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1 Additional Text1

1.1 Methods2

To investigate the transport behavior of drug-laden particles through porous networks formed by3

granular hydrogels, we developed a coarse-grained (CG) model of the hydrogel scaffold and thera-4

peutic particles. We varied the hydrogel bead diameter r, the intermolecular interaction εTA between5

therapeutic particles and the hydrogel, and the hydrogel composition, where we consider two types6

of hydrogels.7

1.1.1 Scaffold geometries8

Each hydrogel bead was modeled as a rigid sphere, with 100 mobile therapeutic particles (T) of size9

σ randomly distributed on its surface to represent encapsulated drug molecules, where the length10

scale σ corresponds to 1 µm. Hydrogel scaffold geometries were generated using SideFX Houdini11

following Riley et al. [2023]. A total of 70 geometry files were created, corresponding to n = 1012

rigid monodisperse sphere packings for diameters of spheres of 40, 50, 60, 70, 80, 90 and 100 µm,13

representing randomly packed assemblies. This served as the initial configuation. For the mixture14

design, each hydrogel bead was randomly assigned as type A or B, with the ratio determined by15

the parameter ϕA. For the partitioned design, the hydrogel was divided into 10 segments along the16

z-axis (the flow direction). Each segment was assigned a binary value (0 or 1) to distinguish be-17

tween the two bead subtypes (A and B), generating alternating compositional layers with controlled18

randomness. This binary pattern later served as an input feature for the model.19

Intermolecular interactions between the therapeutic particles and the hydrogel A were modeled using20

a shifted 12–6 Lennard–Jones (LJ) potential:21

UTA = 4εTA[(
σ

x−∆
)12 − (

σ

x−∆
)6] x < rc +∆ (1)

where rc = 4σ is the cutoff, εTA is the affinity strength, which we varied in the range of 1ε22

to 5ε, where ε is the characteristic energy unit, and ∆ = (r + 1)/2 − 21/6 is the shifted23

amount to ensure the theraputic particle experiencing the excluded volume interaction of hydro-24

gel at r exactly. Intermolecular interactions among therapeutic particles were represented by a25

Weeks–Chandler–Andersen (WCA) repulsive potential. In hydrogel B, the beads were treated as26

inert / phantom particles (no intermolecular interaction), allowing therapeutic molecules to diffuse27

freely through the matrix. This configuration mimics the hydrogel bead with high porosity.28
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1.1.2 MD Simulations29

Molecular dynamics (MD) simulations were performed using LAMMPS [Plimpton, 1995] to study30

the release dynamics of therapeutic payloads from granular hydrogel scaffolds. Only the motion of31

therapeutic particles (T) was integrated, with their temperature controlled using a Langevin thermo-32

stat with a damping constant of 1.0 τ−1, where τ = (mσ2/ε)0.5 defines the time unit. Simulations33

were conducted with a time step of 0.012 for a total of 25,000 steps.34

To capture the transport dynamics of particles through the hydrogel scaffolds at a reasonable com-35

putational cost, a constant driving force of 5 ε/σ was applied to each therapeutic particle in the36

downward direction. When a therapeutic particle reached the boundary of the simulation box, it was37

removed to mimic its exit from the hydrogel system (i.e., release into the contact medium). The38

number of released particles was recorded every 10 timesteps.39

1.1.3 Simulation data processing40

Therapeutic release was computed from counts of lost T particles at each timestep. Each cumulative41

release curve was fit to a Weibull cumulative distribution,42

F (t) = 1− exp

[
−
(
t

α

)β
]

(2)

and goodness-of-fit quantified by R2. In each case, R2 exceeded 0.9.43

1.1.4 Factorial Design of Experiment for Parameter Selection44

A two-level, three-factor factorial design experiment was implemented to validate the design param-45

eters and parameter bounds for the inverse design models. Simulations for 8 representative scaffold46

designs (n >= 16 per design) of high and low bead radii, bead–particle interaction potentials, and47

bead heterogeneity and fit cumulative release data from each simulation to Weibull CDF’s. We then48

modeled each dependent variable—α (alpha) and β (beta)—as functions of the categorical factors49

gel diameter, epsA NP, and pctA, including all main effects and interactions. Ordinary least50

squares (OLS) regression models were fitted for each response variable using the formula syntax:51

response ∼ C(gel diameter) ∗ C(epsA NP) ∗ C(pctA) (3)

where the C() function denotes categorical encoding of the factors, and the * operator specifies the52

inclusion of all main and interaction effects.53

A Type II analysis of variance (ANOVA) was then performed on each fitted model to evaluate the54

significance of the factors and their interactions on α and β, respectively.55

Table 1: ANOVA results for α (256 rows matching factorial design)
Source Sum Sq df F PR(> F )
C(gel diameter) 1.06×105 1 985.01 2.42×10−88

