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ABSTRACT

Alignment with human preference is a desired property of large language mod-
els (LLMs). Currently, the main alignment approach is based on reinforcement
learning from human feedback (RLHF). Despite the effectiveness of RLHF, it is
intricate to implement and train, thus recent studies explore how to develop al-
ternative alignment approaches based on supervised fine-tuning (SFT). A major
limitation of SFT is that it essentially does imitation learning, which cannot fully
understand what are the expected behaviors. To address this issue, we propose
an improved alignment approach named FIGA. Different from prior methods,
we incorporate fine-grained (i.e., token or phrase level) quality signals that are
derived by contrasting good and bad responses. Our approach has made two ma-
jor contributions. Firstly, we curate a refined alignment dataset that pairs initial
responses and the corresponding revised ones. Secondly, we devise a new loss
function can leverage fine-grained quality signals to instruct the learning of LLMs
for alignment. Extensive experiments have demonstrated the effectiveness of our
approaches by comparing a number of competitive baselines. We release all the
above-mentioned resources at https://github.com/RUCAIBox/FIGA.

1 INTRODUCTION

Pre-trained large language models (LLMs) such as LLaMA (Touvron et al., 2023a) have shown
remarkable potentials to solve various downstream tasks by mastering the universal pre-training
task of next-token prediction. While after large-scale pre-training, it often needs subsequent tuning
for enhancing and regulating the behaviors of LLMs. Two typical approaches are supervised fine-
tuning (SFT) and reinforcement learning from human feedback (RLHF), which can largely improve
LLMs in both task solving capacity and human alignment (Ouyang et al., 2022).

Despite widely explored, SFT and RLHF have their own strengths and weaknesses. On the one
hand, SFT is easy to implement and can effectively boost the general task solving abilities by in-
struction based eliciting (Wei et al., 2021; Ouyang et al., 2022; Chung et al., 2022), while it mainly
imitates the behaviors of experts (essentially doing behavior clone (Wiseman & Rush, 2016)), which
are demonstrated by the human annotators or powerful LLMs such as ChatGPT. Therefore, the SFT
performance highly relies on high-quality demonstration data (Zhou et al., 2023), and might suffer
from the huge distribution shifts between its outputs and imitated outputs (Zhang et al., 2019; Schul-
man, 2023; Zhao et al., 2023a). On the other hand, RLHF can better explore the semantic space of
LLMs, and identify the optimal policy by encouraging good behaviors and discouraging bad behav-
iors during learning. However, it is very complicated to effectively implement, often suffering from
training instability issues such as reward collapse (Song et al., 2023; Wolf et al., 2023).

To leverage the benefits of SFT and RLHF, several recent studies propose to develop alignment ap-
proaches without reinforcement learning (RL). These studies typically construct refined instruction
data using methods such as quantile ranking (Lu et al., 2022) and rejection-sampling (Touvron et al.,
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2023b), and then follow or slightly modify the original SFT loss. Another line of research designs
alternative optimization approaches that bypasses reward modeling (Rafailov et al., 2023). To con-
duct effective alignment without RL, a key issue is how to effectively learn by discriminating good
and bad behaviors as that in RLHF (Ouyang et al., 2022), such that LLMs can understand what are
good behaviors to follow and what are bad behaviors to avoid. Despite the prior efforts, they are
largely limited by response-level discrimination signals: they are only aware of the quality label
(e.g., good or bad) of a demonstration but not what makes it good or bad. Thus, it can’t fully capture
the correct alignment behaviors even demonstrated by what are good and bad behaviors.

In this work, we introduce FIGA, a novel method that aligns language models with human prefer-
ences. The core idea is to contrast a low-quality initial response from a LLM’s output with a cor-
responding high-quality revised response by another powerful LLM (e.g., ChatGPT), so that LLMs
can be noted with what are newly added (good actions) and what are removed or substituted (bad
actions) from such a revision process. Such fine-grained quality signals can be more useful than the
widely used response-level quality signal. It can instruct LLMs to emphasize the learning of good
actions and penalize the bad actions in a single response. To implement our approach, we first cu-
rate an alignment dataset called SPA that pairs an initial response with a revised response under the
guidance of the ground-truth demonstrations. We mainly keep the queries that a LLM performs less
well on, and perform strict filtering. Further, we design a new fine-tuning method that assigns spe-
cific token-level weights to different parts (e.g., good or bad tokens). Our learning loss can directly
impose fine-grained reward scores to guide the learning of LLMs for improved alignment.

To the best of our knowledge, it is the first attempt that leverages fine-grained quality signals for
improving the alignment of LLMs without RL. Our approach can make LLMs better understand
what are good and bad behaviors beyond simple imitation. By conducting extensive experiments,
we demonstrate that FIGA shows promising performance in aligning language models with human
preferences: our approach outperform the initial supervised-finetuned model by notable 3.2 points
and the strong PPO method by 1.8 points.

2 RELATED WORK

In this section, we review the related work in the two aspects, namely reinforcement learning from
human feedback and alignment without reinforcement learning.

