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A Sampling similar augmentations more frequently gives minor performance
improvements

Here we describe an alternative experiment that shows how the introduction of dissimilar augmenta-
tions affects corruption error. For a broad data augmentation scheme that provides robustness to many
dissimilar corruptions, each corruption may only have a similar augmentation sampled some small
fraction of the time. This small fraction of samples must be sufficient to yield good performance on
each corruption to obtain robustness overall. We expect that this should be the case, since neural
networks are often good at memorizing rare examples. Additionally, the toy problem in Figure
2 of Section 3 suggests that a large fraction of sampled augmentations may be dissimilar without
significant loss in corruption error. Here we show the effect using a real augmentation scheme.

We consider performance on CIFAR-10-C when training with AugMix augmentations (we do not use
their Jensen-Shannon divergence loss, which gives additional improvements). However, instead of
sampling directly from the AugMix distribution during training, we first sample 100k transforms and
sort these transforms by their distance to the CIFAR-10-C corruptions. This sorting is done to evenly
distribute the augmentations among the 75 (15 corruptions in 5 severities) individual corruptions; e.g.
the first 75 augmentations in the list are the closest augmentation to each corruption. Then we take a
fixed-size subset A of these transforms and train on augmentations sampled only from this subset
using the training parameters from Hendrycks et al. [5]. We select A three different ways: randomly,
taking the |A| closest augmentations, and taking the |A| farthest augmentations. We then measure the
average corruption error on CIFAR-10-C and plot this error against |A| in Figure 1.

First, we note that for randomly sampled augmentations, A does not need to be very large to
match AugMix in performance. Even though training on AugMix with our training parameters
would normally would produce 5 million uniquely sampled augmentations, only around 1000 are
needed to achieve equivalent performance. Training on the closest augmentations exceeds regular
AugMix performance with only around 100 unique transforms, which acts as additional evidence that
augmentation-corruption similarity correlates with corruption error. This gain in accuracy comes not
from having access to better transformations, but from having more frequent access to them at training
time. However, the gain is fairly mild at only around 1%, even though the best transformations are
sampled all of the time instead of rarely. The gain from frequency is much less than the gain from
having more similar augmentations, since choosing the most dissimilar augmentations gives around a
5% drop in accuracy. This suggests that it is a net positive to decrease the frequency of sampling
similar augmentations in order to include augmentations similar to another set of corruptions: the
gain in accuracy on the new corruption set will likely out weight the small loss in accuracy on the
original set.

∗This work completed as part of the Facebook AI residency program.
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Figure 1: Average corruption error on ImageNet-C as a function the size of a fixed subset of AugMix
augmentations. During training, augmentations are only sampled from the subset. The subset is
chosen one of three ways: randomly, the most similar augmentations to ImageNet-C, or the least
similar augmentations to ImageNet-C. Choosing similar corruptions improves error beyond AugMix,
but not by as much that choosing dissimilar augmentations harms it.
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Figure 2: Example relationships between augmentation-corruption distance and corruption error
for two distance scores, MMD and MSD. ρ is the Spearman rank correlation. MMD between
an augmentation and corruption distribution is not typically predictive of corruption error. MSD
correlates well across all four categories of corruption in CIFAR-10-C.

B Additional MSD and MMD experiments

B.1 Comparison of MSD and MMD

To support the use of MSD for comparing augmentations and corruptions, we confirm here that the
more naive measure of MMD correlates poorly with corruption error. We calculate MMD and MSD
as defined in Section 3 of the main text between each augmentation in the augmentation powerset
and the corruptions in CIFAR-10-C. Figure 2 shows a comparison of how MMD and MSD correlate
with corruption error on sample corruptions. MMD typically shows poor correlation, while MSD has
strong correlation in all four categories of corruption.