C(epsA NP) 1.99×107 1 1.85×105 0.00
C(pctA) 5.05×106 1 4.70×104 1.05×10−284

C(gel diameter):C(epsA NP) 1.58×104 1 147.35 6.35×10−27

C(gel diameter):C(pctA) 1.27×102 1 1.19 2.77×10−1

C(epsA NP):C(pctA) 2.85×106 1 2.66×104 3.19×10−254

C(gel diameter):C(epsA NP):C(pctA) 2.51×104 1 233.94 1.20×10−37
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Table 2: ANOVA results for β (256 rows matching factorial design)
Source Sum Sq df F PR(> F )
C(gel diameter) 0.0331 1 63.23 6.51×10−14

C(epsA NP) 3.5007 1 6693.61 1.92×10−181

C(pctA) 1.2339 1 2359.36 1.07×10−128

C(gel diameter):C(epsA NP) 0.1405 1 268.68 2.07×10−41

C(gel diameter):C(pctA) 0.0592 1 113.22 5.01×10−22

C(epsA NP):C(pctA) 1.5745 1 3010.51 1.04×10−140

C(gel diameter):C(epsA NP):C(pctA) 0.0399 1 76.27 3.74×10−16

1.1.5 Factorially vs Randomly Sampled Simulations56

We establish two datasets, one factorially sampled and one randomly sampled, to further explore57

the efficacy of factorial sampling in training inverse design models on limited data sets. The facto-58

rially sampled data set is defined by the discrete values specified in Supplemental Table 3, and the59

randomly sampled data is defined by the ranges of values defined in Supplementary Table 4. The60

randomly sampled data uses the same r values as the factorial sampled dataset due to the available61

geometry files, but the εAT and ϕA values can be drawn from any decimal values that fall in the62

value range. We then generate n=1664 simulations from the combinatorial space of both sets.63

Parameter Factorially Sampled Possible Values
Bead diameter (LJ units) 40, 50, 60, 70 ,80, 90, 100
Interaction potentials (εAT ) 1, 3, 5, 10
Proportion Bead A (ϕA, %) 25, 75

Table 3: Factorially Sampled Simulation parameter space

Parameter [Value Range]
Bead diameter (LJ units) [40, 50, 60, 70, 80, 90, 100]
Interaction potentials (εAT ) [1-10]
Proportion Bead A (ϕA, %) [25-75]
Table 4: Randomly Sampled Simulation parameter space

1.1.6 Forward Model Architectures64

Random Packing Forward Model65

66

For the random geometry, the model was trained to predict the cumulative release profile, parame-67

terized using as α and β. The forward model maps the design parameters θ = [r, εAT , ϕA] ∈ R368

to the Weibull release parameters y = [α, β] ∈ R2. A multilayer perceptron (MLP) architecture69

with layer normalization was implemented using the PyTorch deep learning framework. The model70

consisted of an input layer, four hidden layers, and an output layer. Hidden layer sizes were set71

to 64, 128, 128, and 64 units, respectively. Each hidden layer applied the following sequence of72

operations: a fully connected (linear) transformation, layer normalization, a LeakyReLU activation73

function with a negative slope of 0.1, and a dropout layer with a rate of 0.1 to reduce overfitting.74

The final linear layer projected the last hidden representation to the output dimension. Formally, for75

an input vector x, the network output ŷ was computed as:76

ŷ = f(x) = Wn ϕ(LN(Wn−1 ϕ(· · ·LN(W1x+ b1) · · · ))) (4)

where Wi and bi denote the weight matrices and biases of layer i, LN(·) is layer normalization,77

ϕ(·) is the LeakyReLU activation, and dropout is applied after each activation during training.This78

architecture was selected as it showed significant performance improvements over a standard linear79
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regression (Supplemental Figure 1).80

81

Training data was derived from processed simulation data. Both input features and target vari-82

ables were standardized independently using the z-score normalization scheme implemented by the83

StandardScaler class from the scikit-learn library. Specifically, the scaler was fit separately on84

the training data to compute the mean (µ) and standard deviation (σ) for each feature or target85

dimension, following the transformation:86

z =
x− µ

σ

For the input features and target values, the scalers were defined and fitted as:87

sc_x = StandardScaler().fit(X_train)88

sc_y = StandardScaler().fit(y_train)89

The fitted scalers were then applied to the validation and test sets to ensure that all data splits were90

transformed using statistics derived solely from the training set:91

Xn_train, Xn_val, Xn_test = sc_x.transform(X_train),sc_x.transform(X_val),sc_x.transform(X_test)92

yn_train, yn_val, yn_test = sc_y.transform(y_train),sc_y.transform(y_val),sc_y.transform(y_test)93