Reinforcement learning from human feedback Large-scale pre-training empowers large lan-
guage models (LLMs) to acquire extensive knowledge, underscoring their remarkable potential
across diverse tasks (Brown et al., 2020; Kojima et al., 2022; Zhang et al., 2022; Chowdhery et al.,
2022). Nonetheless, models exclusively focus on next token prediction in pre-training phrase, while
do not consider human preferences. Consequently, this gives rise to unexpected behaviors like harm-
ful or inaccurate information, and emphasizes the necessity to align language models with human
preferences. The current mainstream approaches (Ouyang et al., 2022) to better harness the capabili-
ties of LLMs include supervised fine-tuning (SFT) and reinforcement learning from human feedback
(RLHF). To be specific, this involves three stages: firstly, using SFT to enable the model to better
follow human instructions; subsequently, training a reward model (RM) using human preference
data; and ultimately, tune the model to maximize the reward through the proximal policy optimiza-
tion (PPO) (Schulman et al., 2017) algorithm. Furthermore, there are works exploring enhancement
for this process (Ramamurthy et al., 2022; Lightman et al., 2023; Lee et al., 2023). However, RLHF
presents challenges due to complex coding and hyper-parameters selecting. Besides, it requires load-
ing three to four models simultaneously, resulting in high memory usage. These challenges propel
researchers to explore alternative approaches to align language models with human feedback.

Alignment without reinforcement learning Several studies are based on the rationale that lan-
guage models have already acquired comprehensive knowledge during the pre-training, and only
high-quality supervised fine-tuning data is required for further tuning (Zhou et al., 2023). So these
works (Liu et al., 2023b; Sun et al., 2023; Bai et al., 2022b; Bhardwaj & Poria, 2023; Krishna et al.,
2022; Gulcehre et al., 2023) bypass reward modeling, and instead concentrate on the construction
of datasets that align well with human preferences. Other works are directed towards exploring sub-
stitutes for the intricate PPO algorithm. These efforts employ diverse approaches to learn from the
preference data, encompassing the creation of a supervised fine-tuning training dataset enriched with
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human preference data (Liu et al., 2023a; Zhang et al., 2023; Dong et al., 2023), the integration of
preferences for different outputs into the loss function (Yuan et al., 2023; Rafailov et al., 2023; Zhao
et al., 2023b; Liu et al., 2023d;c), and the utilization of controllable text generation techniques (Lu
et al., 2022). However, the human preference information used in these methods is at the sentence
level, lacking more fine-grained supervision signals.

3 APPROACH

In this section, we present the proposed alignment approach FIGA by leveraging fine-grained qual-
ity signals. Our approach is developed based on a specially curated alignment dataset called SPA
(Section 3.1), where each low-quality initial response is paired with a high-quality revised response.
Based on such an alignment dataset, we further develop a new loss function that incorporates fine-
grained quality signals derived by contrasting good and bad responses (Section 3.2). Our approach
is easy to implement (similar to SFT) and can capture the underlying effect to generate high-quality
responses instead of simply imitating them (similar to RLHF), which are discussed in Section 3.3.
The overall framework of our FIGA pipeline is shown in Figure 1.
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Figure 1: The overall illustration of our alignment approach FIGA.

3.1 CURATED ALIGNMENT DATASET

From the perspective of dataset, the novelty of our alignment approach can be given in two major
aspects. Firstly, we don’t directly aggregate all the available instruction data, but instead focus
on high-quality instruction data that a LLM performs less well on. It enables LLMs to specially
improves their weaknesses, reducing the cost of replicate learning. Secondly, we don’t take what
human annotators write or powerful LLMs (e.g., ChatGPT or GPT-4) generate as training targets, but
instead seek a more similar surrogate that is derived based on its own output by a LLM. It can largely
reduce the distribution shift between the LLM to be aligned and the ground-truth demonstrations.

We carefully construct the SubPar Alignment (SPA) dataset, a curated collection of query, model’s
initial response, and the corresponding improved response (with minor revision). Compared with
prior work (Ouyang et al., 2022; Yuan et al., 2023; Liu et al., 2023a), we mainly consider the queries
where LLMs’ performance are not satisfactory and aim to correct these bad cases via specific train-
ing. Moreover, we refine the initial response of a LLM that is to be aligned as training target, which
can effectively reduce the distribution shifts from the ground-truth demonstrations.

Formally, we denote the initial model as πθ, which can be a supervised-finetuned model (e.g., Al-
paca (Taori et al., 2023)) or a pre-trained base model (e.g., LLaMA (Touvron et al., 2023a)). To
construct our dataset, we assume that a reward model for assessing the alignment level is available.
In practice, a number of reward models have been released publicly (e.g., DeBERTa (OpenAssis-
tant, 2023)), which can be used for our approach. Given a query X and a response Y , we leverage
a reward model RM to compute the reward score RY = RM(X,Y ), which reflects how well the
response Y aligns with given query X . Below, we detail the construction procedure.
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Rollout for initial response generation We first broadly collect existing paired datasets encom-
passing a wide range of real-world tasks, and construct the instances pool D = {X,Y }ni=1. To
better align with human value, we select preference datasets (e.g., HH-RLHF (Bai et al., 2022a))
that adhere to the 3H principle (i.e., helpfulness, honesty, and harmlessness) in this work. Further-
more, we also include instruction dataset (e.g., OpenOrca (Mukherjee et al., 2023)) to preserve the
task solving abilities of LLMs. We aim to train a both capable and safe model like ChatGPT, rather
than only focusing on alignment while sacrificing the task solving abilities. Based on these datasets,
we employ the rollout model πθ to generate initial responses Ŷ = πθ(X) for the given queries.

