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1 Additional Text

1.1 Methods

To investigate the transport behavior of drug-laden particles through porous networks formed by
granular hydrogels, we developed a coarse-grained (CG) model of the hydrogel scaffold and thera-
peutic particles. We varied the hydrogel bead diameter r, the intermolecular interaction eta between
therapeutic particles and the hydrogel, and the hydrogel composition, where we consider two types
of hydrogels.

1.1.1 Scaffold geometries

Each hydrogel bead was modeled as a rigid sphere, with 100 mobile therapeutic particles (T) of size
o randomly distributed on its surface to represent encapsulated drug molecules, where the length
scale o corresponds to 1 um. Hydrogel scaffold geometries were generated using SideFX Houdini
following Riley et al. [2023]. A total of 70 geometry files were created, corresponding to n = 10
rigid monodisperse sphere packings for diameters of spheres of 40, 50, 60, 70, 80, 90 and 100 ym,
representing randomly packed assemblies. This served as the initial configuation. For the mixture
design, each hydrogel bead was randomly assigned as type A or B, with the ratio determined by
the parameter ¢ 4. For the partitioned design, the hydrogel was divided into 10 segments along the
z-axis (the flow direction). Each segment was assigned a binary value (0 or 1) to distinguish be-
tween the two bead subtypes (A and B), generating alternating compositional layers with controlled
randomness. This binary pattern later served as an input feature for the model.

Intermolecular interactions between the therapeutic particles and the hydrogel A were modeled using
a shifted 12—6 Lennard—Jones (LJ) potential:
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where r. = 4o is the cutoff, ey is the affinity strength, which we varied in the range of le
to 5¢, where ¢ is the characteristic energy unit, and A = (r + 1)/2 — 21/ is the shifted

amount to ensure the theraputic particle experiencing the excluded volume interaction of hydro-
gel at r exactly. Intermolecular interactions among therapeutic particles were represented by a
Weeks—Chandler—Andersen (WCA) repulsive potential. In hydrogel B, the beads were treated as
inert / phantom particles (no intermolecular interaction), allowing therapeutic molecules to diffuse
freely through the matrix. This configuration mimics the hydrogel bead with high porosity.
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1.1.2 MD Simulations

Molecular dynamics (MD) simulations were performed using LAMMPS [Plimpton, [1995]] to study
the release dynamics of therapeutic payloads from granular hydrogel scaffolds. Only the motion of
therapeutic particles (T) was integrated, with their temperature controlled using a Langevin thermo-
stat with a damping constant of 1.0 71, where 7 = (mo?/¢)°5 defines the time unit. Simulations
were conducted with a time step of 0.012 for a total of 25,000 steps.

To capture the transport dynamics of particles through the hydrogel scaffolds at a reasonable com-
putational cost, a constant driving force of 5 £/0 was applied to each therapeutic particle in the
downward direction. When a therapeutic particle reached the boundary of the simulation box, it was
removed to mimic its exit from the hydrogel system (i.e., release into the contact medium). The
number of released particles was recorded every 10 timesteps.

1.1.3 Simulation data processing

Therapeutic release was computed from counts of lost T particles at each timestep. Each cumulative
release curve was fit to a Weibull cumulative distribution,

@

and goodness-of-fit quantified by R2. In each case, R? exceeded 0.9.

F(t)=1—exp

1.1.4 Factorial Design of Experiment for Parameter Selection

A two-level, three-factor factorial design experiment was implemented to validate the design param-
eters and parameter bounds for the inverse design models. Simulations for 8 representative scaffold
designs (n >= 16 per design) of high and low bead radii, bead—particle interaction potentials, and
bead heterogeneity and fit cumulative release data from each simulation to Weibull CDF’s. We then
modeled each dependent variable—« (alpha) and S (beta)—as functions of the categorical factors
gel_diameter, epsA_NP, and pctA, including all main effects and interactions. Ordinary least
squares (OLS) regression models were fitted for each response variable using the formula syntax:

response ~ C'(gel_diameter) * C(epsA_NP) x C'(pctA) 3)

where the C() function denotes categorical encoding of the factors, and the * operator specifies the
inclusion of all main and interaction effects.

A Type II analysis of variance (ANOVA) was then performed on each fitted model to evaluate the
significance of the factors and their interactions on « and j3, respectively.

