Under review as a conference paper at ICLR 2021

A. PROOFS OF SUBGRAPH PROPERTIES

The paper introduces the following observations that justify the use of order embeddings in subgraph
matching.

Transitivity. Suppose that G; is a subgraph of G5 with bijection f mapping all nodes from G to a
subset of nodes in G2, and G4 is a subgraph of G3 with bijection g. Let vy, v2, v3 be anchor nodes
of G1, Ga, G5 respectively. By definition of anchored subgraph, f(v1) = v2 and g(v2) = vs. Then
the composition g o f is a bijection. Moreover, g o f(v1) = g(v2) = vz, where Therefore G is a
subgraph of (i3, and thus the transitivity property.

This corresponds to the transitivity of order embedding.

Anti-symmetry. Suppose that (G; is a subgraph of G2 with bijection f, and G5 is a subgraph of G
with bijection g. Let | V7| and |V2| be the number of nodes in G and G respectively. By definition of
subgraph isomorphism, G is a subgraph of G5 implies that |V;| < |V5]|. Similarly, G5 is a subgraph
of G implies |Va| < |V;]. Hence |V;| = |Va|. The mapping between all nodes in G and G5 is
bijective. By definition of isomorphism, G; and G5 are graph-isomorphic.

This corresponds to the anti-symmetry of order embedding.

Intersection. By definition, if G'3 is a common subgraph of G1, G2, the G5 is a subgraph of both G
and 5. Since a trivial node is a subgraph of any graph, there is always a non-empty intersection set
between two graphs.

Correspondingly, if z3 < 21 and 23 =< 29, then 23 < min{zy, 20 }. Here min denotes the element-
wise minimum of two embeddings. Note that the order embedding z; and zo are positive, and
therefore min{z, 22} is another valid order embedding, corresponding to the non-empty intersection
set between two graphs.

Note that this paper assumes the frequent motifs are connected graphs. And thus it also assumes that
all neighborhoods in a given datasets are connected and contain at least 2 nodes (an edge). This is a
reasonable assumption since we can remove isolated nodes from the datasets, as connected motifs of
size k (k > 1) can never contain isolated nodes. In this case, the trivial intersection corresponds to a
graph of 2 nodes and 1 edge.

For all datasets, we randomly sample connected subgraph queries as test sets, with diameter less than
8, a mild assumption since most of the graph datasets have diameter less than 8.

B. ORDER EMBEDDING COMPOSITION

We can show that the order constraints in Equation 1 hold under the composition of multiple message
passing layers of the GNN, assuming simple GNN models such as in paper “Simplifying Graph
COnvolutional Networks” and “Scalable Inception Graph Networks”.

Suppose that we use a k-layer GNN to encode nodes u and v in the search and query graphs
respectively. If the k-hop neighborhood of u is a subgraph of the k-hop neighborhood of v, then
Vs € N, 3t € N, such that the (k —1)-hop neighborhood of s must be a subgraph of the (k — 1)-hop
neighborhood of ¢. Neighborhoods of «’s neighbors are subgraphs of a subset of the (k — 1)-hop
neighborhoods of v’s neighbors.

Consequently, we can guarantee the following observation with order embeddings:

Observation 2. Suppose that all GNN embeddings at layer k — 1 satisfy order constraints after
transformation. Then when using sum-based neighborhood aggregation, the GNN embeddings at
layer k also satisfy the order constraints.

After applying linear transformations and non-linearities in the GNN at layer k — 1, if the order
embedding of all neighbors of node v are no greater than that of the corresponding matched nodes
in the target graph (i.e. satisfy the order constraint), then when summing the order embeddings
of neighbors to compute embedding of v at layer £, it is guaranteed that node v also satisfies the
order constraint at layer k. This corresponds to the property of composition of subgraphs into larger
subgraphs.

In other GNN architectures, such properties do not necessarily hold, due to the presence of transforma-
tion and non-linearity at each convolution layer. However, this provides another alignment between

11

Under review as a conference paper at ICLR 2021

Model Accuracy
SAGE (2-LAYER, 32-DIM, DROPOUT=0.2) 77.5
SAGE (6-LAYER, 32-DIM, DROPOUT=0.2) 85.3
SAGE (8-LAYER, 64-DIM, DROPOUT=0.2) 86.3
GCN (6-LAYER, 64-DIM, DROPOUT=0.2) 69.9
GCN (9-LAYER, 128-DIM, DROPOUT=0.2) 82.3
GIN (4-LAYER, 32-DIM, DROPOUT=0.2) 81.0
GIN (4-LAYER, 64-DIM, DROPOUT=0) 87.0
GIN (8-LAYER, 64-DIM, DROPOUT=0) 88.4
SAGE (4-LAYER, 64-DIM, DROPOUT=0) 87.6
SAGE (8-LAYER, 64-DIM, DROPOUT=0) 89.4
SAGE (12-LAYER, 64-DIM, DROPOUT=0) 90.5
SAGE (8-LAYER, 64-DIM, DROPOUT=0, SKIP-LAYER) 91.5

Table 4: The accuracy (unit: 0.01) for matching on the ENZYMES dataset for different model
configurations.

the order embedding objective and the subgraph matching task in terms of growing neighborhoods,
and motivates the use of curriculum learning for this task.