B.2 Analyzing generalization with MMD

In Section 3, we argue distributional equivalence is usually not appropriate for studying augmentation-
correlation similarity because augmentation distributions are typically broader than any one corruption
distribution. However, were an augmentation perceptually similar to a class of corruptions in the
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Figure 3: (a) Patch Gaussian shows a low MMD distance on the noise corruptions and a high
MMD distance on every other corruption, suggesting that it may be perceptually similar to the noise
corruptions in a distributional sense. (b) While AutoAugment contains contrast and brightness
augmentations, it is broad enough that it doesn’t have a low MMD to these corruptions. Note that
since brightness shows poor correlation for MSD, it is possible that in this case the MMD does not
change for other reasons.

distributional sense, it might suggest at poor generalization to dissimilar corruptions. Using the
simple, necessary but insufficient measure we call MMD in Section 3, we can study a weak sense of
distributional equivalence. Figure 3 shows example MMD-error correlations. For Patch Guassian,
MMD is low for the noise corruptions and high for everything else, while AutoAugment and AugMix,
which are constructed out of many visually distinct transforms, show no strong correlation. This
suggests the intuitive result that Patch Gaussian does not just have perceptual overlap with the noise
corruptions, but is perceptually similar to them in a more distributional sense. We might then expect
poorer generalization from Patch Gaussian to corruptions dissimilar from the noise corruptions, which
includes ImageNet-C.

B.3 MSD vs Batch-Norm Adaptation

It is suggested in Schneider et al. [9] that significant improvement on a set of corruptions may
be obtained by adapting only the batch norm parameters of a model trained on clean data to the
statistics of the corrupted dataset. One might then expect that there will be a correlation between
augmentation-corruption MSD and the error of a model whose batch norm has been adapted to the
augmentation distribution. Such a correlation would suggest that a significant benefit of performing
augmentations comes from making the batch norm statistics of the training set more similar to
the corruption set. Here we test this, performing batch norm adaptation as described in Schneider
et al. [9], starting from a model trained with default CIFAR-10 augmentation. We choose the one
hyperparameter in their algorithm such that the batch norm parameters are adapted completely to the
augmented data distribution. Results are shown in Figure 4. We find that this still correlates well with
MSD (though, as is to be expected, less well than training on the augmentations). This lends support
to the claim that batch norm statistics are an important aspect of the choice of augmentation.
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Figure 4: MSD vs. test error on the specified corruption. The test error is obtained by adapting a
model’s batch norm statistics to the augmented data distribution. The Spearman rank coefficient
is given in parenthesis for each corruption. Correlation is still strong but weaker than training the
models from scratch on the augmentations.

Table 1: Spearman’s rank coefficient for the correlation between MSD and corruption error for two
architectures in the feature extractor: WideResNet-40-2 and VGG-19-BN. While WideResNet has
slightly better correlations overall, the relative behavior across corruptions remains the same for the
two architectures.

Corruption WRN VGG
Gaussian Noise 0.76 0.70

Shot Noise 0.83 0.78
Impulse Noise 0.90 0.92

Motion Blur 0.86 0.81
Defocus Blur 0.83 0.78
Zoom Noise 0.77 0.68

Glass Blur 0.69 0.66
Brightness 0.27 0.08

Corruption WRN VGG
Fog 0.68 0.60

Frost 0.66 0.66
Snow 0.65 0.53

Contrast 0.66 0.65
Pixelate 0.35 0.29

JPEG Compression 0.33 0.26
Elastic Transform 0.77 0.74

C MSD Ablation

C.1 Architecture choice

Here we provide evidence that changing the architecture of the feature extractor used in the definition
of MSD does not have any qualitative effect on the correlation with corruption error. We use a version
of VGG-19 with batch normalization that has been modified for CIFAR-10. Otherwise, all other
parameters are chosen the same. We then repeat the experiment of Section 4. In Table 1 and Figure 5,
we show that the qualitative results of this experiment are unchanged when using VGG-19-BN as the
feature extractor.

C.2 Parameter dependencies

In calculating the feature space for transforms and MSD, it is necessary to both pick a number of
images to average over and a number of corruptions to average over. In our experiments, we use 100
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Figure 5: MSD vs corruption test error for which MSD is calculated using VGG-19-BN as the
architecture for feature extraction. The corruption error is still calculated using WideResNet-40-2.
Compare to Figure 7 to see that the qualitative structure of the correlation is the regardless of which
architecture is used for the feature extractor.
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Figure 6: The standard deviation of the distance between an augmentation and a corruption center,
taken over 100 resamplings of images and corruptions. The standard deviation is calculated as a
percentage of the mean distance, then averaged over 100 augmentation-corruption pairs. At our
choice of parameters, 100 images and 100 corruptions, the standard deviation is only around 5% of
the distance. This is smaller than the feature size in the scatter plots of Figure 2

images and 100 corruptions. Here we provide evidence that these are reasonable choices for these
parameters.