Table 1: ANOVA results for a (256 rows matching factorial design)

Source Sum Sq df F PR(> F)
C(gel_diameter) 1.06x10° 1 985.01 2.42x10738
C(epsA_NP) 1.99%x107 1 1.85x10° 0.00
C(pctA) 5.05x10% 1 4.70x10* 1.05x10728
C(gel_diameter):C(epsA_NP) 1.58x10* 1 14735  6.35x107%7
C(gel_diameter):C(pctA) 1.27x10? 1 1.19 2.77x1071
C(epsA_NP):C(pctA) 2.85x10% 1 2.66x10* 3.19x1072%4
C(gel_diameter):C(epsA_NP):C(pctA) 2.51x10* 1 233.94  1.20x10737
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Table 2: ANOVA results for 3 (256 rows matching factorial design)

Source Sum Sq df F PR(> F)
C(gel_diameter) 0.0331 1 6323  6.51x107 ™4
C(epsA_NP) 3.5007 1 6693.61 1.92x10~18!
C(pctA) 1.2339 1 235936 1.07x107128
C(gel_diameter):C(epsA_NP) 0.1405 1  268.68 2.07x10~4
C(gel_diameter):C(pctA) 0.0592 1 11322 5.01x10~22
C(epsA_NP):C(pctA) 1.5745 1 3010.51 1.04x10~140
C(gel_diameter):C(epsA_NP):C(pctA) 0.0399 1 7627 3.74x10716

1.1.5 Factorially vs Randomly Sampled Simulations

We establish two datasets, one factorially sampled and one randomly sampled, to further explore
the efficacy of factorial sampling in training inverse design models on limited data sets. The facto-
rially sampled data set is defined by the discrete values specified in Supplemental Table [3| and the
randomly sampled data is defined by the ranges of values defined in Supplementary Table ] The
randomly sampled data uses the same r values as the factorial sampled dataset due to the available
geometry files, but the € 47 and ¢ 4 values can be drawn from any decimal values that fall in the
value range. We then generate n=1664 simulations from the combinatorial space of both sets.

Parameter Factorially Sampled Possible Values
Bead diameter (LJ units) 40, 50, 60, 70,80, 90, 100
Interaction potentials (€ 47) 1,3,5,10

Proportion Bead A (¢ 4, %) 25,75

Table 3: Factorially Sampled Simulation parameter space

Parameter [Value Range]

Bead diameter (LJ units) [40, 50, 60, 70, 80, 90, 100]
Interaction potentials (¢ o7) [1-10]
Proportion Bead A (¢ 4, %) [25-75]

Table 4: Randomly Sampled Simulation parameter space

1.1.6 Forward Model Architectures

Random Packing Forward Model

For the random geometry, the model was trained to predict the cumulative release profile, parame-
terized using as v and 3. The forward model maps the design parameters 6 = [r,ca1, 4] € R?
to the Weibull release parameters y = [, 5] € R%. A multilayer perceptron (MLP) architecture
with layer normalization was implemented using the PyTorch deep learning framework. The model
consisted of an input layer, four hidden layers, and an output layer. Hidden layer sizes were set
to 64, 128, 128, and 64 units, respectively. Each hidden layer applied the following sequence of
operations: a fully connected (linear) transformation, layer normalization, a LeakyReLU activation
function with a negative slope of 0.1, and a dropout layer with a rate of 0.1 to reduce overfitting.
The final linear layer projected the last hidden representation to the output dimension. Formally, for
an input vector x, the network output ¥ was computed as:

y=f(x) =W, o(LN(W,_1 ¢(-- - LN(W1x 4 b1) ---))) “4)

where W; and b; denote the weight matrices and biases of layer ¢, LN(-) is layer normalization,
@(+) is the LeakyReLU activation, and dropout is applied after each activation during training.This
architecture was selected as it showed significant performance improvements over a standard linear



go regression (Supplemental Figure 1).
81

g2 Training data was derived from processed simulation data. Both input features and target vari-
83 ables were standardized independently using the z-score normalization scheme implemented by the
84 StandardScaler class from the scikit-learn library. Specifically, the scaler was fit separately on
85 the training data to compute the mean (u) and standard deviation (o) for each feature or target
g6 dimension, following the transformation:
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g7 For the input features and target values, the scalers were defined and fitted as:

g8 sc_x = StandardScaler().fit(X_train)
89 sc_y = StandardScaler().fit(y_train)

90 The fitted scalers were then applied to the validation and test sets to ensure that all data splits were
o1 transformed using statistics derived solely from the training set:

92 Xn_train, Xn_val, Xn_test = sc_x.transform(X_train),sc_x.transform(X_val),sc_x.transform(X_test)
93 yn_train, yn_val, yn_test = sc_y.transform(y_train),sc_y.transform(y_val),sc_y.transform(y_test)

94 This procedure centers each feature (and target) to zero mean and scales it to unit variance according
95 to its own distribution, thereby preserving the internal structure of each variable while preventing
96 information leakage between datasets.