Identifying the queries to be enhanced After obtaining the model’s initial response Ŷ and the
human-preferred response Y , we next identify the queries where the model requires further im-
provement to better align with human intent through the reward score RM(·). Following existing
work (Ouyang et al., 2022), we employ the reward model as a surrogate of human preferences, and
design a filtering process based on the calculated reward score RŶ and RY for all the instances. We
only keep the instances that meet all the three following restrictions: (1) RŶ < η1 (a subpar initial
performance, i.e., bad cases), (2) RY > η2 (high-quality demonstrations), and (3) RY − RŶ > η3
(clear quality difference), where η1, η2, and η3 are three threshold values for filtering, we will set
them according to the reward score distribution. The details can be found in Section 4.1.2. With the
above filtering mechanism, we ensure the quality and usefulness of our SPA dataset. We target at
bad case correction of the rollout model, which is more directed and effective than existing methods
that directly trains the model on the whole collected dataset.

Revising initial responses for reducing the distribution shifts To align a LLM, a basic principle
is to ensure that the distribution of the model should not experience significant shifts during the
alignment process (Bai et al., 2022a). Despite that the ground-truth demonstration (Yi) is human
preferred, it is likely to span a very different semantic distribution as the LLM to be aligned. Our
solution is to revise the initial response (Ŷ ) by referring to the ground-truth demonstration (Yi). In
this way, we can effectively reduce the distribution shifts as well as obtaining demonstrations similar
to the original output. Specially, we generate a pseudo reference Ỹ based the target Yi, making minor
adjustments to the Ŷ and enhance its quality, i.e., modifying Ŷ as minimally as possible based on
Yi. Such a generation process is conducted by prompting the powerful ChatGPT. To facilitate the
generation process, we further manually inspect the low-quality responses that we have previously
filtered and identify four major low-quality reasons: (1) lack of detail, (2) inaccuracy in response,
(3) the need for structural adjustments, and (4) other factors (off-topic or harmful content). In
detail, we leverage ChatGPT to determine, given Yi, which of the four reasons Ŷ is associated with.
Afterwards, we design different prompts for the four reasons and instruct the LLM to make minor
correction to the initial response Ŷ based on Yi. We denote the revised response as Ỹ . The details
of our process and prompts can be found in Appendix B.

Finally, we obtain the SPA dataset {X, Ŷ , Ỹ } for subsequent training. Our construction method has
dual merits: it not only aligns the reference output with human preferences but also preserves the
inherent linguistic style and overall semantic distribution of the model to be aligned. Note that we
keep both the initial and revised responses in a contrastive form, because they are jointly used for
deriving fine-grained quality signals in subsequent training.

3.2 FINE-GRAINED QUALITY-AWARE ALIGNMENT TUNING

As described above, our fine-tuning dataset for alignment contains both low-quality initial responses
(Ŷ ) and high-quality revised responses (Ỹ ). Instead of directly learning from these high-quality
responses (similar to rejection sampling (Touvron et al., 2023b)), it is important for LLMs to under-
stand why such revisions are useful to produce the high-quality responses. Furthermore, LLMs can
improve the alignment capacity from the contrast between good and bad responses.

Motivated by previous work (Liu et al., 2022), we utilize Levenshtein distance to quantify the simi-
larity between of Ŷ and Ỹ . Levenshtein distance is a dynamic programming algorithm to obtain the
minimal edit distance between two sentences through three operations: addition, deletion, and sub-
stitution. Comparing the initial and revised response, the involving tokens can be generally divided
into three types: newly added, deleted, or substituted. We consider assigning different weights to
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these three types of tokens. We reward the tokens that are added or substituted in the revised re-
sponse Ỹ , penalize the tokens that are deleted or substituted in the original response Ŷ , and tend to
overlook the rest tokens that remain the same after the revision process. Formally, we introduce two
token-level weighting functions to characterize the above ideas:

r̃(ỹt, t) =

{
α, if ỹt is added or substituted
γ, otherwise

, r̂(ŷt, t) =

{
β, if ŷt is deleted or substituted
0, otherwise

, (1)

where α > 0, β > 0, and γ ≥ 0 are three coefficients to control the encouraged, discouraged, and
ignored parts, which can be empirically set or learned from tuning data.

In this way, we can then encourage the model to “imitate” the desired actions that have a greater
impact on enhancing quality, discourage the model from emulating the undesired actions that lead
to a poor performance in quality. The final training loss can be formulated as:

L = −
∑
ỹt∈Ỹ

r̃(ỹt, t) log πθ(ỹt|ỹ<t, X)

︸ ︷︷ ︸
increase the probability of desired words

+
∑
ŷt∈Ŷ

r̂(ŷt, t) log πθ(ŷt|ŷ<t, X)

︸ ︷︷ ︸
decrease the probability of undesired words

. (2)

The overall FIGA pipeline is illustrated in Algorithm 1. The major advantages of FIGA over typical
SFT (Ouyang et al., 2022) is that it can learn from fine-grained contrast between good and bad
responses, which is essentially similar to that in reinforcement learning (discussed in Section 3.3).
In addition, by explicitly modeling the revision effect, such an approach can naturally zoom into
crucial words or phrase, making the model better zoom into fine-grained semantics.