C. VOTING PROCEDURE

The voting procedure is used to improve cer-
tainty of matched pairs by considering presence
of nearby matched pairs in neighborhoods of the

Algorithm 2: NeuroMatch Voting Algorithm
Input: Query node ¢ € G, target node u € Gr.

matched pairs. The method is motivated by the
following observation.

Observation 3. Let NV denotes the I-hop
neighborhood. Then, if ¢ € Gg and node

Threshold ¢ for violation below which we
predict positive subgraph relation between the
neighborhoods of ¢ and u.

Output: Whether the node pair matches.

Compute embeddings for neighbors of ¢, u

u € G match, then for all nodes i € N*)(q),
Jnode j € ./\/'(l)(u), I < k such that node i and
node j match.

within K hops
for hop k£ < K do
for node i € N*)(¢) do
m = min{F(z;, z;)|Vj € N®) (u)}
If m > t, return False
return True

Since the query graph G is a subgraph of target
graph G'r, all paths in G have corresponding
paths in Gp. Hence the shortest distance of a
node i € N)(q) to g is at most the shortest
distance of node j € N (u) in Gr, where j is the corresponding node in G defined by the
subgraph isomorphism mapping. However, the shortest paths are not necessarily of equal lengths,
since in G'r there might be additional short-cuts from j to u that do not exist in G .

D. TRAINING DETAILS AND HYPERPARAMETERS

All models are trained on a single GeForce RTX 2080 GPU, and both the heuristics and neural models
use a Intel Xeon E7-8890 v3 CPU.

Curriculum training. In each epoch, we iterate over all target graphs in the curriculum and randomly
sample one query per target graph. We lower bound the number of iterations per epoch to 64 for
datasets that are too small. For the E-R dataset, where we generate neighborhoods at random, and
the WN dataset which consists of only a single graph, we use a fixed 64 iterations per epoch. On all
datasets except for the E-R dataset, we used 256 target graphs where possible. At training time, we
enforce a 3:1 negative to positive ratio in the training examples, which is necessary since in reality
there is a heavy skew in the dataset towards negative examples. 10% of the negative examples are
hard negatives; among the remaining 90%, half are negative examples drawn from the same target
graph as the query, and half are negative examples drawn from different target graphs.

The model is trained with a learning rate of 1 x 1073 using the Adam optimizer. The learning rate
is annealed with a cosine annealer with restarts every 100 epochs. The curriculum starts with 1
target graph with a radius of 1; it is updated every time there are 20 consecutive epochs without an

12

Under review as a conference paper at ICLR 2021

improvement of more than 0.1. The curriculum update increases the radius of the target graphs by 1
up to a maximum of 4, after which it doubles the number of target graphs for every update up to a
maximum of 256. The dataset is regenerated every 50 epochs.

Predicted + Predicted —
Positive 68.2 8.3
Negative 70.5 1030.9

Table 5: Average confusion Matrix for matching small queries (size < 7) to all node neighborhoods
in the DD dataset.

Hyperparameters. We performed a comprehensive sweep over hyperparameters used in the model.
Table 4 shows the effect of hyperparameters and GNN models on the performance, using the
NeuroMatch framework. We list the design choices we made that are observed to perform well in
both synthetic and real-world datasets:

e Sum aggregation usually works the best, confirming previous theoretical studies (Xu et al.,
2018). Both the GraphSAGE and GIN architecture we implemented uses the sum neighbor-
hood aggregation.

e We observe slight improvement in performance when using LeakyReL U instead of ReLU
for non-linearity.

e Dropout does not have a significant impact on performance.

e Adding structural features, such as node degree, clustering coefficient, and average path
length improves the convergence speed.

