
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Supplementary Material of Progressive Point Cloud Denoising
with Cross-Stage Cross-Coder Adaptive Edge Graph Convolution

Network
Anonymous Authors

In this supplementary document, we provide additional experi-
mental results to further support and complement the conclusions
presented in the main paper. Specifically, we provide experiments
as follows:

(1) More visual results on the PUNet dataset.
(2) Visual Results on Real-world Scanned Data
(3) Comparison of the running time of different denoising

methods.
(4) More comprehensive results and analyses from the ablation

study are as follows:
• Performance comparison on higher noise levels.
• Ablation study of AEConv module on higher noise

levels.
• Ablation study of different connection architectures

on higher noise levels.
• Ablation study of the number of stages on higher noise

levels.

1 MORE VISUAL RESULTS ON THE PUNET
DATASET

In the main paper, we have presented that our method can achieve
the best denoising results on the five point clouds, i.e., Camel, Cast-
ing, Chair, Elk, and House, in the PUNet dataset [5]. However, due
to limited page space, we could not include additional visual results
in the main paper. In this section, to further demonstrate the effec-
tiveness of our method, we have provided more visual comparison
results in Figure 1. In general, we can observe that our proposed
method also achieves superior visual results and better mean P2M
metrics on the additional four point clouds. Therefore, compared
to other state-of-the-art methods, our method can more accurately
relocate noisy points onto clean surfaces, enhancing the visual
quality of the point clouds.

2 VISUAL RESULTS ON REAL-WORLD
SCANNED DATA

In the main paper, we conduct performance comparisons on real-
world scanned data from the Kinect v1 and Kinect v2 datasets. To
further demonstrate the effectiveness of our method, we visualize
the denoising results on real-world scanned data. The visual results
are shown in Figure 2. Due to the complexity of real-world noise,
denoising real-world scanned data is challenging. In Figure 2, we
can see that PDFlow performs poorly when faced with real-world
noise. For the other comparison methods, there is little difference in
their denoising capabilities in real-world scenarios. In contrast, our
method can achieve better visual results on some scanned data, such
as Boy. Therefore, this demonstrates that our method is effective in
denoising real-world noise.

Table 1: Running time comparison of different denoising
methods on a noisy point cloud with a resolution of 50K
points. The noisy point cloud contains Gaussian noise with
standard deviation of 2% of the bounding sphere’s radius. The
best performance results are indicated in BOLD.

Method Time (s)

PDFlow [3] 39.91
ScoreDenoise [2] 16.27
Pointfilter [6] 50.97

IterativePFN [1] 15.83

C2AENet (Ours) 16.14

Table 2: Comparison results on higher noise levels on the
PUNet dataset. CD is multiplied by 105, P2M is multiplied by
105. The best results are marked in BOLD.

Model

10K points

2.75% noise 3% noise 3.25% noise
CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓

PDFlow [3] 39.93 20.04 44.72 23.95 50.55 28.80
ScoreDenoise [2] 49.60 23.47 56.38 28.79 64.81 35.63
IterativePFN [1] 36.58 12.63 42.49 16.99 52.83 24.93

C2AENet (Ours) 34.88 11.32 38.35 13.85 45.44 19.06

3 COMPARISON OF THE RUNNING TIME OF
DIFFERENT DENOISING METHODS

For large-resolution point clouds, the running time of denoising
methods is crucial. Therefore, in this section, we conduct a running
time comparison of state-of-the-art methods on a noisy point cloud
with a resolution of 50K points. The results are shown in Table 1. For
other state-of-the-art methods, we use their default configurations.
For instance, PDFlow and Pointfilter undergo two iterations of
denoising during testing. The number of gradient ascent steps for
ScoreDenoise is set to 30. Both IterativePFN and our method are
configured with four denoising stages. Overall, our method achieves
optimal denoising performance while ensuring suboptimal running
time. Compared to methods with fewer stages, our method yields
superior denoising results with less running time.
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Figure 1: Visual results of four additional point clouds on the PUNet dataset, where the color of each point represents its P2M.
The noisy point cloud contains Gaussian noise with standard deviation of 2% of the bounding sphere’s radius, and it has a
resolution of 50K points. The mean P2M of each point cloud is directly below.

Table 3: Experimental results of AEConv module on higher
noise levels on the PUNet database. CD is multiplied by 105,
P2M is multiplied by 105. The best results are marked in
BOLD.