Algorithm 1: FIGA - Leveraging Fine-grained Quality Signals for Alignment
1 Input: Instance pool D = {X,Y }ni=1, initial model πθ , revision model (ChatGPT), reward function R(·).
2 ### SPA Dataset Construction
3 for each instance {X,Y } in D do
4 1. Rollout for initial generation. Generate Ŷ ∼ πθ(X) and compute RY , RŶ ;
5 2. Reward filtering. if RŶ > η1 or RY < η2 or RY −RŶ < η3 then
6 Discard the current instance;

7 3. Response Revision. Analyze the reason for the poor performance of Ŷ , and generate the
corresponding revision Ỹ ∼ LLM(Ŷ , Y ) based on the identified reason.

8 Construct the SPA dataset S = {Xi, Ŷi, Ỹi}mi=1.
9 ### Alignment Learning

10 for epoch e = 1, ..., E do
11 for each instance {X, Ŷ , Ỹ } in SPA S do
12 Locate the crucial parts with Levenshtein distance using Equation 1 and assign weights according

to r̃(ỹt, t) and r̂(ŷt, t);
13 Update πθ using the fine-grained quality-aware learning objective in Equation 2.

3.3 DISCUSSION

In this part, we discuss how the proposed FIGA approach relates to existing fine-tuning approaches,
namely SFT and RLHF.

Relationship with SFT SFT can be viewed as a special case of our FIGA method without revision,
when training is performed with the higher-quality instance Y , and each token of Y is considered
equally important. Compared to SFT, FIGA has the following two advantages: (1) we only consider
the inferior part of the bad case that the initial model does not perform well; (2) we explicitly enforce
the model to understand what are good and bad behaviors in the loss function. It inherits the merits
of SFT, and further leverages fine-fined quality signals for improving the alignment.

Relationship with RL Our method can be considered as a simplified but efficient version of RL.
Using typical PPO method (Schulman et al., 2017) as an example, its objective is to optimize the
actor model (i.e., the initial model πθ) to maximize the expected reward score, formally given as:
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LPPO = −
∑
t

(
πθ(ŷt|ŷ<t, X)

πθold(ŷt|ŷ<t, X)
·Aŷt

)
, (3)

where Aŷt
is the advantage function of the ŷt token returned by the critic model given the reward

score RŶ . πθold is the model before the previous parameter update. Here, we ignore the clipping
function and KL penalty for convenience. Considering the FIGA training objective in Equation 2,
our weight functions r̃(·) and r̂(·) in FIGA can be viewed as a simplified advantage function A(·)
in Equation 3 to evaluate the importance of each token. Therefore, FIGA has a similar objective
with RL but with a simplified token-wise reward function. We do not use an extra learned critic
model and remove the use of previous rollout model, which makes FIGA more efficient. In the later
experiment section, we will verify the effectiveness of our method.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

4.1.1 BASELINE METHODS

In order to better evaluate the FIGA method, we choose several baselines for comparison: (1)
SFT (Ouyang et al., 2022): it continues to fine-tune the initial model using pairs of data with
sequence-to-sequence loss. (2) PPO (Ouyang et al., 2022): it optimizes the initial model to achieve
a higher reward score provided by the reward model. (3) CoH (Liu et al., 2023a): it annotates the
dataset by prefixing “A helpful answer: ” and “An unhelpful answer: ” to the responses of corre-
sponding quality, employs SFT on it, and computes loss only for the specially masked tokens. (4)
RRHF (Yuan et al., 2023): it applies SFT on the optimal responses and further optimizes the ranking
loss among responses from multiple sources to encourage the model to achieve a greater log prob-
ability for the response that ranks better. (5) DPO (Rafailov et al., 2023): it eliminates the need for
explicit reward modeling and instead directly optimizes the policy model using comparison data.

4.1.2 IMPLEMENTATION DETAILS

Training Datasets For our SPA dataset mentioned in Section 3.1, we broadly select the follow-
ing datasets as our initial instance pool: HH-RLHF (Bai et al., 2022a), ShareGPT (ShareGPT,
2023), Instruct GPT-J Pairwise (Dahoas, 2023), SHP (Ethayarajh et al., 2022), and
OpenOrca (Lian et al., 2023). We employ Alpaca-7b Taori et al. (2023) as the rollout
model to generate responses Ŷ and use gpt-3.5-turbo to revise and obtain Ỹ . The
prompt used here can be found in Appendix B. As for the filtering process, we utilize
OpenAssistant/reward-model-deberta-v3-large-v2 (OpenAssistant, 2023) as the
reward model. According to reward score distribution 2, we empirically set the threshold values
η1 = 1, η2 = 3, η3 = 3.5, respectively. The statistics for reward scores and edit operations of the
SPA dataset are presented in Table 1, and the graphical illustration of reward scores is provided in
Figure 2. We find that initial responses Ŷ exhibit a large distributional disparity compared with the
reference responses Y , which may complicate the learning process for the model. In contrast, our
modified responses not only align more closely with the original distribution but also enhance the
quality, which simplifies the learning task for the rollout model. The completed SPA dataset consists
of 17,333 instances, and more details and analysis can be found in Appendix D.

