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In this supplementary document, we provide additional experi-
mental results to further support and complement the conclusions
presented in the main paper. Specifically, we provide experiments
as follows:

(1) More visual results on the PUNet dataset.
(2) Visual Results on Real-world Scanned Data
(3) Comparison of the running time of different denoising
methods.
(4) More comprehensive results and analyses from the ablation
study are as follows:
o Performance comparison on higher noise levels.
e Ablation study of AEConv module on higher noise
levels.
e Ablation study of different connection architectures
on higher noise levels.
o Ablation study of the number of stages on higher noise
levels.

1 MORE VISUAL RESULTS ON THE PUNET
DATASET

In the main paper, we have presented that our method can achieve
the best denoising results on the five point clouds, i.e., Camel, Cast-
ing, Chair, Elk, and House, in the PUNet dataset [5]. However, due
to limited page space, we could not include additional visual results
in the main paper. In this section, to further demonstrate the effec-
tiveness of our method, we have provided more visual comparison
results in Figure 1. In general, we can observe that our proposed
method also achieves superior visual results and better mean P2M
metrics on the additional four point clouds. Therefore, compared
to other state-of-the-art methods, our method can more accurately
relocate noisy points onto clean surfaces, enhancing the visual
quality of the point clouds.

2 VISUAL RESULTS ON REAL-WORLD
SCANNED DATA

In the main paper, we conduct performance comparisons on real-
world scanned data from the Kinect v1 and Kinect v2 datasets. To
further demonstrate the effectiveness of our method, we visualize
the denoising results on real-world scanned data. The visual results
are shown in Figure 2. Due to the complexity of real-world noise,
denoising real-world scanned data is challenging. In Figure 2, we
can see that PDFlow performs poorly when faced with real-world
noise. For the other comparison methods, there is little difference in
their denoising capabilities in real-world scenarios. In contrast, our
method can achieve better visual results on some scanned data, such
as Boy. Therefore, this demonstrates that our method is effective in
denoising real-world noise.

Table 1: Running time comparison of different denoising
methods on a noisy point cloud with a resolution of 50K
points. The noisy point cloud contains Gaussian noise with
standard deviation of 2% of the bounding sphere’s radius. The
best performance results are indicated in BOLD.

Method ‘ Time (s)
PDFlow [3] 39.91
ScoreDenoise [2] 16.27
Pointfilter [6] 50.97

TterativePFN [1] 15.83

C2AENet (Ours) |  16.14

Table 2: Comparison results on higher noise levels on the
PUNet dataset. CD is multiplied by 10°, P2M is multiplied by
10°. The best results are marked in BOLD.

‘ 10K points
Model 2.75% noise 3% noise 3.25% noise
cb| P2M| | CD|] P2M| | CD| P2M|
PDFlow [3] 39.93 20.04 44.72 23.95 50.55 28.80

ScoreDenoise [2] 49.60 23.47 56.38 28.79 64.81 35.63
IterativePFN [1] 36.58 12.63 42.49 16.99 52.83 24.93

C2AENet (Ours) | 34.88 1132 3835 1385 4544 19.06

3 COMPARISON OF THE RUNNING TIME OF
DIFFERENT DENOISING METHODS

For large-resolution point clouds, the running time of denoising
methods is crucial. Therefore, in this section, we conduct a running
time comparison of state-of-the-art methods on a noisy point cloud
with a resolution of 50K points. The results are shown in Table 1. For
other state-of-the-art methods, we use their default configurations.
For instance, PDFlow and Pointfilter undergo two iterations of
denoising during testing. The number of gradient ascent steps for
ScoreDenoise is set to 30. Both IterativePFN and our method are
configured with four denoising stages. Overall, our method achieves
optimal denoising performance while ensuring suboptimal running
time. Compared to methods with fewer stages, our method yields
superior denoising results with less running time.
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Figure 1: Visual results of four additional point clouds on the PUNet dataset, where the color of each point represents its P2M.
The noisy point cloud contains Gaussian noise with standard deviation of 2% of the bounding sphere’s radius, and it has a
resolution of 50K points. The mean P2M of each point cloud is directly below.