This procedure centers each feature (and target) to zero mean and scales it to unit variance according94

to its own distribution, thereby preserving the internal structure of each variable while preventing95

information leakage between datasets.96

The training, validation, and test data was split by a random seed at 70%, 10%, and 20% respectively.97

To validate the effectiveness of the factorially sampled dataset vs the randomly sampled, we trained98

the model on both and saw that the factorially sampled dataset proved to be much more effective in99

identifying the appropriate weights for mapping the inputs to the output (Supplemental Figure 2).100

Layered Packing Forward Model101

102

For the partitioned geometry, an XGBoost multi-output regressor was trained to predict the instan-103

taneous release profile from the interfacial interaction strengths (εAT ) and the layer configuration.104

The prediction for a single output can be expressed as the sum over K regression trees:105

ŷi =

K∑
k=1

fk(xi), fk ∈ F , (5)

where xi is the input feature vector, fk is the function represented by the k-th regression tree, and F106

is the space of regression trees. The initial training on the baseline dataset achieved a masked mean107

absolute error (MAE) of 13.931 and coefficients of determination (R2) of 0.947 ± 0.003 across the108

first five timesteps. Subsequently, Bayesian hyperparameter optimization was performed over 25109

candidate configurations with 3-fold cross-validation, resulting in a total of 75 fits. The optimal110

hyperparameters are summarized in Table 5. Retraining the multi-output XGBoost model using111

the tuned parameters yielded a masked MAE of 14.899 and improved R2 values of 0.953 ± 0.004112

for the first five timesteps, indicating enhanced predictive stability and consistency across temporal113

sequences.114

1.2 Inverse Design Approach115

To identify hydrogel parameters (εAT , z) that produce a desired release profile ∆Ytarget, we imple-116

ment a Bayesian optimization-based inverse design framework. Starting from a randomly chosen117

initial parameter set, the pre-trained forward model predicts the resulting release profile, and the118

discrepancy from the target is quantified using the mean squared error (MSE):119
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Table 5: Optimal hyperparameters and performance metrics for the XGBoost multi-output regressor.
Hyperparameter Description Optimal Value
colsample bytree Fraction of features sampled per tree 0.508
gamma Minimum loss reduction required to make a split 0.423
max depth Maximum tree depth 3
n estimators Number of boosting iterations 571

MSE(x) =
1

L

L∑
i=1

(
fforward(x)i −∆Ytarget,i

)2
, (6)

where x = [εAT , z] is the parameter vector, L is the number of timesteps or release points, and120

fforward is the pre-trained surrogate model (MLP for random geometries or XGBoost for partitioned121

geometries).122

The search space consists of:123

• Continuous variables: ε12.124

• Discrete binary variables: z = [z0, z1, . . . , zN−1] representing the layer configuration.125

Bayesian optimization (implemented using gp minimize from scikit-optimize) iteratively pro-126

poses new candidate parameters by minimizing the MSE while accounting for the uncertainty in the127

surrogate model. At each iteration, the forward model evaluates the proposed parameters:128

x(t+1) = arg min
x∈X

Acquisition(x;MSE, σpred), (7)

where the acquisition function (e.g., Expected Improvement, Probability of Improvement, or Lower129

Confidence Bound) balances exploration and exploitation, and σpred represents the predictive uncer-130

tainty.131

The optimization proceeds until the specified number of evaluations is reached. The algorithm132

records the best-performing parameter set:133

x∗ = argmin
x

MSE(x), (8)

and also stores the top-5 solutions ranked by MSE. This approach enables efficient inversion of the134

forward model, allowing rapid identification of parameter combinations that closely match the target135

release profile without the need for repeated molecular simulations.136

2 Additional Figures137
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Figure 1: MLP Forward Performance for Randomly Packed Scaffolds vs Linear Regression

Figure 2: MLP Forward Performance for Factorially vs Randomly Sampled Datasets
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Figure 3: Release profiles of drug-laden hydrogels with heterogeneous random mixture designs
under different parameter variations.(A) Effect of varying ε12 while fixing ϕA = 0.25 and diameter
= 40 µm. (B) Effect of varying ϕA while fixing ε12 = 1.0 and diameter = 40 µm. (C) Effect of
varying diameter while fixing ε12 = 5.0 and ϕA = 0.75.
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Figure 4: Few examples of the XGBoost model performance
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