Model Details (1) For SFT, we set the learning rate to 1e-5 and the batch size to 128. We conduct
5 epochs of training and choose the one with the highest reward score on the test set as the ultimate
SFT model. (2) For PPO, we apply the OpenLLaMA2 (OpenLLMAI, 2023) library and adhere
to its hyper-parameter configurations. We use Alpaca-7b as the initial critic model and use the
same reward model utilized in SPA construction. Given the modest gains observed in previous
experiments when employing PPO-ptx on models with around 6B parameters (Ouyang et al., 2022),
we refrain from introducing a pre-training mix as an additional training objective. (3) For CoH, we
annotate the SPA dataset with their method. Considering the smaller size of our dataset compared to
theirs, we set FCM (random masked token ratio to prevent overfitting) to 0. Additionally, to ensure
a fair comparison with PPO, we disable the pre-training dataset regularization. (4) For RRHF and
DPO, we follow the recommended hyper-parameters from the original papers. (5) For FIGA, we
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Figure 2: Reward score distributions.

Table 1: The average reward score of re-
sponse data and the average number #ops of
editing operations to them from the Ŷ .

Data Ŷ Y Ỹ

R(·) -1.07 3.94 1.78
#ops – 75.69 39.38

set the parameters α = 1, β = 0.5, γ = 0 respectively. Besides, considering the instability when
training on negative samples in practice (Bhardwaj & Poria, 2023; Liu et al., 2023a), we further
select the bad tokens returned by Levenshtein distance in equation 1 by retaining only those with a
negative log-likelihood less than 0.6.

4.1.3 EVALUATION TASKS

We evaluate the performances of different methods on comprehensive benchmarks. We segment a
test set from the selected datasets and utilize the reward score to evaluate how effectively the model
has learned to align with human preferences. The resulting test set comprises a total of 3,608 data
entries. Additionally, we employ a broad array of out-of-distribution benchmarks to conduct a more
comprehensive evaluation of the model’s capabilities. This includes assessing knowledge utiliza-
tion (MMLU (Hendrycks et al., 2020)), human alignment (WinoGender (Rudinger et al., 2018),
CrowS-Pairs (Nangia et al., 2020), and TruthfulQA (Lin et al., 2021)), and open-ended generation
(Vicuna (Chiang et al., 2023) and WizardLM (Xu et al., 2023)). The details of evaluation tasks can
be found in Appendix C.

4.2 EXPERIMENTAL RESULTS

Table 2: Performance comparison of FIGA and other widely used alignment methods. Bold and
underlined fonts indicate the best and the second-best score. ↓ denotes lower is better.

Methods Reward MMLU TruthfulQA CrowS-Pairs↓ WinoGender Vicuna WizardLM Average1

Alpaca-7b 3.96 39.2 33.7 61.1 55.6 7.9 7.0 31.7

SFT 4.56 39.3 22.0 61.5 55.3 8.4 8.3 31.1
PPO (SPA) 4.06 39.6 30.1 61.3 56.2 7.6 7.4 31.5
PPO (85K)2 4.54 39.2 36.7 60.6 56.2 7.9 7.2 33.1

CoH 4.24 39.6 28.2 59.6 52.1 8.3 8.1 32.7
RRHF 4.23 37.8 32.9 59.9 60.0 7.9 7.9 31.3
DPO 4.23 40.1 34.8 61.2 57.0 8.0 7.7 32.7

FIGA 4.62 40.8 42.0 61.2 59.6 8.6 8.3 34.9

As in Table 2, FIGA surpasses all baselines, showing superior performance across benchmarks,
even outperforming PPO using four times training data. This implies FIGA aligns more closely
with human preferences and exhibits strong overall task-solving capabilities.

Moreover, to assess the comparative advantages of each response, we conduct a comparison between
the responses generated by FIGA and other baseline methods on the Vicuna and WizardLM bench-
marks. The results are shown in Figure 3. And we also conduct human evaluation in Appendix F
for more fine-grained analysis.

1To reflect the model’s overall performance, we compute the average score. Specifically, we multiply the
reward score by 10, and the score for CrowS-Pairs is calculated as 100 minus the original score.

2Given that PPO does not utilize labels in the dataset and requires a large amount of data to learn through
trial and error, we integrate additional open-source data with the SPA dataset to fully leverage the strengths of
PPO. We obtain a total of 84,908 entries, and the PPO trained with this dataset is referred to as PPO (85K).
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Figure 3: Win rate of FIGA vs other baselines on Vicuna (left) and WizardLM (right).

4.3 FURTHER ANALYSIS

4.3.1 PERFORMANCE COMPARISON W.R.T. SUBPAR ALIGNMENT DATASET

As mentioned in Section 3.1, the steps involved in constructing the SPA dataset include: (1) col-
lecting existing datasets, including preference datasets and typical instruction datasets; (2) filtering
the data based on reward scores; and (3) revising the initial responses using LLM. To examine the
effectiveness of each of them, we develop the following dataset variants:

• Preference: we only use preference data to construct the initial instance pool D with 3,971 sam-
ples.

• Instruction: we construct the initial instance pool D with typical instruction data that the reward
model had not encountered during its training, totaling 3,971 instances.

• W/o reward filtering: this variant excludes the step of data filtering according to reward scores.
• W/o revision: we do not utilize LLM to revise and instead directly employ the reference re-

sponses.

Table 3: Performance comparison of different instances pools.

Methods Reward MMLU TruthfulQA CrowS-Pairs↓ WinoGender Vicuna WizardLM Average

Preference 4.42 37.4 22.6 61.5 57.1 7.4 6.6 30.5
Instruction 4.35 40.7 31.1 59.7 57.5 8.5 8.2 32.8

Table 4: Performance comparison of different data annotations.