To do so, we use the augmentation scheme from AugMix and corruptions distributions from CIFAR-
10-C to randomly sample 100 augmentation-corruption pairs. Then, for different samplings of a fixed
number of images and sampled corruptions, we measure the augmentation-corruption distance in the
transform feature space 100 times for each augmentation-corruption pair. We calculate the standard
deviation of the distance as a percentage of the mean distance for each augmentation-corruption pair,
and average this over pairs. The results are shown in Figure 6. For our choice of image and corruption
number, the standard deviation in distance is only around 5% of the mean distance, which is smaller
than the size of the features in the scatter plots in Figure 2.
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D ImageNet-C details

D.1 Dataset construction details

First, 30 new corruptions, examples of which are shown in Figure 9, are adapted from common image
filters and noise distributions available online [2, 6]. These corruptions are generated in 10 severities
such that the image remains human interpretable at all severities and the distribution of errors on a
baseline model roughly matches that of ImageNet-C.

For each corruption, groups of 5 severities are generated that roughly match the average spread in
error across severities in ImageNet-C on a baseline model. Seven of these groups are formed for each
corruption, each with one of severity 3 through 8 as the center severity of the group of 5.

A candidate dataset is a set of 10 groups of severities, each from a different corruption whose average
corruption error on a baseline model is within 1% of ImageNet-C. This is necessary so that a relative
decrease in error of data augmented models is normalized against a fixed baseline. Also, more
distorted, harder transforms are likely farther away, so if this wasn’t fixed maximizing distance would
likely just pick the hardest transforms in the highest severities. It was computationally infeasible to
enumerate all candidate datasets, so they were sampled as follows. For each choice of 5 corruptions,
one choice of severities was selected at random so that the average corruption error was within 1%
of ImageNet-C, if it existed. Then random disjoint pairs of two sets of 5 were sampled to generate
candidate datasets. 100k candidate datasets are sampled.

Call the set of all corruption-severity pairs in a dataset C. The distance of a candidate dataset to
ImageNet-C is defined as

d(Cnew,CIN−C) = Ec∼Cnew

[
min

c′∼CIN−C

dMMD(c, c′)

]
, (1)

where dMMD is defined in Section 3. The minimum helps assure that new corruptions are far from all
ImageNet-C corruptions.

This distance is calculated for all 100k sampled candidate datasets. For CIFAR-10, the same
parameters described in Section 4 are used to calculate the distance. For ImageNet, the feature
extractor is a ResNet-50 trained according to Goyal et al. [3], except color jittering is not used as a
data augmentation. Since there is much greater image diversity in ImageNet, we jointly sample 10k
images and corruptions instead of independently sampling 100 images and 100 corruptions. Code
for measuring distances and training models is based on pyCls [7, 8], and Hydra [10] is used for
configuration.

The corruptions are then ranked according the their average contribution to the dataset distance.
This entire procedure is repeated 10 times for CIFAR and 5 times for ImageNet, and corruption
contributions are averaged. The top 10 are chosen to form the new dataset. These rankings are
shown in Figure 7. There may still be multiple candidate datasets made up of these 10 corruptions,
differing by the choice of severities. Among these across all runs, we pick the one with error closest
to ImageNet-C, though there may still be variation in error run-to-run.

