill3: RollBall (State) 4.73M
ManiSkill2: StackCube (State) 4.91M
ManiSkill2: TurnFaucet (State) 4.71M
Adroit: Door (State) 4.66M
Adroit: Pen (State) 4.75M
Adroit: Hammer (State) 4.77M
Adroit: Relocate (State) 4.66M

C Additional Results

C.1 Empirical Comparison with Acceleration Methods on Visual Observations

We summarize the results of vision-based experiments in Table 15. As shown in Table 15, our RNR-DP
ourperforms all DDIM variations and CP variations and particularly has an overall improvement over 8-step
DDIM by 6.9%, over 8-step-chaining CP by 3.4%.
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Table 13: We list the key hyperparameters of Diffusion Policy baseline used in our experiments.

Hyperparameter Value
Diffusion Step Embedding Dimension 64
UNet Downsampling Dimensions [64, 128, 256]
Optimizer AdamW
Weight Decay 1e-6
Learning Rate 1e-4
Learning Rate Scheduler Cosine
EMA Model Update 0.9999
Online Evaluation Episodes 1000

Table 14: We list the observation horizon, action executation horizon and action prediction horizon of
Diffusion Policy baseline for each task.

Task Obs To Act Exec Ta Act Pred Tp

ManiSkill3: PushT (Visual) 2 2 16
ManiSkill3: RollBall (Visual) 2 4 16
ManiSkill2: StackCube (Visual) 2 8 16
Adroit: Pen (Visual) 2 8 16
Adroit: Hammer (Visual) 2 8 16
Adroit: Door (Visual) 2 8 16

ManiSkill3: PushT (State) 2 1 16
ManiSkill3: RollBall (State) 2 4 16
ManiSkill2: StackCube (State) 2 8 16
ManiSkill2: TurnFaucet (State) 2 8 16
Adroit: Door (State) 2 8 16
Adroit: Pen (State) 2 8 16
Adroit: Hammer (State) 2 8 16
Adroit: Relocate (State) 2 8 16

Table 15: Evaluation on simpler tasks (Regular Group) not requiring responsive control from ManiSkill
and Adroit benchmarks (Visual Observations). We follow our evaluation metric and report values under the
same settings as in Table 4. Tasks in which none of the methods achieve a reasonable success rate under
visual observations are omitted.

StackCube Pen Hammer Avg. SR of tasks
Method Steps (S) NFEs/a
DDPM 100 12.5 0.958 0.133 0.123 0.404

DDIM

1 0.125 0.000 0.000 0.000 0.000
2 0.25 0.946 0.042 0.000 0.329
4 0.5 0.947 0.125 0.000 0.357
8 1 0.946 0.139 0.009 0.365

EDM 80 20 0.930 0.156 0.067 0.384

CP 1 0.125 0.615 0.127 0.088 0.277
8 1 0.910 0.161 0.077 0.383

RNR-DP 1 1 0.924 0.154 0.110 0.396
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C.2 Comparsion with Streaming Diffusion Policy (SDP)

Streaming Diffusion Policy (SDP) (Høeg et al., 2024) is a recent advancement over Diffusion Policy that
stays close to our approach. In this section, we compare our method with SDP in terms of motivation
(Appendix C.2.1), methodology (Appendix C.2.2), and empirical results (Appendix C.2.3).

C.2.1 Motivation Comparison

SDP accelerates Diffusion Policy inference by reducing the number of denoising steps required to generate
an action sequence. While improving diffusion inference speed is a relevant research topic, its impact in
robotics is less compelling, as DDIM and Consistency Policy already provide reasonable speedups with strong
performance. In contrast, our method addresses a fundamental limitation of Diffusion Policy—its lack of
responsiveness—which significantly hinders performance in rapidly changing environments (e.g., contact-rich
dynamic object manipulation). This challenge is far more critical to advancing robotic control. Although
our approach also serves as an effective acceleration method, we view this as a secondary benefit compared
to its primary advantage of enabling more responsive control.

C.2.2 Method Comparison

Rollout Method SDP also employs an action buffer structure but partitions the prediction horizon Tp into
multiple action chunks, ensuring that (1) each chunk maintains the same noise level and (2) noise levels
increase across chunks. This chunk-wise design focuses solely on reducing denoising steps and accelerating
inference. However, it does not address responsiveness and thus retains the limitations of Diffusion Policy. In
contrast, our sequential denoising scheme conditions all actions on the latest observations, enabling responsive
control while leveraging the noise-relaying buffer to maintain efficiency.

Policy Architecture SDP fuses all time embeddings along the temporal dimension into a single embedding.
In contrast, our architecture retains multiple time embeddings, ensuring that noisy actions within the noise-
relaying buffer can perceive time step changes based on the latest observation features. This design preserves
temporal dynamics, allowing each action to adapt to varying time steps, thereby improving responsiveness
and consistency in action generation.

C.2.3 Empirical Results Comparison

To demonstrate that SDP inherits the same limitations as Diffusion Policy and lacks responsive control,
we conduct experiments on the Adroit Relocate task (see Table 16). As the empirical results indicate,
Streaming Diffusion Policy performs similarly to Diffusion Policy on the Adroit Relocate task, whereas our
method achieves significantly more responsive control than both.

Table 16: We compare Streaming Diffusion Policy with Diffusion Policy and our method on Adroit Relocate
task.

DP SDP RNR-DP
Task
Relocate (Adroit) 0.422 0.436 0.585
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