Methods Reward MMLU TruthfulQA CrowS-Pairs↓ WinoGender Vicuna WizardLM Average

FIGA 4.62 40.8 42.0 61.2 59.6 8.6 8.3 34.9

W/o reward filtering 4.41 38.0 28.8 61.1 58.5 8.3 8.0 32.1
W/o revision 4.39 37.5 26.7 62.1 55.6 8.2 7.7 31.1

From the results in Table 3 and Table 4, we can see that: (1) FIGA demonstrates strong performance
on typical instruction data that is new to the reward model, proving that its applicability is not
restricted to preference data. (2) Filtering based on reward scores is crucial, resulting in a +0.21
reward score increase and a +2.8 benchmark increase. This underscores the significance of training
on queries where the model’s original performance is subpar. (3) Addressing the distribution shift
through revisions is important, as training with revisions yields +3.8 points on average.

4.3.2 PERFORMANCE COMPARISON W.R.T. WEIGHTING FUNCTIONS

As mentioned in Section 3.2, r̃(·) and r̂(·) in Equation 1 first make comparison between Ŷ and Ỹ ,
and then assign distinct weights to various tokens. Here, we explore other weighting functions as
how they acquire the tokens to be encouraged or discouraged, and study the influence of different
hyper-parameters (α, β, and γ). More details on hyper-parameters can be referred to in Appendix E.
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• Variants of r̃(·): we set β to 0 and propose three different variants to explore alternative methods
for identifying the tokens that should be encouraged.

– Bag of words: it sets r̃(ỹt, t) = 1 only when ỹt /∈ Ŷ ; while the rest are set to 0.
– ChatGPT (weighted): motivated by the work (Lee et al., 2023), it employs ChatGPT to

assess the impact of tokens on sentence quality. The specific prompt can be found in B. The
returned scores are adjusted to fall within the range of 0.7 to 1.3 and are set as r̃(ỹt, t). For
words that ChatGPT doesn’t address, r̃(ỹt, t) = 0.3.

– ChatGPT (binary): it sets r̃(ỹt, t) to 1 only when ỹt is returned by ChatGPT with a non-zero
score, while the rest are set to 0.

• Variants of r̂(·): as for the tokens to be discouraged returned by r̂(·), we further filter bad tokens
returned by Levenshtein distance and retain only those with a negative log-likelihood below 0.6.
To assess its effectiveness, we design the variants including:

– Inverted threshold: it retains only the bad tokens returned by Levenshtein distance with a
negative log-likelihood ≥ 0.6.

– W/o further selection: it penalizes all the bad tokens returned by Levenshtein distance.

• Variants of hyper-parameters: to explore the influence of α, β, γ in Equation 1, we design:

– β = 0: it sets β to 0 with α = 1 and γ = 0.
– γ ̸= 0: it sets γ to 0.3 with α = 1 and β = 0.5.
– R(·): it assigns RỸ , RŶ , 0 to α, β, γ respectively, where RỸ and RŶ are standardized

through the min-max method.

Table 5: Performance comparison of different weighting functions.

Explorations Methods Reward MMLU TruthfulQA CrowS-Pairs↓ WinoGender Vicuna WizardLM Average

Ours FIGA 4.62 40.8 42.0 61.2 59.6 8.6 8.3 34.9

Encouraged
Bag of words 4.52 40.4 29.3 60.0 57.6 8.1 8.2 32.7

ChatGPT (weighted) 4.37 39.8 21.7 60.0 57.9 8.4 8.1 31.4
ChatGPT (binary) 4.32 39.0 24.4 59.9 59.0 7.8 7.6 31.6

Discouraged Inverted threshold 3.80 30.2 27.2 56.2 50.4 8.1 7.4 29.3
W/o further selection 3.01 28.1 24.0 58.5 57.4 8.0 7.7 28.1

Hyper-parameter
β = 0 4.61 41.0 37.0 59.6 58.1 8.5 8.3 34.2
γ ̸= 0 4.54 41.2 32.2 60.1 56.0 8.4 8.2 33.0
R(·) 4.54 39.7 37.8 62.9 57.1 8.2 8.2 33.4

The results in Table 5 indicate that: (1) Levenshtein distance excels in extracting critical tokens, with
over +1.5 and +2.6 average scores compared with the statistical method and ChatGPT annotation
method. (2) It is necessary to further filter the bad tokens returned by Levenshtein distance, as this
leads to an average improvement of +6.8. (3) Remaining only the poor-quality tokens with a negative
log-likelihood ≤ 0.6 is a sensible choice, which aims to penalize tokens that the model is relatively
confident in generating, even though their actual quality is subpar. (4) Punishing the undesirable
actions is beneficial, as it results in an average increase of +0.7. (5) Focusing only on good and bad
tokens is sufficient, since setting γ to a non-zero value leads to a decrease of 1.9. (6) The inferior
performance of reward score weights can be attributed to intrinsic inaccuracies of the reward scores,
especially in out-of-distribution scenarios (Bai et al., 2022b).