D.2 Complete results

Here we show results comparing ImageNet/CIFAR-10-C to ImageNet/CIFAR-10-C. The 10 trans-
forms chosen for ImageNet-C are blue noise sample (BSmpl), plasma noise (Plsm), checkerboard
(Ckbd), cocentric sine waves (CSin), single frequency (SFrq), brown noise (Brwn), perlin noise
(Prln), inverse sparkle (ISprk), sparkles (Sprk), and caustic refraction (Rfrac). For CIFAR-10-C,
there is blue noise sample (BSmpl), brown noise (Brwn), checkerboard (Ckbd), circular motion
blur (CBlur), inverse sparkle (ISprk), lines (Line), pinch and twirl (P&T), ripple (Rppl), sparkles
(Sprk), and transverse chromatic abberation (TCA). Table 2 compares average results, representing
the results from Table 1 in the main text for completeness. A breakdown of ImageNet/CIFAR-10-C
results by corruption is in Table 3, including standard deviations for each corruption individually.
Stylized-ImageNet is trained jointly with ImageNet for half the epochs, as is done in Geirhos et al.
[1]. ImageNet results are averaged over five runs, and CIFAR-10 over ten. For each of the five
Stylized-ImageNet runs, we generate a new Stylized-ImageNet dataset using a different random seed
and the code provided by Geirhos et al. [1].
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Figure 8: The correlation between MSD and corruption error on the dataset CIFAR-10-C. ρ is the
Spearman rank correlation.

D.3 MSD for CIFAR-10-C

We repeat the experiment of Section 4 of the main text that measures the correlation between MSD
and corruption error using the new corruptions in CIFAR-10-C. Results are shown in Figure 8. We
find that the correlation is still quite strong for many corruptions, though, like in CIFAR-10-C, there
are some corruptions such as inverse sparkles where the correlation is weak.

E Resource usage

WideResNet-40-2 on CIFAR-10 is trained for about 45 minutes to an hour on 1 V100 GPU, while
ResNet-50 on ImageNet is trained for approximately 20 hours on 8 V100 GPUS. Collecting augmen-
tation features for MSD requires 45 to an hour on 1 V100 GPU. In-memory corruption evaluation
and feature extraction for CIFAR-10/ImageNet-C and the newly introduced corruptions is often CPU
limited and runtimes vary significantly from corruption type to corruption type. This ranges up to
approximately 6 hours on 80 Intel Xenon 2.2Ghz CPUs for per corruption and severity for ImageNet,
or up to approximately 8 minutes per corruption and severity on 40 CPUs for CIFAR-10. When
calculating distances for choosing CIFAR-10/ImageNet-C, CIFAR-10 uses the same amount of time
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Table 2: Comparison between performance on ImageNet/CIFAR10-C and ImageNet/CIFAR10-C.
Standard deviations are over 10 runs for CIFAR-10 and 5 runs for ImageNet. *ANT, DeepAugment
(DA), and DeepAugment+AugMix (DA+AM) results use the pre-trained models provided with the
respective papers and thus have different training parameters and only one run.

IN-C IN-C
Aug Err Err ∆IN-C

Baseline 58.1±0.4 57.7±0.2 -0.5
AA 55.0±0.2 55.7±0.3 +0.7
SIN 52.4±0.1 55.8±0.3 +3.4

AugMix 49.2±0.7 52.4±0.2 +3.2
PG 49.3±0.2 56.6±0.4 +7.3

ANT* 48.8 53.9 +5.1
DA* 46.6 51.0 +4.4

DA+AM* 41.0 48.3 +7.3

C10-C C10-C
Aug Err Err ∆C10-C

Baseline 27.0±0.6 27.1±0.5 +0.1
AA 19.4±0.2 21.0±0.4 +1.6

AugMix 11.1±0.2 16.0±0.3 +4.9
PG 17.0±0.4 23.8±0.5 +6.8

Table 3: Breakdown of performance on individual corruptions in ImageNet/CIFAR10-C. Standard
deviations are over 10 runs for CIFAR-10 and 5 runs for ImageNet. Examples and full names of
each corruption are given in Appendix F. *ANT, DeepAugment (DA), and DeepAugment+AugMix
(DA+AM) results use the pre-trained models provided with the respective papers and thus have
different training parameters and only one run.