Matching query to target graph by aggregating scores. In Problem 1 (Table 2), all methods
must make a binary prediction of whether the query is a subgraph of the target graph based on the
alignment matrix A of scores f(zq, z,,) between all pairs of query and target neighborhoods. In
order to aggregate the scores contained in the alignment matrix, we adopt the simple strategy of
taking the mean of all entries in the matrix, which we found to outperform the commonly-used
Hungarian algorithm on our binary decision task. The exception is FASTPFP, which provides a
discrete assignment matrix matching each query node to a target node; for this method, we adopt the
following prediction score:

HApred - Aquery H 1 Xpredxg;ery

Vaery 2 [Vawery|

where Apq is the adjacency matrix of the predicted matched graph, Agery is the adjacency matrix
of the query graph, unery| is the number of nodes in the query and X q and Xquery are the feature
matrices of nodes in the predicted and query graph, respectively. This score measures the degree to
which the predicted and query graph match in terms of topology and node labels, and is based on
the loss function used in the paper, but is adapted to compare matchings across varying query and
target sizes. In general, we found these aggregation strategies to be effective in our setting containing
diverse query and target sizes, but our method is agnostic to such downstream processing of the
alignment matrix. In particular, the Hungarian algorithm or other alignment resolution algorithms
can still be used with the alignment matrix generated by NeuroMatch, especially when an explicit
matching (rather than a binary subgraph prediction) is desired.

For baseline hyperparameters: for ISORANKN, we set K = 10, threshold to 1e-4, alpha to 0.9 and
the maximum vector length to 1000000. For FASTPFP, we set lambda to 1, alpha to 0.5, and both
thresholds to 1le-4.

E. SUBGRAPH MATCHING DATA STATISTICS

E.1. DATASETS

Biology and chemistry datasets. COX2 contains 467 graphs of chemical molecules with an average
of 41 nodes and 44 edges each. DD contains 1178 graphs with an average of 284 nodes and 716 edges.

13

Under review as a conference paper at ICLR 2021

Dataset ENZYMES COX2 AIDS PPl IMDB-BINARY
IN-DOMAIN 92.9 97.2 943 899 81.8
TRANSFER 78.9 93.9 922 81.0 74.2

Table 6: The AUROC (unit: 0.01) for matching on real datasets, where we either train on the synthetic
dataset and test generalization to the real dataset (TRANSFER), or train directly on the dataset that we
test on (IN-DOMAIN).

Dataset COX2 DD MSRC_21 FIRSTMMDB ENZYMES SYNTHETIC
Target size (nodes) 41.6 30.0 79.6 30.0 35.7 30.2
Target size (edges) 438 612 204.0 49.9 67.2 119.1
Query size (nodes) 224 17.8 22.6 17.8 17.4 17.5
Query size (edges) 230 344 46.3 27.9 294 534
Query:target size ratio (nodes) 53.8 59.3 28.4 59.3 48.7 57.9

Table 7: Statistics of target and query graphs used in evaluation of Problem 1 (Table 2).

It describes protein structure graphs where nodes are amino acids and edges represent positional
proximity. We use node labels for both of the datasets. PPI dataset contains the protein-protein
interaction graphs for human tissues. It has 24 graphs corresponding to different PPI networks of
different human tissues. In total, there are 56944 nodes and 818716 edges. We do not include node
features for PPI networks since the goal is to match various protein interaction patterns without
considering the identity of proteins.

MSRC_21 is a semantic image processing dataset introduced in (Winn et al., 2005), containing 563
graph each representing the graphical model of an image. It has an average of 78 nodes and 199
edges.

FIRSTMMDB is a point cloud dataset containing 3d point clouds for various household objects. It
tocontains 41 graphs with an average of 1377 nodes and 3074 edges each.

Label imbalance. We performed additional experiments to investigate the confusion matrix for the
DD dataset averaged across test queries. Table 5 shows extreme imbalance (subgraphs are rare).

Matching query to target graph. Table 7 shows the statistics of target and query graphs used to
evaluate performance on Problem 1 (Table 2).

F. GENERALIZATION AND RUNTIME

F.1. PRETRAINING ON SYNTHETIC DATASET

To demonstrate the use and generalizability of the synthetic dataset, we conducted the experiment
where the subgraph matching model is trained only on the synthetic dataset, and is then tested on
real-world datasets. Table 6 shows the generalization performance. The first row corresponds to the
model performance when trained and tested on the same dataset. The second row corresponds to
the model performance when trained on the synthetic dataset, and tested on queries sampled from
real-world datasets (listed in each column), Although there is a drop in performance when the model
only sees the synthetic dataset, the model is able generalize to a diverse setting of subgraph matching
scenarios, in biology, chemistry and social network domains, even out-performing some baseline
methods that are specifically trained on the real-world datsets.

However, a shortcoming is that since the synthetic dataset does not contain node features, and real
datasets have varying node feature dimensions, the model is only able to consider subgraph matching
task that does not take feature into account. Incorporation of feature in transfer learning of subgraph
matching remains to be an open problem.