5 CONCLUSION

In this paper, we have presented FIGA, a new approach that aligns language models with human
preferences, by leveraging fine-grained quality signals to enhance the alignment quality during fine-
tuning. In our approach, we firstly curate a high-quality alignment dataset that pairs initial re-
sponses with revised responses on queries that a LLM cannot perform well. Furthermore, we have
designed a new learning objective that that can leverage the fine-grained quality signals by con-
trasting initial with revised responses. Our approach inherits the merits of SFT (e.g., efficient and
easy-to-implement), and meanwhile can better understand and learn what are correct behaviors for
alignment. FIGA shows superior performance on extensive tasks, with +3.2 points and +1.8 points
against the initial supervised-finetuned model and the strong PPO method.
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A APPENDIX: DATA SOURCES

(1) HH-RLHF (Helpful and Harmless): It comprises two main categories of data: human prefer-
ence data about helpfulness and harmlessness, and human-annotated red teaming dialogues. The first
one is pivotal to train the reward model, and the second one gives insights into model red-teaming
techniques1.

(2) ShareGPT: The dataset contains conversations through the API using process. Within each
conversation, both user prompts and ChatGPT responses from OpenAI are presented2.

(3) Synthetic Instruct GPT-J Pairwise: Crafted for instruction-oriented tasks, it explores model-
generated outputs when exposed to synthetic prompts3.

(4) Stanford SHP: It offers 385K human preferences across multiple disciplines. These preferences
are designed to discern the relative helpfulness of responses. Contrary to the HH-RLHF dataset, all
content in SHP is penned by humans, serving as a valuable complement to other datasets4.

(5) OpenOrca: This dataset is an extension of the FLAN Collection, including GPT-4 and GPT-3.5
model completions. Its primary application lies in training and evaluation in the realm of NLP. For
our investigation, we’ve exclusively focused on the English instruction subset5.

B APPENDIX: PROMPTS USED FOR DATA AUGMENTATION

Details for revision Given a question, along with the poorer original model response and a pre-
ferred ground truth response, we instruct ChatGPT to make minimal modifications to the original
response, while ensuring that the output still remains closely aligned with the preferred response.

This process can be divided into two steps: first analyzing the reasons for the lower quality of
the original response based on the comparison, and then, making revisions using the appropriate
prompts based on these factors.

Prompt to used analyze the reason: Question: ... Response 1: ... Response 2: ... Among them, the
quality of Response 1 is inferior to that of Response 2. Please compare them and choose one of the
following four possible reasons for the area where Response 1 performed the worst: A. Needs more
accurate content, B. Needs more comprehensive content or more details, C. Requires adjustments
in structure, D. Other reasons (such as containing harmful information or going off-topic). Do not
include analysis, but just return the choice.

1https://huggingface.co/datasets/Anthropic/hh-rlhf
2https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_

unfiltered
3https://huggingface.co/datasets/Dahoas/synthetic-instruct-gptj-pairwise
4https://huggingface.co/datasets/stanfordnlp/SHP
5https://huggingface.co/datasets/Open-Orca/OpenOrca
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The prompts used to revise according to different reasons:

Prompt for reason A: Question: ... Response 1: ... Response 2: ... Please replace the content
corresponding to Response 1 with the accurate and high-quality essence from Response 2, and
remain the original structure of Response 1. Ensure that the edit distance between the optimized
Response 1 and the Response 1 is as low as possible.

Prompt for reason B: Question: ... Response 1: ... Response 2: ... Please incorporate the compre-
hensive topic or the details from Response 2 into Response 1, or if necessary, replace any synony-
mous content from Response 1 with that from Response 2. You must remain the original structure
of Response 1, ensure the edit distance between the optimized Response 1 with the Response 1 is as
low as possible, and not add new contents other than those contained in Response 1 and Response
2.

Prompt for reason C: Question: ... Response 1: ... Response 2: ... The structure of Response 2
is well-organized, featuring elements including but not limited to: 1. point-by-point addressing, 2.
providing an overview of the question before answering. Use the structure of Response 2 to rephrase
Response 1. Ensure that the optimized Response 1 should maintain a relatively low edit distance
from the original Response 1.

Annotate the importance of each word Given a question, along with the lower-quality original
response from the initial model and a higher-quality ground truth response, we require ChatGPT to
score each word based on comparison, in terms of how much it improve the quality. Below is an
example.

Below is an instruction that describes a task, followed by an original response and a better response
in terms of how well it aligns with human preferences, being helpful, harmless, and honest. Your
task is to return a list containing tuples with words and corresponding scores, which are meant
to measure the extent to which the words improve the quality of the original answer to the better
answer. The scores are all integers, with 0 being the lowest score and 5 being the highest score.
Instruction: ... Original Response: ... Better Response: ...

C APPENDIX: EVALUATION DETAILS

We utilize a suite of benchmarks to evaluate the performance as mentioned in Section 4.1.3. Here,
we provide details on how we use these benchmarks for evaluation.

MMLU: The multitask multilingual language understanding (MMLU) benchmark consists of 57
subtasks. Our approach involves calculating the negative log-likelihood of the correct option across
all tasks, ensuring it is the minimal among all options. Finally, we calculate the accuracy of cor-
rectly answered questions. The implementation details can be found at the LM-evaluation-harness
repository 6.

TruthfulQA: For the TruthfulQA benchmark, we select the multiple-choice task (MC1), which
contains only one correct option. Similar to MMLU, we evaluate by determining if the negative
log-likelihood of the correct option is the lowest among all options, and calculate the accuracy of
correctly answered questions.

CrowS-Pairs: This benchmark involves comparing two sentences: one exhibits a common form of
bias, while the other one does not, differing only in a few words. We calculate the perplexity for
each sentence and determine the bias rate by evaluating which sentence has a lower perplexity. A
bias rate closer to 50% indicates less bias in the model.