ImageNet-C Corruptions
Aug BSmpl Plsm Ckbd CSin SFrq Brwn Prln ISprk Sprk Rfrac

Baseline 68.6±0.5 71.7±0.7 49.4±0.6 84.7±0.5 79.0±0.8 37.5±0.5 34.3±0.1 32.4±0.5 76.7±0.2 42.8±0.2

AA 54.8±0.7 68.3±0.7 43.8±1.0 86.5±0.6 78.8±0.9 34.5±0.8 33.8±0.2 36.1±1.0 77.1±1.2 43.8±0.2

SIN 54.7±1.5 69.8±1.1 52.8±1.0 79.6±0.4 69.2±0.6 37.8±0.4 35.3±0.1 37.0±0.5 77.3±0.8 44.1±0.2

AugMix 43.2±0.8 72.2±0.4 46.1±0.2 76.3±0.3 67.4±0.7 38.8±0.5 32.4±0.1 32.3±0.2 76.4±0.4 39.2±0.2

PG 60.3±2.9 74.1±0.7 48.5±1.0 82.1±0.4 76.7±0.8 38.9±0.4 34.6±0.1 32.1±0.7 76.5±0.6 42.1±0.4

ANT* 35.8 75.5 56.9 76.4 63.7 41.0 35.2 35.0 76.1 43.3
DA* 41.7 73.3 53.9 74.6 50.9 37.2 30.3 32.9 74.7 40.9

DA+AM* 34.9 67.9 49.8 69.7 48.0 35.2 30.6 32.9 74.3 39.8
CIFAR-10-C Corruptions

Aug BSmpl Brwn Ckbd CBlur ISprk Line P&T Rppl Sprk TCA
Baseline 42.9±5.1 27.2±0.5 23.3±0.6 11.8±0.4 43.3±0.8 26.2±0.9 11.3±0.3 21.6±1.2 21.0±1.1 42.9±2.7

AA 17.7±1.7 17.5±0.5 17.6±0.5 9.5±0.3 40.4±1.5 23.6±0.7 10.7±0.3 23.5±0.5 17.5±0.7 31.8±1.8

AugMix 9.8±0.7 27.8±1.3 13.4±0.4 5.9±0.2 30.3±0.7 18.0±0.6 8.3±0.2 12.1±0.4 15.5±0.5 19.2±1.0

PG 9.0±1.1 30.1±1.1 21.6±0.8 12.8±0.5 35.4±1.6 20.6±0.5 8.8±0.2 21.5±0.9 19.3±0.5 59.5±3.5

per corruption as evaluation of the corruption, while ImageNet uses 1/5th the time, simply as a result
of the number of images processed in each case.

F Glossary of transforms

This appendix contains examples of the augmentations and corruptions discussed in the text. Figure
9 shows the 30 new corruptions introduced in Section 5. These transforms are adapted from common
online filters and noise sources [2, 6]. They are designed to be human interpretable and cover a wide
range transforms, including noise additions, obscuring, warping, and color shifts.

Figure 10 shows the 9 base transforms used to build augmentation schemes in the analysis. These are
transforms from the Pillow Image Library that are often used as data augmentation. They have no
exact overlap with either the corruptions of ImageNet-C or the new corruptions we introduce here.
There are five geometric transforms (shear x/y, translate x/y, and rotate) and four color transforms
(solarize, equalize, autocontrast, and posterize). We choose this particular set of augmentations
following Hendrycks et al. [5].

Figure 11 shows example corruptions from the ImageNet-C benchmark [4]. They a grouped into four
categories: noise (gaussian noise, shot noise, and impulse noise), blurs (motion blur, defocus blur,
zoom blur, and glass blur), synthetic weather effects (brightness, fog, frost, and snow), and digital
transforms (contrast, pixelate, JPEG compression, and elastic transform).
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Figure 9: Examples of each corruption considered when building the dataset dissimilar to ImageNet-C.
Base image © Sehee Park.
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PosterizeEqualizeSolarize

Translate YTranslate X RotateShear X Shear Y

AutoContrast

Figure 10: The nine base transforms used as augmentations in analysis. Base image © Sehee Park.

Elastic TransformJPEG CompressionPixelateSnow

FrostFogBrightnessGlass BlurZoom Blur

Defocus BlurMotion BlurImpulse NoiseGaussian Noise Shot Noise

Contrast

Figure 11: Examples of the 15 corruptions in the ImageNet-C corruption benchmark [4]. Base image
© Sehee Park.
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