G. COMPARISON TO EXACT AND APPROXIMATE HEURISTICS

G.1. EXACT HEURISTICS METHODS

Exact heuristics such as VF2 and RI algorithms guarantees to make the correct prediction of whether
query is a subgraph of the target. However, even for relatively small queries (of size 20), matching is

14

Under review as a conference paper at ICLR 2021

NeuroMatch

Success Rate

Query Size

Figure 4: Runtime analysis. Success rate of baseline heuristic matching algorithms (VF2 and RI) for
matching in under 20 seconds. NeuroMatch achieves 100% success rate.

costly and can sometimes take unexpectedly long time in the order of hours. As such, these algorithms
are not suitable in online or high-throughput scenarios where efficiency is priority.

To demonstrate the runtime efficiency, we show in Figure 4 the success rate of the exact methods,
which drop below 60% when the query size is increased to more than 30. In comparison, NeuroMatch
always finishes under 0.1 second.

Table 8 shows the runtime comparison between NeuroMatch and the exact baselines consid-
ered (VF2 and RI). NeuroMatch achieves 100 times speedup compared to these exact methods.

Moreover, since in practice, it is feasible to pre-train ~ _Datasets E-R MSRC_21 DD
the NeuroMatch model on synthetic datasets, and op- \R]F : %g:g 17?57 ﬁ:g
tionally finetune few epochs on real-world datasets, = NeuroMATCH-MLP 0.49 0.48 0.44
the training time for model when given a new dataset =~ NEUROMATCH-ORDER 0.04 0.03 0.03

is also negligible. However, such approach has the
limitation that the model cannot account for node cat-
egorical features when performing subgraph match-
ing, since the synthetic dataset does not contain any
node feature.

Table 8: Average runtime (in seconds) com-
parison between heuristic methods and our
method with query size up to 50. NeuroMatch
is about 100x faster than alternatives.

G.2. APPROXIMATE HEURISTICS METHODS

Additionally, there have been many works focusing on heuristic methods for motif/subgraph count-
ing (Ribeiro et al., 2019), notable methods include Rand-ESU, MFinder, Motivo, ORCA. However,
these works primarily focus on fast enumeration of small motifs typically of size less than 6. In our
cases, the size of target and query is much larger (up to hundreds in size), and we do not focus on
enumeration of motifs of certain size.

A related line of work is graph matching, or finding an explicit (sub)graph isomorphism mapping
between query and target nodes. Methods include convex relaxations (FastPFP, PATH) and spectral
approaches (IsoRankN). Such approaches are inherently heuristic-based due to the hardness of
approximation of the subgraph matching problem.

H. GNN EXPRESSIVE POWER

Previous works (Xu et al., 2018; Morris et al., 2019) have identified limitations of a class of GNNs.
More specifically, GNNs face difficulties when asked to distinguish regular graphs. In this work, we
circumvent the problem by distinguishing the anchor node and other nodes in the neighborhood via
one-hot encoding (See Section 3.2). The idea is explored in a concurrent work “Identity-aware Graph
Neural Networks” (ID-GNNSs). It uses Figure 5 to demonstrate the expressive power of ID-GNN,
which distinguishes anchor node from other nodes. For example, while d-regular graphs such as
3-cycle and 4-cycle graphs have the same GNN computational graphs, their ID-GNN computational
graphs are different, due to identification of anchor nodes via node features. Such modification
enables better expressive power than message-passing GNNs such as GIN.

A future direction is to investigate the performance of recently proposed more expressive GNNs (Chen
et al., 2019) in the context of subgraph mining. The NeuroMatch framework is general and any GNN
can be used in its decoder component, and could benefit from more expressive GNNs.

15

Under review as a conference paper at ICLR 2021

Node classification Link prediction Graph classification
A B

Example input
graphs

A — B
= A = B
Existing GNNs’
computational
graphs

lroot nodes are colored with |dent|ty) (v is colored with identity)

ID-GNNs’
computational
graphs

AB Class labels node with augmented identity O node without augmented identity

For each node: For each node:
990

Figure 5: An overview of the proposed ID-GNN model. We consider node, edge and graph level
tasks, and assume nodes do not have additional features. Across all examples, the task requires an
embedding that allows for the differentiation of the label A vs. B nodes in their respective graphs.
However, across all tasks, existing GNNs, regardless of depth, will always assign the same embedding
to both classes of nodes, because for all tasks the computational graphs are identical. In contrast, the
colored computation graphs provided by ID-GNNs allows for clear differentiation between the nodes
of class A and class B, as the colored computation graph are no longer identical across all tasks.

16