Winogender: It assesses the model’s accuracy in handling Winograd schema challenge tasks under
three scenarios: male, female, and unspecified gender. It is based on whether the negative log-
likelihood of the correct sentence is lower. Our primary metric is the average score across these
gender scenarios.

6https://github.com/EleutherAI/lm-evaluation-harness
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Vicuna and WizardLM: These two benchmarks instruct the model to generate responses to the
given prompts. The responses are then rated by ChatGPT (Zheng et al., 2023) on a scale of 1 to 10,
with the overall performance measured by the average score.

D APPENDIX: SPA DATASET DETAILS

We have conducted a budget estimation based on the usage of the GPT-3.5-turbo API for our SPA
dataset. The average input token count per data entry in the SPA dataset is 952, and the average
output token count is 143. Considering the pricing of API usage (i.e., $0.001 and $0.002 per 1K
tokens for input and output respectively), the total estimated cost for the entire SPA dataset amounts
to $21.45.

Additionally, we conduct experiments with various sizes of the SPA dataset to investigate how much
data is necessary to achieve a reasonable performance gain. The results in Table 6 indicate that
constructing a SPA dataset with 8000 samples and training based on the FIGA method can lead to a
substantial performance boost.

Table 6: Performance comparison of different data sizes.

#Data Reward MMLU TruthfulQA CrowS-Pairs↓ WinoGender Vicuna WizardLM Average

Alpaca-7b 3.96 39.2 33.7 61.1 55.6 7.9 7.0 31.7

4k 4.28 39.9 26.3 59.0 55.7 8.6 8.4 31.8
8k 4.58 41.0 33.2 59.8 57.2 8.4 8.2 33.4

17k 4.62 40.8 42.0 61.2 59.6 8.6 8.3 34.9

E APPENDIX: HYPTER-PARAMETER SETTINGS

Below are the results of our experiments conducted with various hyper- parameter configurations.

Table 7: Performance comparison of different hyper-parameters.

Explorations α/β/γ Reward MMLU TruthfulQA CrowS-Pairs↓ WinoGender Vicuna WizardLM Average

Ours 1/0.5/0 4.62 40.8 42.0 61.2 59.6 8.6 8.3 34.9

w.r.t. α R(.)/0.5/0 4.54 39.7 37.8 62.9 57.1 8.2 8.2 33.4
R(.)/0/0 4.46 39.9 27.3 60.0 60.1 8.1 7.9 32.6

w.r.t. β
1/0.5/0 4.65 41.1 41.4 60.1 57.1 8.6 8.4 34.7
1/0.25/0 4.59 38.8 40.3 61.5 60.6 8.3 7.9 34.3
1/0.2/0 4.64 40.1 38.3 61.7 59.9 8.4 8.3 34.2

w.r.t. γ 1/0.5/0.3 4.54 41.2 32.2 60.1 56.0 8.4 8.2 33.0
1/0/0.3 4.50 40.4 30.8 59.8 56.4 8.4 8.1 32.8

From the Table 7, it can be observed that: (i) γ should be set to 0, as a non-zero γ leads to a
decrease in results. (ii) α should be set to 1, as setting α to the reward score results in a decrease
in performance. (iii) The final results are insensitive to β, indicating that as long as β is set to a
reasonable value, it will not notably impact the overall performance.

F APPENDIX: HUMAN EVALUATION

In addition to all the automatic evaluation metrics, we further carry out human evaluation to test
how much the model align to human preference after FIGA training. To be specific, we explore the
following aspects:

Firstly, we randomly select 20 instructions from the test set and choose the outputs before FIGA
training and after FIGA training. We ask 3 participants to assess whether these responses exhibit the
four aforementioned types of errors. The results in Table 8 show that after FIGA training, errors of
all types have significantly decreased.

Then, we evaluate the quality of outputs through human evaluation. We randomly select 30 instruc-
tions from Vicuna benchmark, along with corresponding responses from FIGA and other baseline
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Table 8: Human evaluation of error types.

Error Type Inaccuracy Lack of Details Structure Others (off-topic or harmful)

before FIGA training 20% 35% 5% 0%
after FIGA training 5% 10% 0% 0%

methods (including ChatGPT). We invite three evaluators to make pairwise comparisons between
FIGA responses and those of each baseline method, aiming to identify the one with higher quality.
Finally, we aggregate the assessments from the three participants and obtain the final evaluation
results through the mode method. The results in Table 9 show that FIGA outperforms all baseline
methods, indicating its ability to better align with human preferences.

Table 9: Human evaluation of overall quality.

FIGA against Alpaca-7b SFT PPO PPO (85k) RRHF CoH DPO ChatGPT

FIGA win rate 73% 57% 73% 83% 73% 57% 73% 40%

16


	Introduction
	Related Work
	Approach
	Curated Alignment Dataset
	Fine-grained Quality-aware Alignment Tuning
	Discussion

	Experiment
	Experimental Setup
	Baseline Methods
	Implementation Details
	Evaluation Tasks

	Experimental Results
	Further Analysis
	Performance Comparison w.r.t. SubPar Alignment Dataset
	Performance Comparison w.r.t. Weighting Functions


	Conclusion
	Appendix: Data sources
	Appendix: Prompts used for data augmentation
	Appendix: Evaluation Details
	Appendix: SPA dataset Details
	Appendix: Hypter-parameter Settings
	Appendix: Human Evaluation