97 The training, validation, and test data was split by a random seed at 70%, 10%, and 20% respectively.
98 To validate the effectiveness of the factorially sampled dataset vs the randomly sampled, we trained
99 the model on both and saw that the factorially sampled dataset proved to be much more effective in
100 identifying the appropriate weights for mapping the inputs to the output (Supplemental Figure 2).

101 Layered Packing Forward Model
102

103 For the partitioned geometry, an XGBoost multi-output regressor was trained to predict the instan-
104 taneous release profile from the interfacial interaction strengths (¢ 47) and the layer configuration.
105 The prediction for a single output can be expressed as the sum over K regression trees:

K
gi=>_ fu@), freF, ©)
k=1

106 where «x; is the input feature vector, f is the function represented by the k-th regression tree, and F
107 is the space of regression trees. The initial training on the baseline dataset achieved a masked mean
108 absolute error (MAE) of 13.931 and coefficients of determination (R?) of 0.947 4 0.003 across the
109 first five timesteps. Subsequently, Bayesian hyperparameter optimization was performed over 25
110 candidate configurations with 3-fold cross-validation, resulting in a total of 75 fits. The optimal
111 hyperparameters are summarized in Table [5] Retraining the multi-output XGBoost model using
112 the tuned parameters yielded a masked MAE of 14.899 and improved R? values of 0.953 + 0.004
113 for the first five timesteps, indicating enhanced predictive stability and consistency across temporal
114 sequences.

115 1.2 Inverse Design Approach

116 To identify hydrogel parameters (€47, 2z) that produce a desired release profile AY{ureer, We imple-
117 ment a Bayesian optimization-based inverse design framework. Starting from a randomly chosen
118 initial parameter set, the pre-trained forward model predicts the resulting release profile, and the
119 discrepancy from the target is quantified using the mean squared error (MSE):
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Table 5: Optimal hyperparameters and performance metrics for the XGBoost multi-output regressor.

Hyperparameter Description Optimal Value
colsample_bytree  Fraction of features sampled per tree 0.508
gamma Minimum loss reduction required to make a split  0.423
max_depth Maximum tree depth 3
n_estimators Number of boosting iterations 571
1 & 2
MSE(:B) = Z Z (fforward(x)i - AKaIget,i) 5 (6)
i=1

where & = [eaT, 2] is the parameter vector, L is the number of timesteps or release points, and
Sorwara 1 the pre-trained surrogate model (MLP for random geometries or XGBoost for partitioned
geometries).

The search space consists of:

e Continuous variables: €15.

* Discrete binary variables: z = [z, 21, . . ., zv—1] representing the layer configuration.

Bayesian optimization (implemented using gp-minimize from scikit-optimize) iteratively pro-
poses new candidate parameters by minimizing the MSE while accounting for the uncertainty in the
surrogate model. At each iteration, the forward model evaluates the proposed parameters:

2D = arg mig Acquisition(ax; MSE, opred), @)
xe

where the acquisition function (e.g., Expected Improvement, Probability of Improvement, or Lower
Confidence Bound) balances exploration and exploitation, and opreq represents the predictive uncer-
tainty.

The optimization proceeds until the specified number of evaluations is reached. The algorithm
records the best-performing parameter set:

x* = arg min MSE(x), (8)
T
and also stores the top-5 solutions ranked by MSE. This approach enables efficient inversion of the

forward model, allowing rapid identification of parameter combinations that closely match the target
release profile without the need for repeated molecular simulations.

2 Additional Figures
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Figure 1: MLP Forward Performance for Randomly Packed Scaffolds vs Linear Regression

Forward Predictions from Model Trained on Factorially Sampled Dataset
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Figure 2: MLP Forward Performance for Factorially vs Randomly Sampled Datasets
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Figure 3: Release profiles of drug-laden hydrogels with heterogeneous random mixture designs
under different parameter variations.(A) Effect of varying ;2 while fixing ¢4 = 0.25 and diameter
=40 pm. (B) Effect of varying ¢4 while fixing €15 = 1.0 and diameter = 40 um. (C) Effect of
varying diameter while fixing €12 = 5.0 and ¢4 = 0.75.
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Prediction of the drug release profile for partitioned
hydrogel arrangements.
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Figure 4: Few examples of the XGBoost model performance
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