Method

10K points

2.75% noise 3% noise 3.25% noise
CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓

EdgeConv 36.67 12.64 44.48 18.42 59.01 29.62
EdgeConv + GS 35.25 11.63 39.24 14.59 48.16 21.26

EdgeConv + GS + AEA 34.88 11.32 38.35 13.85 45.44 19.06

4 MORE COMPREHENSIVE RESULTS AND
ANALYSES FROM THE ABLATION STUDY

4.1 Performance Comparison on Higher Noise
Levels

In Table 2, we further investigate the performance of different
denoising methods on higher noise levels. All models in the ex-
periment are trained on Gaussian noise with standard deviations
ranging from 0.5% to 2% of the bounding sphere’s radius. Follow-
ing that, the models are tested on Gaussian noise with standard
deviations of 2.75%, 3 %, and 3.25% of the bounding sphere’s radius,
respectively. As a result, the noise level during testing is signifi-
cantly higher than during training. From the experimental results,
we observe that ScoreDenoise performs less satisfactorily as the

2
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Figure 2: Visual results of four scans on the Kinect v1 dataset, where the color of each point represents its P2M. The real-world
scanned data includes Boy, Cone, Girl, and Pyramid.

noise level increases. Compared to other state-of-the-art denoising
methods, our method consistently outperforms them across all high
noise levels. This demonstrates the effectiveness and robustness of
C2AENet in challenging scenarios.

4.2 Ablation Study of AEConv Module on
Higher Noise Levels

To further validate the effectiveness and contribution of the AE-
Conv module, we conduct an additional ablation studies. Unlike the
experiments presented in the main text, this study evaluates the
contributions of the EdgeConv baseline [4], multi-level graph struc-
ture, and adaptive edge attention (AEA) module on higher noise
levels. The results are presented in Table 3. In the table, we use
GS to represent multi-level graph structures. We observe that the
multi-level graph structure leveraging different neighborhood in-
formation is beneficial for denoising. On this basis, the AEAmodule

further achieves a significant performance leap, demonstrating its
ability to focus the network on critical denoising regions. Therefore,
the AEConv module remains effective in capturing the complex
relationships between data even on higher noise levels.

4.3 Ablation Study of Different Connection
Architectures on Higher Noise Levels

In Table 4, we conduct additional experiments to assess the per-
formance of different connection architectures on higher noise
levels. We find that the baseline achieved suboptimal performance
on higher noise levels. Adding the cross-stage connections of the
encoder and decoder separately or simultaneously to the baseline
resulted in unsatisfactory performance on high noise levels. Ulti-
mately, the linear mapping of cross-stage features effectively solves
this issue, making the transferred information more suitable for
learning in the next stage.

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Table 4: Experimental results of five different connection architectures on higher noise levels on the PUNet database. CD is
multiplied by 105, P2M is multiplied by 105. The best results are marked in BOLD.

Method

10K points

2.75% noise 3% noise 3.25% noise
CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓

Base 36.79 12.60 41.97 16.42 51.61 23.73
Base+Cross-Stage (Encoder) 37.28 12.93 44.49 18.28 58.61 29.13
Base+Cross-Stage (Decoder) 38.48 13.79 47.98 20.97 61.94 31.90

Base+Cross-Stage Cross-Coder 39.02 14.14 49.29 21.86 64.46 33.79
Base+Cross-Stage Cross-Coder (FC) 34.88 11.32 38.35 13.85 45.44 19.06

Table 5: Experimental results of different number of stages on higher noise levels on the PUNet database. CD is multiplied by
105, P2M is multiplied by 105. The best results are marked in BOLD.

Method

10K points

2.75% noise 3% noise 3.25% noise
CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓

Our network with 1 stage 44.43 18.13 51.91 23.88 61.59 31.57
Our network with 2 stages 37.61 13.07 42.92 16.97 51.33 23.66
Our network with 4 stages 34.88 11.32 38.35 13.85 45.44 19.06
Our network with 8 stages 37.16 12.74 43.91 17.73 55.69 26.77

4.4 Ablation Study of the Number of Stages on
Higher Noise Levels

Table 5 shows the experimental results of the multi-stage denoising
scheme on higher noise levels. It primarily evaluates our network
with 1, 2, 4, and 8 stages. The results indicate that the performance
gains of the multi-stage denoising scheme on higher noise levels
align with the trends observed in the main paper. The optimal per-
formance is attained when configuring the network with 4 stages.
This further demonstrates the importance of multi-stage denoising
scheme in enhancing denoising capabilities.
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