Table 3: Experimental results of AEConv module on higher 4 MORE COMPREHENSIVE RESULTS AND

noise levels on the PUNet database. CD is multlplled by 105, ANALYSES FROM THE ABLATION STUDY
P2M is multiplied by 10°. The best results are marked in . . .
BOLD. 4.1 Performance Comparison on Higher Noise
Levels

| 10K points In Table 2, we further investigate the performance of different

Method 2.75% noise 3% noise 3.25% noise denoising methods on higher noise levels. All models in the ex-

CcD| P2M| | CD| P2M| | CD| P2M| periment are trained on Gaussian noise with standard deviations

ranging from 0.5% to 2% of the bounding sphere’s radius. Follow-

EdgeConv 36.67 1264 4448 1842 5901 2962 ing that, the models are tested on Gaussian noise with standard

EdgeConv + GS 3525 1163  39.24 1459 4816  21.26

deviations of 2.75%, 3 %, and 3.25% of the bounding sphere’s radius,
respectively. As a result, the noise level during testing is signifi-
cantly higher than during training. From the experimental results,
we observe that ScoreDenoise performs less satisfactorily as the

EdgeConv + GS + AEA | 34.88 11.32 3835 13.85 45.44 19.06
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Figure 2: Visual results of four scans on the Kinect v1 dataset, where the color of each point represents its P2M. The real-world

scanned data includes Boy, Cone, Girl, and Pyramid.

noise level increases. Compared to other state-of-the-art denoising
methods, our method consistently outperforms them across all high
noise levels. This demonstrates the effectiveness and robustness of
C2AENet in challenging scenarios.

4.2 Ablation Study of AEConv Module on
Higher Noise Levels

To further validate the effectiveness and contribution of the AE-
Conv module, we conduct an additional ablation studies. Unlike the
experiments presented in the main text, this study evaluates the
contributions of the EdgeConv baseline [4], multi-level graph struc-
ture, and adaptive edge attention (AEA) module on higher noise
levels. The results are presented in Table 3. In the table, we use
GS to represent multi-level graph structures. We observe that the
multi-level graph structure leveraging different neighborhood in-
formation is beneficial for denoising. On this basis, the AEA module

further achieves a significant performance leap, demonstrating its
ability to focus the network on critical denoising regions. Therefore,
the AEConv module remains effective in capturing the complex
relationships between data even on higher noise levels.

4.3 Ablation Study of Different Connection
Architectures on Higher Noise Levels

In Table 4, we conduct additional experiments to assess the per-
formance of different connection architectures on higher noise
levels. We find that the baseline achieved suboptimal performance
on higher noise levels. Adding the cross-stage connections of the
encoder and decoder separately or simultaneously to the baseline
resulted in unsatisfactory performance on high noise levels. Ulti-
mately, the linear mapping of cross-stage features effectively solves
this issue, making the transferred information more suitable for
learning in the next stage.
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Table 4: Experimental results of five different connection architectures on higher noise levels on the PUNet database. CD is
multiplied by 10°, P2M is multiplied by 10°. The best results are marked in BOLD.

| 10K points
Method 2.75% noise 3% noise 3.25% noise
CD| P2M| | CD| P2M| | CD| P2M|
Base 36.79 12.60 41.97 16.42 51.61 23.73
Base+Cross-Stage (Encoder) 37.28 12.93 44.49 18.28 58.61 29.13
Base+Cross-Stage (Decoder) 38.48 1379 4798 2097  61.94  31.90
Base+Cross-Stage Cross-Coder 39.02 14.14 49.29 21.86 64.46 33.79

Base+Cross-Stage Cross-Coder (FC) | 34.88

11.32 3835 13.85 45.44 19.06

Table 5: Experimental results of different number of stages on higher noise levels on the PUNet database. CD is multiplied by

10°, P2M is multiplied by 10°. The best results are marked in BOLD.

| 10K points
Method 2.75% noise 3% noise 3.25% noise
CD| P2M| | CD| P2M| | CD| P2M|
Our network with 1 stage | 44.43 18.13 5191 23.88 6159  31.57
Our network with 2 stages | 37.61 13.07 42.92 16.97 51.33 23.66
Our network with 4 stages | 34.88 11.32 38.35 13.85 4544 19.06
Our network with 8 stages | 37.16 12.74 43.91 17.73 55.69 26.77
4.4 Ablation Study of the Number of Stages on REFERENCES

Higher Noise Levels

Table 5 shows the experimental results of the multi-stage denoising
scheme on higher noise levels. It primarily evaluates our network
with 1, 2, 4, and 8 stages. The results indicate that the performance
gains of the multi-stage denoising scheme on higher noise levels
align with the trends observed in the main paper. The optimal per-
formance is attained when configuring the network with 4 stages.
This further demonstrates the importance of multi-stage denoising
scheme in enhancing denoising capabilities.
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